BufferQueueCore::BufferQueueCore(const sp<IGraphicBufferAlloc>& allocator) : mAllocator(allocator), mMutex(), mIsAbandoned(false), mConsumerControlledByApp(false), mConsumerName(getUniqueName()), mConsumerListener(), mConsumerUsageBits(0), mConnectedApi(NO_CONNECTED_API), mLinkedToDeath(), mConnectedProducerListener(), mSlots(), mQueue(), mFreeSlots(), mFreeBuffers(), mUnusedSlots(), mActiveBuffers(), mDequeueCondition(), mDequeueBufferCannotBlock(false), mDefaultBufferFormat(PIXEL_FORMAT_RGBA_8888), mDefaultWidth(1), mDefaultHeight(1), mDefaultBufferDataSpace(HAL_DATASPACE_UNKNOWN), mMaxBufferCount(BufferQueueDefs::NUM_BUFFER_SLOTS), mMaxAcquiredBufferCount(1), mMaxDequeuedBufferCount(1), mBufferHasBeenQueued(false), mFrameCounter(0), mTransformHint(0), mIsAllocating(false), mIsAllocatingCondition(), mAllowAllocation(true), mBufferAge(0), mGenerationNumber(0), mAsyncMode(false), mSharedBufferMode(false), mAutoRefresh(false), mSharedBufferSlot(INVALID_BUFFER_SLOT), mSharedBufferCache(Rect::INVALID_RECT, 0, NATIVE_WINDOW_SCALING_MODE_FREEZE, HAL_DATASPACE_UNKNOWN), mUniqueId(getUniqueId()) { if (allocator == NULL) { #ifdef HAVE_NO_SURFACE_FLINGER // Without a SurfaceFlinger, allocate in-process. This only makes // sense in systems with static SELinux configurations and no // applications (since applications need dynamic SELinux policy). mAllocator = new GraphicBufferAlloc(); #else // Run time check for headless, where we also allocate in-process. char value[PROPERTY_VALUE_MAX]; property_get("config.headless", value, "0"); if (atoi(value) == 1) { mAllocator = new GraphicBufferAlloc(); } else { sp<ISurfaceComposer> composer(ComposerService::getComposerService()); mAllocator = composer->createGraphicBufferAlloc(); } #endif // HAVE_NO_SURFACE_FLINGER if (mAllocator == NULL) { BQ_LOGE("createGraphicBufferAlloc failed"); } } int numStartingBuffers = getMaxBufferCountLocked(); for (int s = 0; s < numStartingBuffers; s++) { mFreeSlots.insert(s); } for (int s = numStartingBuffers; s < BufferQueueDefs::NUM_BUFFER_SLOTS; s++) { mUnusedSlots.push_front(s); } }
void BufferQueue::cancelBuffer(int buf, const sp<Fence>& fence) { ATRACE_CALL(); ST_LOGV("cancelBuffer: slot=%d", buf); Mutex::Autolock lock(mMutex); if (mAbandoned) { ST_LOGW("cancelBuffer: BufferQueue has been abandoned!"); return; } int maxBufferCount = getMaxBufferCountLocked(); if (buf < 0 || buf >= maxBufferCount) { ST_LOGE("cancelBuffer: slot index out of range [0, %d]: %d", maxBufferCount, buf); return; } else if (mSlots[buf].mBufferState != BufferSlot::DEQUEUED) { ST_LOGE("cancelBuffer: slot %d is not owned by the client (state=%d)", buf, mSlots[buf].mBufferState); return; } else if (fence == NULL) { ST_LOGE("cancelBuffer: fence is NULL"); return; } mSlots[buf].mBufferState = BufferSlot::FREE; mSlots[buf].mFrameNumber = 0; mSlots[buf].mFence = fence; mDequeueCondition.broadcast(); }
status_t BufferQueue::requestBuffer(int slot, sp<GraphicBuffer>* buf) { ATRACE_CALL(); ST_LOGV("requestBuffer: slot=%d", slot); Mutex::Autolock lock(mMutex); if (mAbandoned) { ST_LOGE("requestBuffer: BufferQueue has been abandoned!"); return NO_INIT; } int maxBufferCount = getMaxBufferCountLocked(); if (slot < 0 || maxBufferCount <= slot) { ST_LOGE("requestBuffer: slot index out of range [0, %d]: %d", maxBufferCount, slot); return BAD_VALUE; } else if (mSlots[slot].mBufferState != BufferSlot::DEQUEUED) { // XXX: I vaguely recall there was some reason this can be valid, but // for the life of me I can't recall under what circumstances that's // the case. ST_LOGE("requestBuffer: slot %d is not owned by the client (state=%d)", slot, mSlots[slot].mBufferState); return BAD_VALUE; } mSlots[slot].mRequestBufferCalled = true; *buf = mSlots[slot].mGraphicBuffer; return NO_ERROR; }
