Example #1
0
void EnhancedSGM::computeUVCache()
{
    for (int y = 0; y < _params.yMax; y++)
    {
        for (int x = 0; x < _params.xMax; x++)
        {
            int idx = getLinearIndex(x, y);
            if (not _maskVec[idx]) continue;
            CurveRasterizer<int, Polynomial2> raster = getCurveRasteriser2(idx);
            raster.steps(-DISPARITY_MARGIN);
            const int u_vCacheStep = _params.dispMax + 2 * DISPARITY_MARGIN;
            int32_t * uPtr = (int32_t *)_uCache.row(y).data + x*u_vCacheStep;
            int32_t * vPtr = (int32_t *)_vCache.row(y).data + x*u_vCacheStep;
            for (int i = 0; i  < u_vCacheStep; i++, raster.step(), uPtr++, vPtr++)
            {
                if (raster.v < 0 or raster.v >= _params.vMax 
                    or raster.u < 0 or raster.u >= _params.uMax)
                {
                    // coordinate is out of the image
                    *uPtr = -1;
                    *vPtr = -1;
                }
                else
                {
                    // coordinate is within the image
                    *uPtr = raster.u;
                    *vPtr = raster.v;
                }
            }
        }
    }
}
Example #2
0
File: chunk.cpp Project: karda/isis
void Chunk::copyRange( const size_t source_start[], const size_t source_end[], Chunk &dst, const size_t destination[] ) const
{
	LOG_IF( ! isInRange( source_start ), Debug, error )
			<< "Copy start " << util::vector4<size_t>( source_start )
			<< " is out of range (" << getSizeAsString() << ") at the source chunk";
	LOG_IF( ! isInRange( source_end ), Debug, error )
			<< "Copy end " << util::vector4<size_t>( source_end )
			<< " is out of range (" << getSizeAsString() << ") at the source chunk";
	LOG_IF( ! dst.isInRange( destination ), Debug, error )
			<< "Index " << util::vector4<size_t>( destination )
			<< " is out of range (" << getSizeAsString() << ") at the destination chunk";
	const size_t sstart = getLinearIndex( source_start );
	const size_t send = getLinearIndex( source_end );
	const size_t dstart = dst.getLinearIndex( destination );
	getValueArrayBase().copyRange( sstart, send, *dst, dstart );
}
Example #3
0
 EPP_GLOBAL void clearSNSGOutputAll(
   unsigned int capacity,
   unsigned int *output
 ) {
   unsigned int self = getLinearIndex();
   clearSNSGOutput( capacity, output, self );
 }
Example #4
0
 EPP_GLOBAL void getRequiredSNSGSizeAll(
   unsigned int *output,
   SliceIndex *minmax
 ) {
   unsigned int self = getLinearIndex();
   getRequiredSNSGSize( output, minmax, self );
 }
Example #5
0
 EPP_GLOBAL void clearSNSGAll(
   unsigned int capacity,
   unsigned int *buffer
 ) {
   unsigned int self = getLinearIndex();
   clearSNSG( capacity, buffer, self );
 }
Example #6
0
 EPP_GLOBAL void calcOffsetAll(
   SliceIndex *minmax,
   unsigned int *current_top
 ) {
   unsigned int self = getLinearIndex();
   calcOffset( minmax, self, current_top );
 }
Example #7
0
 EPP_GLOBAL void clearMinMaxAll(
   unsigned int x_boxel_count,
   unsigned int y_boxel_count,
   SliceIndex *minmax
 ) {
   unsigned int self = getLinearIndex();
   clearMinMax( x_boxel_count, y_boxel_count, minmax, self );
 }
Example #8
0
File: chunk.cpp Project: karda/isis
size_t Chunk::compareRange( const size_t source_start[], const size_t source_end[], const Chunk &dst, const size_t destination[] ) const
{
	LOG_IF( ! isInRange( source_start ), Debug, error )
			<< "memcmp start " << util::vector4<size_t>( source_start )
			<< " is out of range (" << getSizeAsString() << ") at the first chunk";
	LOG_IF( ! isInRange( source_end ), Debug, error )
			<< "memcmp end " << util::vector4<size_t>( source_end )
			<< " is out of range (" << getSizeAsString() << ") at the first chunk";
	LOG_IF( ! dst.isInRange( destination ), Debug, error )
			<< "Index " << util::vector4<size_t>( destination )
			<< " is out of range (" << getSizeAsString() << ") at the second chunk";
	LOG( Debug, verbose_info )
			<< "Comparing range from " << util::vector4<size_t>( source_start ) << " to " << util::vector4<size_t>( source_end )
			<< " and " << util::vector4<size_t>( destination );
	const size_t sstart = getLinearIndex( source_start );
	const size_t send = getLinearIndex( source_end );
	const size_t dstart = dst.getLinearIndex( destination );
	return getValueArrayBase().compare( sstart, send, dst.getValueArrayBase(), dstart );
}
Example #9
0
 EPP_GLOBAL void detectMinMaxAll(
   unsigned int x_boxel_count,
   unsigned int y_boxel_count,
   unsigned int z_boxel_count,
   SliceIndex *minmax,
   float boxel_size,
   Particle *_particles
 ) {
   unsigned int self = getLinearIndex();
   detectMinMax( x_boxel_count, y_boxel_count, z_boxel_count, minmax, boxel_size, _particles[ self ].position );
 }
Example #10
0
 EPP_GLOBAL void getSNSGAll(
   float boxel_size, unsigned int capacity,
   unsigned int x_boxel_count,
   unsigned int y_boxel_count,
   unsigned int z_boxel_count,
   unsigned int *buffer,
   unsigned int *_output, Particle *_particles,
   SliceIndex *slice_index
 ) {
   unsigned int self = getLinearIndex();
   getSNSG( boxel_size, capacity, x_boxel_count, y_boxel_count, z_boxel_count, buffer, _output + ( capacity * 27  * self ), self, _particles[ self ].position, slice_index );
 }
Example #11
0
//TODO reconstruct the depth points, not everything
void EnhancedSGM::computeReconstructed()
{
    _pointVec1.resize(_params.yMax*_params.xMax);
    _pointPxVec1.resize(_params.yMax*_params.xMax);
    for (int y = 0; y < _params.yMax; y++)
    {
        for (int x = 0; x < _params.xMax; x++)
        {
            int idx = getLinearIndex(x, y);
            _pointVec1[idx] = Vector2d(_params.uConv(x), _params.vConv(y));
            _pointPxVec1[idx] = Vector2i(_params.uConv(x), _params.vConv(y));
        }
    }
    _camera1->reconstructPointCloud(_pointVec1, _reconstVec, _maskVec);
}
Example #12
0
IMDHistoWorkspace_sptr ReflectometryTransform::executeMDNormPoly(
    MatrixWorkspace_const_sptr inputWs) const {

