Example #1
0
BlockStreamIteratorBase* EqualJoin::getIteratorTree(const unsigned& block_size){
	if(dataflow_==0){
		getDataflow();

	}
	BlockStreamJoinIterator* join_iterator;
	BlockStreamIteratorBase* child_iterator_left=left_child_->getIteratorTree(block_size);
	BlockStreamIteratorBase* child_iterator_right=right_child_->getIteratorTree(block_size);
	Dataflow dataflow_left=left_child_->getDataflow();
	Dataflow dataflow_right=right_child_->getDataflow();
	BlockStreamJoinIterator::State state;
	state.block_size_=block_size;

	state.ht_nbuckets=1024*1024;
//	state.ht_nbuckets=1024;
	state.input_schema_left=getSchema(dataflow_left.attribute_list_);
	state.input_schema_right=getSchema(dataflow_right.attribute_list_);
	state.ht_schema=getSchema(dataflow_left.attribute_list_);
	/* the bucket size is 64-byte-aligned */
//	state.ht_bucketsize=((state.input_schema_left->getTupleMaxSize()-1)/64+1)*64;
	/*
	 * In the initial implementation, I set the bucket size to be up round to cache line
	 * size, e.g., 64Bytes. Finally, I realized that different from aggregation, the hash
	 * table bucket in the build phase of hash join is filled very quickly and hence a
	 * a relatively large bucket size could reduce the number of overflowing buckets and
	 * avoid the random memory access caused by acceesing overflowing buckets.
	 */
	state.ht_bucketsize=128;
	state.output_schema=getSchema(dataflow_->attribute_list_);

	state.joinIndex_left=getLeftJoinKeyIndexList();
	state.joinIndex_right=getRightJoinKeyIndexList();

	state.payload_left=getLeftPayloadIndexList();
	state.payload_right=getRightPayloadIndexList();



	switch(join_police_){
		case no_repartition:{
			state.child_left=child_iterator_left;
			state.child_right=child_iterator_right;

			join_iterator=new BlockStreamJoinIterator(state);
			break;
		}
		case left_repartition:{
	//		state.child_left
			BlockStreamExpander::State expander_state;
			expander_state.block_count_in_buffer_=EXPANDER_BUFFER_SIZE;
			expander_state.block_size_=block_size;
			expander_state.init_thread_count_=Config::initial_degree_of_parallelism;
			expander_state.child_=child_iterator_left;
			expander_state.schema_=getSchema(dataflow_left.attribute_list_);
			BlockStreamIteratorBase* expander=new BlockStreamExpander(expander_state);


			NodeTracker* node_tracker=NodeTracker::getInstance();
			ExpandableBlockStreamExchangeEpoll::State exchange_state;
			exchange_state.block_size_=block_size;
			exchange_state.child_=expander;//child_iterator_left;
			exchange_state.exchange_id_=IDsGenerator::getInstance()->generateUniqueExchangeID();

			std::vector<NodeID> upper_id_list=getInvolvedNodeID(dataflow_->property_.partitioner);
			exchange_state.upper_ip_list_=convertNodeIDListToNodeIPList(upper_id_list);

			std::vector<NodeID> lower_id_list=getInvolvedNodeID(dataflow_left.property_.partitioner);
			exchange_state.lower_ip_list_=convertNodeIDListToNodeIPList(lower_id_list);


			const Attribute right_partition_key=dataflow_->property_.partitioner.getPartitionKey();

			/* get the left attribute that is corresponding to the partition key.*/
			Attribute left_partition_key=joinkey_pair_list_[getIndexInRightJoinKeyList(right_partition_key)].first;

			exchange_state.partition_schema_=partition_schema::set_hash_partition(getIndexInAttributeList(dataflow_left.attribute_list_,left_partition_key));


//			exchange_state.schema=getSchema(dataflow_left.attribute_list_,dataflow_right.attribute_list_);
			exchange_state.schema_=getSchema(dataflow_left.attribute_list_);
			BlockStreamIteratorBase* exchange=new ExpandableBlockStreamExchangeEpoll(exchange_state);
			state.child_left=exchange;
			state.child_right=child_iterator_right;

			join_iterator=new BlockStreamJoinIterator(state);

			break;
		}
		case right_repartition:{

			BlockStreamExpander::State expander_state;
			expander_state.block_count_in_buffer_=EXPANDER_BUFFER_SIZE;
			expander_state.block_size_=block_size;
			expander_state.init_thread_count_=Config::initial_degree_of_parallelism;
			expander_state.child_=child_iterator_right;
			expander_state.schema_=getSchema(dataflow_right.attribute_list_);
			BlockStreamIteratorBase* expander=new BlockStreamExpander(expander_state);