status_t BufferQueue::setBufferCount(int bufferCount) { ST_LOGV("setBufferCount: count=%d", bufferCount); sp<ConsumerListener> listener; { Mutex::Autolock lock(mMutex); if (mAbandoned) { ST_LOGE("setBufferCount: BufferQueue has been abandoned!"); return NO_INIT; } if (bufferCount > NUM_BUFFER_SLOTS) { ST_LOGE("setBufferCount: bufferCount too large (max %d)", NUM_BUFFER_SLOTS); return BAD_VALUE; } // Error out if the user has dequeued buffers int maxBufferCount = getMaxBufferCountLocked(); for (int i=0 ; i<maxBufferCount; i++) { if (mSlots[i].mBufferState == BufferSlot::DEQUEUED) { ST_LOGE("setBufferCount: client owns some buffers"); return -EINVAL; } } const int minBufferSlots = getMinMaxBufferCountLocked(); if (bufferCount == 0) { mOverrideMaxBufferCount = 0; mDequeueCondition.broadcast(); return NO_ERROR; } if (bufferCount < minBufferSlots) { ST_LOGE("setBufferCount: requested buffer count (%d) is less than " "minimum (%d)", bufferCount, minBufferSlots); return BAD_VALUE; } // here we're guaranteed that the client doesn't have dequeued buffers // and will release all of its buffer references. // // XXX: Should this use drainQueueAndFreeBuffersLocked instead? freeAllBuffersLocked(); mOverrideMaxBufferCount = bufferCount; mBufferHasBeenQueued = false; mDequeueCondition.broadcast(); listener = mConsumerListener; } // scope for lock if (listener != NULL) { listener->onBuffersReleased(); } return NO_ERROR; }
BufferQueueCore::BufferQueueCore() : mMutex(), mIsAbandoned(false), mConsumerControlledByApp(false), mConsumerName(getUniqueName()), mConsumerListener(), mConsumerUsageBits(0), mConsumerIsProtected(false), mConnectedApi(NO_CONNECTED_API), mLinkedToDeath(), mConnectedProducerListener(), mSlots(), mQueue(), mFreeSlots(), mFreeBuffers(), mUnusedSlots(), mActiveBuffers(), mDequeueCondition(), mDequeueBufferCannotBlock(false), mDefaultBufferFormat(PIXEL_FORMAT_RGBA_8888), mDefaultWidth(1), mDefaultHeight(1), mDefaultBufferDataSpace(HAL_DATASPACE_UNKNOWN), mMaxBufferCount(BufferQueueDefs::NUM_BUFFER_SLOTS), mMaxAcquiredBufferCount(1), mMaxDequeuedBufferCount(1), mBufferHasBeenQueued(false), mFrameCounter(0), mTransformHint(0), mIsAllocating(false), mIsAllocatingCondition(), mAllowAllocation(true), mBufferAge(0), mGenerationNumber(0), mAsyncMode(false), mSharedBufferMode(false), mAutoRefresh(false), mSharedBufferSlot(INVALID_BUFFER_SLOT), mSharedBufferCache(Rect::INVALID_RECT, 0, NATIVE_WINDOW_SCALING_MODE_FREEZE, HAL_DATASPACE_UNKNOWN), mLastQueuedSlot(INVALID_BUFFER_SLOT), mUniqueId(getUniqueId()) { int numStartingBuffers = getMaxBufferCountLocked(); for (int s = 0; s < numStartingBuffers; s++) { mFreeSlots.insert(s); } for (int s = numStartingBuffers; s < BufferQueueDefs::NUM_BUFFER_SLOTS; s++) { mUnusedSlots.push_front(s); } }