  auto input_x_dim = inputWs->getXDimension();

  MDHistoDimension_sptr dim0 = MDHistoDimension_sptr(new MDHistoDimension(
      input_x_dim->getName(), input_x_dim->getDimensionId(),
      input_x_dim->getMDFrame(),
      static_cast<Mantid::coord_t>(input_x_dim->getMinimum()),
      static_cast<Mantid::coord_t>(input_x_dim->getMaximum()),
      input_x_dim->getNBins()));

  auto input_y_dim = inputWs->getYDimension();

  MDHistoDimension_sptr dim1 = MDHistoDimension_sptr(new MDHistoDimension(
      input_y_dim->getName(), input_y_dim->getDimensionId(),
      input_y_dim->getMDFrame(),
      static_cast<Mantid::coord_t>(input_y_dim->getMinimum()),
      static_cast<Mantid::coord_t>(input_y_dim->getMaximum()),
      input_y_dim->getNBins()));

  auto outWs = boost::make_shared<MDHistoWorkspace>(dim0, dim1);

  for (size_t nHistoIndex = 0; nHistoIndex < inputWs->getNumberHistograms();
       ++nHistoIndex) {
    const MantidVec X = inputWs->readX(nHistoIndex);
    const MantidVec Y = inputWs->readY(nHistoIndex);
    const MantidVec E = inputWs->readE(nHistoIndex);

    for (size_t nBinIndex = 0; nBinIndex < inputWs->blocksize(); ++nBinIndex) {
      auto value_index = outWs->getLinearIndex(nBinIndex, nHistoIndex);
      outWs->setSignalAt(value_index, Y[nBinIndex]);
      outWs->setErrorSquaredAt(value_index, E[nBinIndex] * E[nBinIndex]);
    }
  }
  return outWs;
}
Example #13
0
void EnhancedSGM::computeCurveCost(const Mat8u & img1, const Mat8u & img2)
{
    if (_params.verbosity > 0) cout << "EnhancedSGM::computeCurveCost" << endl;
    