			NodeTracker* node_tracker=NodeTracker::getInstance();
			ExpandableBlockStreamExchangeEpoll::State exchange_state;
			exchange_state.block_size_=block_size;
			exchange_state.child_=expander;
			exchange_state.exchange_id_=IDsGenerator::getInstance()->generateUniqueExchangeID();

			std::vector<NodeID> upper_id_list=getInvolvedNodeID(dataflow_->property_.partitioner);
			exchange_state.upper_ip_list_=convertNodeIDListToNodeIPList(upper_id_list);

			std::vector<NodeID> lower_id_list=getInvolvedNodeID(dataflow_right.property_.partitioner);
			exchange_state.lower_ip_list_=convertNodeIDListToNodeIPList(lower_id_list);


			const Attribute output_partition_key=dataflow_->property_.partitioner.getPartitionKey();

			/* get the right attribute that is corresponding to the partition key.*/
			Attribute right_repartition_key;
			if(dataflow_->property_.partitioner.hasShadowPartitionKey()){
				right_repartition_key=joinkey_pair_list_[getIndexInLeftJoinKeyList(output_partition_key,dataflow_->property_.partitioner.getShadowAttributeList())].second;
			}
			else{
				right_repartition_key=joinkey_pair_list_[getIndexInLeftJoinKeyList(output_partition_key)].second;
			}


			exchange_state.partition_schema_=partition_schema::set_hash_partition(getIndexInAttributeList(dataflow_right.attribute_list_,right_repartition_key));


			exchange_state.schema_=getSchema(dataflow_right.attribute_list_);
			BlockStreamIteratorBase* exchange=new ExpandableBlockStreamExchangeEpoll(exchange_state);
			state.child_left=child_iterator_left;
			state.child_right=exchange;
			join_iterator=new BlockStreamJoinIterator(state);
			break;
		}
		case complete_repartition:{

			/* build left input*/
			BlockStreamExpander::State expander_state_l;
			expander_state_l.block_count_in_buffer_=EXPANDER_BUFFER_SIZE;
			expander_state_l.block_size_=block_size;
			expander_state_l.init_thread_count_=Config::initial_degree_of_parallelism;
			expander_state_l.child_=child_iterator_left;
			expander_state_l.schema_=getSchema(dataflow_left.attribute_list_);
			BlockStreamIteratorBase* expander_l=new BlockStreamExpander(expander_state_l);


			ExpandableBlockStreamExchangeEpoll::State l_exchange_state;
			l_exchange_state.block_size_=block_size;
			l_exchange_state.child_=expander_l;
			l_exchange_state.exchange_id_=IDsGenerator::getInstance()->generateUniqueExchangeID();

			std::vector<NodeID> lower_id_list=getInvolvedNodeID(dataflow_left.property_.partitioner);
			l_exchange_state.lower_ip_list_=convertNodeIDListToNodeIPList(lower_id_list);

			std::vector<NodeID> upper_id_list=getInvolvedNodeID(dataflow_->property_.partitioner);
			l_exchange_state.upper_ip_list_=convertNodeIDListToNodeIPList(upper_id_list);

			const Attribute left_partition_key=dataflow_->property_.partitioner.getPartitionKey();
			l_exchange_state.partition_schema_=partition_schema::set_hash_partition(getIndexInAttributeList(dataflow_left.attribute_list_,left_partition_key));
			l_exchange_state.schema_=getSchema(dataflow_left.attribute_list_);
			BlockStreamIteratorBase* l_exchange=new ExpandableBlockStreamExchangeEpoll(l_exchange_state);

			/*build right input*/

			BlockStreamExpander::State expander_state_r;
			expander_state_r.block_count_in_buffer_=EXPANDER_BUFFER_SIZE;
			expander_state_r.block_size_=block_size;
			expander_state_r.init_thread_count_=Config::initial_degree_of_parallelism;
			expander_state_r.child_=child_iterator_right;
			expander_state_r.schema_=getSchema(dataflow_right.attribute_list_);
			BlockStreamIteratorBase* expander_r=new BlockStreamExpander(expander_state_r);

			ExpandableBlockStreamExchangeEpoll::State r_exchange_state;
			r_exchange_state.block_size_=block_size;
			r_exchange_state.child_=expander_r;
			r_exchange_state.exchange_id_=IDsGenerator::getInstance()->generateUniqueExchangeID();

			lower_id_list=getInvolvedNodeID(dataflow_right.property_.partitioner);
			r_exchange_state.lower_ip_list_=convertNodeIDListToNodeIPList(lower_id_list);

			upper_id_list=getInvolvedNodeID(dataflow_->property_.partitioner);
			r_exchange_state.upper_ip_list_=convertNodeIDListToNodeIPList(upper_id_list);

			const Attribute right_partition_key=joinkey_pair_list_[getIndexInLeftJoinKeyList(left_partition_key)].second;
			r_exchange_state.partition_schema_=partition_schema::set_hash_partition(getIndexInAttributeList(dataflow_right.attribute_list_,right_partition_key));
			r_exchange_state.schema_=getSchema(dataflow_right.attribute_list_);
			BlockStreamIteratorBase* r_exchange=new ExpandableBlockStreamExchangeEpoll(r_exchange_state);