void BufferQueue::dump(String8& result, const char* prefix, char* buffer, size_t SIZE) const { Mutex::Autolock _l(mMutex); String8 fifo; int fifoSize = 0; Fifo::const_iterator i(mQueue.begin()); while (i != mQueue.end()) { snprintf(buffer, SIZE, "%02d ", *i++); fifoSize++; fifo.append(buffer); } int maxBufferCount = getMaxBufferCountLocked(); snprintf(buffer, SIZE, "%s-BufferQueue maxBufferCount=%d, mSynchronousMode=%d, default-size=[%dx%d], " "default-format=%d, transform-hint=%02x, FIFO(%d)={%s}\n", prefix, maxBufferCount, mSynchronousMode, mDefaultWidth, mDefaultHeight, mDefaultBufferFormat, mTransformHint, fifoSize, fifo.string()); result.append(buffer); struct { const char * operator()(int state) const { switch (state) { case BufferSlot::DEQUEUED: return "DEQUEUED"; case BufferSlot::QUEUED: return "QUEUED"; case BufferSlot::FREE: return "FREE"; case BufferSlot::ACQUIRED: return "ACQUIRED"; default: return "Unknown"; } } } stateName; for (int i=0 ; i<maxBufferCount ; i++) { const BufferSlot& slot(mSlots[i]); snprintf(buffer, SIZE, "%s%s[%02d] " "state=%-8s, crop=[%d,%d,%d,%d], " "xform=0x%02x, time=%#llx, scale=%s", prefix, (slot.mBufferState == BufferSlot::ACQUIRED)?">":" ", i, stateName(slot.mBufferState), slot.mCrop.left, slot.mCrop.top, slot.mCrop.right, slot.mCrop.bottom, slot.mTransform, slot.mTimestamp, scalingModeName(slot.mScalingMode) ); result.append(buffer); const sp<GraphicBuffer>& buf(slot.mGraphicBuffer); if (buf != NULL) { snprintf(buffer, SIZE, ", %p [%4ux%4u:%4u,%3X]", buf->handle, buf->width, buf->height, buf->stride, buf->format); result.append(buffer); } result.append("\n"); } }
status_t BufferQueue::queueBuffer(int buf, const QueueBufferInput& input, QueueBufferOutput* output) { ATRACE_CALL(); ATRACE_BUFFER_INDEX(buf); Rect crop; uint32_t transform; int scalingMode; int64_t timestamp; sp<Fence> fence; input.deflate(×tamp, &crop, &scalingMode, &transform, &fence); if (fence == NULL) { ST_LOGE("queueBuffer: fence is NULL"); return BAD_VALUE; } ST_LOGV("queueBuffer: slot=%d time=%#llx crop=[%d,%d,%d,%d] tr=%#x " "scale=%s", buf, timestamp, crop.left, crop.top, crop.right, crop.bottom, transform, scalingModeName(scalingMode)); sp<ConsumerListener> listener; { // scope for the lock Mutex::Autolock lock(mMutex); if (mAbandoned) { ST_LOGE("queueBuffer: BufferQueue has been abandoned!"); return NO_INIT; } int maxBufferCount = getMaxBufferCountLocked(); if (buf < 0 || buf >= maxBufferCount) { ST_LOGE("queueBuffer: slot index out of range [0, %d]: %d", maxBufferCount, buf); return -EINVAL; } else if (mSlots[buf].mBufferState != BufferSlot::DEQUEUED) { ST_LOGE("queueBuffer: slot %d is not owned by the client " "(state=%d)", buf, mSlots[buf].mBufferState); return -EINVAL; } else if (!mSlots[buf].mRequestBufferCalled) { ST_LOGE("queueBuffer: slot %d was enqueued without requesting a " "buffer", buf); return -EINVAL; } const sp<GraphicBuffer>& graphicBuffer(mSlots[buf].mGraphicBuffer); Rect bufferRect(graphicBuffer->getWidth(), graphicBuffer->getHeight()); Rect croppedCrop; crop.intersect(bufferRect, &croppedCrop); if (croppedCrop != crop) { ST_LOGE("queueBuffer: crop rect is not contained within the " "buffer in slot %d", buf); return -EINVAL; } if (mSynchronousMode) { // In synchronous mode we queue all buffers in a FIFO. mQueue.push_back(buf); // Synchronous mode always signals that an additional frame should // be consumed. listener = mConsumerListener; } else { // In asynchronous mode we only keep the most recent buffer. if (mQueue.empty()) { mQueue.push_back(buf); // Asynchronous