    // compute the weights for matching cost
    
    if (_params.salientPoints) _salientBuffer.setTo(0);
    
    for (int y = 0; y < _params.yMax; y++)
    {
        for (int x = 0; x < _params.xMax; x++)
        {
            int idx = getLinearIndex(x, y);
            if (_params.verbosity > 4) 
            {
                cout << "    x: " << x << " y: " << y << "  idx: " << idx; 
                cout << "  mask: " << _maskVec[idx] <<  endl;
            }
            if (not _maskVec[idx])
            {
                uint8_t * outPtr = _errorBuffer.row(y).data + x*_params.dispMax;            
                *outPtr = 0;
                fill(outPtr + 1, outPtr + _params.dispMax, 255);
                continue;
            }
            // compute the local image descriptor,
            // a piece of the epipolar curve on the first image
            vector<uint8_t> descriptor;
            CurveRasterizer<int, Polynomial2> descRaster = getCurveRasteriser1(idx);
            const int step = _epipolarDescriptor.compute(img1, descRaster, descriptor);
            _stepBuffer(y, x) = step;
            if (step < 1) 
            {
                //TODO make a function
                uint8_t * outPtr = _errorBuffer.row(y).data + x*_params.dispMax;            
                *outPtr = 0;
                fill(outPtr + 1, outPtr + _params.dispMax, 255);
                continue;
            }
            if (_params.imageBasedCost) 
            {
                switch (step)
                {
                case 1:
                    _costBuffer(y, x) = _params.lambdaJump;
                    break;
                case 2:
                    _costBuffer(y, x) = _params.lambdaJump * 3;
                    break;
                default:
                    _costBuffer(y, x) = _params.lambdaJump * 6;
                    break;
                }
            }
            
            //TODO revise the criterion (step == 1)
            if (_params.salientPoints and step <= 2)
            {
                _salientBuffer(y, x) = 1;
            }
            const int nSteps = ( _params.dispMax  + step - 1 ) / step; 
               
            //sample the curve 
            vector<uint8_t> sampleVec(nSteps + MARGIN, 0);
            
            if (_params.useUVCache)
            {
                const int u_vCacheStep = _params.dispMax + 2 * DISPARITY_MARGIN;
                int32_t * uPtr = (int32_t *)_uCache.row(y).data + x*u_vCacheStep;
                int32_t * vPtr = (int32_t *)_vCache.row(y).data + x*u_vCacheStep;
                uPtr += DISPARITY_MARGIN - HALF_LENGTH * step;
                vPtr += DISPARITY_MARGIN - HALF_LENGTH * step;
                for (int i = 0; i  < nSteps + MARGIN; i++, uPtr += step, vPtr += step)
                {
                    if (*uPtr < 0 or *vPtr < 0) sampleVec[i] = 0;
                    else sampleVec[i] = img2(*vPtr, *uPtr);
                }
            }
            else
            {
                CurveRasterizer<int, Polynomial2> raster = getCurveRasteriser2(idx);
                raster.setStep(step); 
                raster.steps(-HALF_LENGTH);           
                
                for (int i = 0; i  < nSteps + MARGIN; i++, raster.step())
                {
                    if (raster.v < 0 or raster.v >= img2.rows 
                        or raster.u < 0 or raster.u >= img2.cols) sampleVec[i] = 0;
                    else sampleVec[i] = img2(raster.v, raster.u);
                }
            }
            vector<int> costVec = compareDescriptor(descriptor, sampleVec, _params.flawCost);
            if (y == 350 and x > 469 and x < 481)
            {
                cout << "Point : " << x << " " << y << endl;
                cout << "Step : " << step << endl;
                cout << "samples :" << endl;
                for (auto & x : sampleVec)
                {
                    cout << setw(6) << int(x);
                }
                cout << endl;
                cout << "cost :" << endl;
                for (auto & x : costVec)
                {
                    cout << setw(6) << int(x);
                }
                cout << endl;
                cout << "descriptor :" << endl;
                for (auto & x : descriptor)
                {
                    cout << setw(6) << int(x);
                }
                cout << endl;
            }
            