			/* finally  build the join iterator itself*/
			state.child_left=l_exchange;
			state.child_right=r_exchange;
			join_iterator=new BlockStreamJoinIterator(state);
			break;


		}
		default:{
			break;
		}
	}
	return join_iterator;
}
Example #2
0
bool LogicalScan::GetOptimalPhysicalPlan(Requirement requirement,PhysicalPlanDescriptor& physical_plan_descriptor, const unsigned & block_size){
	Dataflow dataflow=getDataflow();
	NetworkTransfer transfer=requirement.requireNetworkTransfer(dataflow);

	ExpandableBlockStreamProjectionScan::State state;
	state.block_size_=block_size;
	state.projection_id_=target_projection_->getProjectionID();
	state.schema_=getSchema(dataflow_->attribute_list_);
	state.sample_rate_=sample_rate_;

	PhysicalPlan scan=new ExpandableBlockStreamProjectionScan(state);

	if(transfer==NONE){

		physical_plan_descriptor.plan=scan;
		physical_plan_descriptor.dataflow=dataflow;
		physical_plan_descriptor.cost+=0;
	}
	else{
		physical_plan_descriptor.cost+=dataflow.getAggregatedDatasize();

		ExpandableBlockStreamExchangeEpoll::State state;
		state.block_size_=block_size;
		state.child_=scan;//child_iterator;
		state.exchange_id_=IDsGenerator::getInstance()->generateUniqueExchangeID();
		state.schema_=getSchema(dataflow.attribute_list_);

		std::vector<NodeID> lower_id_list=getInvolvedNodeID(dataflow.property_.partitioner);
		state.lower_id_list_=lower_id_list;

		std::vector<NodeID> upper_id_list;
		if(requirement.hasRequiredLocations()){
			upper_id_list=requirement.getRequiredLocations();
		}
		else{
			if(requirement.hasRequiredPartitionFunction()){
				/* partition function contains the number of partitions*/
				PartitionFunction* partitoin_function=requirement.getPartitionFunction();
				upper_id_list=std::vector<NodeID>(NodeTracker::getInstance()->getNodeIDList().begin(),NodeTracker::getInstance()->getNodeIDList().begin()+partitoin_function->getNumberOfPartitions()-1);
			}
			else{
				//TODO: decide the degree of parallelism
				upper_id_list=NodeTracker::getInstance()->getNodeIDList();
			}
		}

		state.upper_id_list_=upper_id_list;

		state.partition_schema_=partition_schema::set_hash_partition(getIndexInAttributeList(dataflow.attribute_list_,requirement.getPartitionKey()));
		assert(state.partition_schema_.partition_key_index>=0);

		BlockStreamIteratorBase* exchange=new ExpandableBlockStreamExchangeEpoll(state);

		Dataflow new_dataflow;
		new_dataflow.attribute_list_=dataflow.attribute_list_;
		new_dataflow.property_.partitioner.setPartitionKey(requirement.getPartitionKey());
		new_dataflow.property_.partitioner.setPartitionFunction(PartitionFunctionFactory::createBoostHashFunction(state.upper_id_list_.size()));

		const unsigned total_size=dataflow.getAggregatedDatasize();
		const unsigned degree_of_parallelism=state.upper_id_list_.size();
		std::vector<DataflowPartition> dataflow_partition_list;
			for(unsigned i=0;i<degree_of_parallelism;i++){
				const NodeID location=upper_id_list[i];

				/* Currently, the join output size cannot be predicted due to the absence of data statistics.
				 * We just use the magic number as following */
				const unsigned datasize=total_size/degree_of_parallelism;
				DataflowPartition dfp(i,datasize,location);
				dataflow_partition_list.push_back(dfp);
			}
		new_dataflow.property_.partitioner.setPartitionList(dataflow_partition_list);


		physical_plan_descriptor.plan=exchange;
		physical_plan_descriptor.dataflow=new_dataflow;
		physical_plan_descriptor.cost+=new_dataflow.getAggregatedDatasize();
	}

	if(requirement.passLimits(physical_plan_descriptor.cost))
		return true;
	else
		return false;

}