mode only signals that a frame should be // consumed if no previous frame was pending. If a frame were // pending then the consumer would have already been notified. listener = mConsumerListener; } else { Fifo::iterator front(mQueue.begin()); // buffer currently queued is freed mSlots[*front].mBufferState = BufferSlot::FREE; // and we record the new buffer index in the queued list *front = buf; } } mSlots[buf].mTimestamp = timestamp; mSlots[buf].mCrop = crop; mSlots[buf].mTransform = transform; mSlots[buf].mFence = fence; switch (scalingMode) { case NATIVE_WINDOW_SCALING_MODE_FREEZE: case NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW: case NATIVE_WINDOW_SCALING_MODE_SCALE_CROP: break; default: ST_LOGE("unknown scaling mode: %d (ignoring)", scalingMode); scalingMode = mSlots[buf].mScalingMode; break; } mSlots[buf].mBufferState = BufferSlot::QUEUED; mSlots[buf].mScalingMode = scalingMode; mFrameCounter++; mSlots[buf].mFrameNumber = mFrameCounter; mBufferHasBeenQueued = true; mDequeueCondition.broadcast(); output->inflate(mDefaultWidth, mDefaultHeight, mTransformHint, mQueue.size()); ATRACE_INT(mConsumerName.string(), mQueue.size()); } // scope for the lock // call back without lock held if (listener != 0) { listener->onFrameAvailable(); } return NO_ERROR; }
status_t BufferQueue::dequeueBuffer(int *outBuf, sp<Fence>* outFence, uint32_t w, uint32_t h, uint32_t format, uint32_t usage) { ATRACE_CALL(); ST_LOGV("dequeueBuffer: w=%d h=%d fmt=%#x usage=%#x", w, h, format, usage); if ((w && !h) || (!w && h)) { ST_LOGE("dequeueBuffer: invalid size: w=%u, h=%u", w, h); return BAD_VALUE; } status_t returnFlags(OK); EGLDisplay dpy = EGL_NO_DISPLAY; EGLSyncKHR eglFence = EGL_NO_SYNC_KHR; { // Scope for the lock Mutex::Autolock lock(mMutex); if (format == 0) { format = mDefaultBufferFormat; } // turn on usage bits the consumer requested usage |= mConsumerUsageBits; int found = -1; int dequeuedCount = 0; bool tryAgain = true; while (tryAgain) { if (mAbandoned) { ST_LOGE("dequeueBuffer: BufferQueue has been abandoned!"); return NO_INIT; } const int maxBufferCount = getMaxBufferCountLocked(); // Free up any buffers that are in slots beyond the max buffer // count. for (int i = maxBufferCount; i < NUM_BUFFER_SLOTS; i++) { assert(mSlots[i].mBufferState == BufferSlot::FREE); if (mSlots[i].mGraphicBuffer != NULL) { freeBufferLocked(i); returnFlags |= IGraphicBufferProducer::RELEASE_ALL_BUFFERS; } } // look for a free buffer to give to the client found = INVALID_BUFFER_SLOT; dequeuedCount = 0; for (int i = 0; i < maxBufferCount; i++) { const int state = mSlots[i].mBufferState; if (state == BufferSlot::DEQUEUED) { dequeuedCount++; } if (state == BufferSlot::FREE) { /* We return the oldest of the free buffers to avoid * stalling the producer if possible. This is because * the consumer may still have pending reads of the * buffers in flight. */ if ((found < 0) || mSlots[i].mFrameNumber < mSlots[found].mFrameNumber) { found = i; } } } // clients are not allowed to dequeue more than one buffer // if they didn't set a buffer count. if (!mOverrideMaxBufferCount && dequeuedCount) { ST_LOGE("dequeueBuffer: can't dequeue multiple buffers without " "setting the buffer count"); return -EINVAL; } // See whether a buffer has been queued since the last // setBufferCount so we know whether to perform