//            //compute the bias;
//            int sum1 = filter(kernelVec.begin(), kernelVec.end(), descriptor.begin(), 0);
            
            // fill up the cost buffer
            uint8_t * outPtr = _errorBuffer.row(y).data + x*_params.dispMax;
            auto costIter = costVec.begin() + HALF_LENGTH;
            for (int d = 0; d < nSteps; d++, outPtr += step)
            {
//                int sum2 = filter(kernelVec.begin(), kernelVec.end(), sampleVec.begin() + d, 0);
//                int bias = min(_params.maxBias, max(-_params.maxBias, (sum2 - sum1) / LENGTH));
//                int acc =  biasedAbsDiff(kernelVec.begin(), kernelVec.end(),
//                                descriptor.begin(), sampleVec.begin() + d, bias);
//                *outPtr = acc / NORMALIZER;

                *outPtr = *costIter / _params.descLength;
                ++costIter;
            }
            if (step > 1) fillGaps(_errorBuffer.row(y).data + x*_params.dispMax, step);
        }
    }
}
Example #14
0
void EnhancedSGM::reconstructDepth(DepthMap & depth) const
{
    if (_params.verbosity > 2) 
    {
        cout << "EnhancedSGM::reconstructDepth(DepthMap & depth)" << endl;
    }
    depth = DepthMap(_camera1, _params, _params.hypMax);
    for (int h = 0; h < _params.hypMax; h++)
    {
        for (int y = 0; y < _params.yMax; y++)
        {
            for (int x = 0; x < _params.xMax; x++)
            {
                if (_params.salientPoints and not _salientBuffer(y, x)) 
                {
                    depth.at(x, y, h) = OUT_OF_RANGE;
                    depth.sigma(x, y, h) = OUT_OF_RANGE;
                    depth.cost(x, y, h) = OUT_OF_RANGE;
                    continue;
                }
                depth.cost(x, y, h) = _errorBuffer(y, x*_params.dispMax + h);
                
                int idx = getLinearIndex(x, y);
                if (not _maskVec[idx])
                { 
                    depth.at(x, y, h) = OUT_OF_RANGE;
                    depth.sigma(x, y, h) = OUT_OF_RANGE;
                    depth.cost(x, y, h) = OUT_OF_RANGE;
                    continue;
                }
                int disparity = _smallDisparity(y, x*_params.hypMax + h);
                
                // point on the first image
                const auto & pt1 = _pointVec1[idx];
                
                // to compute point on the second image
                // TODO make virtual rasterizer using the cache
                int u21, v21, u22, v22;
                int step = _stepBuffer(y, x);
                if (_params.useUVCache)
                {
                    const int u_vCacheStep = _params.dispMax + 2 * DISPARITY_MARGIN;
                    u21 = _uCache(y, x*u_vCacheStep + DISPARITY_MARGIN + disparity);
                    u22 = _uCache(y, x*u_vCacheStep + DISPARITY_MARGIN + disparity + step);
                    v21 = _vCache(y, x*u_vCacheStep + DISPARITY_MARGIN + disparity);
                    v22 = _vCache(y, x*u_vCacheStep + DISPARITY_MARGIN + disparity + step);
                }
                else
                {       
                    CurveRasterizer<int, Polynomial2> raster = getCurveRasteriser2(idx);
                    raster.steps(disparity);
                    u21 = raster.u;
                    v21 = raster.v;
                    raster.steps(step);
                    u22 = raster.u;
                    v22 = raster.v;
                }
                
                triangulate(pt1[0], pt1[1], u21, v21, u22, v22,
                             depth.at(x, y, h), depth.sigma(x, y, h));
                        
            }
        }
    }
}
Example #15
0
 EPP_GLOBAL void calcSizeAll(
   SliceIndex *minmax
 ) {
   unsigned int self = getLinearIndex();
   calcSize( minmax, self );
 }