the min undequeued // buffers check below. if (mBufferHasBeenQueued) { // make sure the client is not trying to dequeue more buffers // than allowed. const int newUndequeuedCount = maxBufferCount - (dequeuedCount+1); const int minUndequeuedCount = getMinUndequeuedBufferCountLocked(); if (newUndequeuedCount < minUndequeuedCount) { ST_LOGE("dequeueBuffer: min undequeued buffer count (%d) " "exceeded (dequeued=%d undequeudCount=%d)", minUndequeuedCount, dequeuedCount, newUndequeuedCount); return -EBUSY; } } // If no buffer is found, wait for a buffer to be released or for // the max buffer count to change. tryAgain = found == INVALID_BUFFER_SLOT; if (tryAgain) { mDequeueCondition.wait(mMutex); } } if (found == INVALID_BUFFER_SLOT) { // This should not happen. ST_LOGE("dequeueBuffer: no available buffer slots"); return -EBUSY; } const int buf = found; *outBuf = found; ATRACE_BUFFER_INDEX(buf); const bool useDefaultSize = !w && !h; if (useDefaultSize) { // use the default size w = mDefaultWidth; h = mDefaultHeight; } mSlots[buf].mBufferState = BufferSlot::DEQUEUED; const sp<GraphicBuffer>& buffer(mSlots[buf].mGraphicBuffer); if ((buffer == NULL) || (uint32_t(buffer->width) != w) || (uint32_t(buffer->height) != h) || (uint32_t(buffer->format) != format) || ((uint32_t(buffer->usage) & usage) != usage)) { mSlots[buf].mAcquireCalled = false; mSlots[buf].mGraphicBuffer = NULL; mSlots[buf].mRequestBufferCalled = false; mSlots[buf].mEglFence = EGL_NO_SYNC_KHR; mSlots[buf].mFence = Fence::NO_FENCE; mSlots[buf].mEglDisplay = EGL_NO_DISPLAY; returnFlags |= IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION; } dpy = mSlots[buf].mEglDisplay; eglFence = mSlots[buf].mEglFence; *outFence = mSlots[buf].mFence; mSlots[buf].mEglFence = EGL_NO_SYNC_KHR; mSlots[buf].mFence = Fence::NO_FENCE; } // end lock scope if (returnFlags & IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION) { status_t error; sp<GraphicBuffer> graphicBuffer( mGraphicBufferAlloc->createGraphicBuffer( w, h, format, usage, &error)); if (graphicBuffer == 0) { ST_LOGE("dequeueBuffer: SurfaceComposer::createGraphicBuffer " "failed"); return error; } { // Scope for the lock Mutex::Autolock lock(mMutex); if (mAbandoned) { ST_LOGE("dequeueBuffer: BufferQueue has been abandoned!"); return NO_INIT; } mSlots[*outBuf].mGraphicBuffer = graphicBuffer; } } if (eglFence != EGL_NO_SYNC_KHR) { EGLint result = eglClientWaitSyncKHR(dpy, eglFence, 0, 1000000000); // If something goes wrong, log the error, but return the buffer without // synchronizing access to it. It's too late at this point to abort the // dequeue operation. if (result == EGL_FALSE) { ST_LOGE("dequeueBuffer: error waiting for fence: %#x", eglGetError()); } else if (result == EGL_TIMEOUT_EXPIRED_KHR) { ST_LOGE("dequeueBuffer: timeout waiting for fence"); } eglDestroySyncKHR(dpy, eglFence); } ST_LOGV("dequeueBuffer: returning slot=%d buf=%p flags=%#x", *outBuf, mSlots[*outBuf].mGraphicBuffer->handle, returnFlags); return returnFlags; }
void BufferQueueCore::validateConsistencyLocked() const { static const useconds_t PAUSE_TIME = 0; int allocatedSlots = 0; for (int slot = 0; slot < BufferQueueDefs::NUM_BUFFER_SLOTS; ++slot) { bool isInFreeSlots = mFreeSlots.count(slot) != 0; bool isInFreeBuffers = std::find(mFreeBuffers.cbegin(), mFreeBuffers.cend(), slot) != mFreeBuffers.cend(); bool isInActiveBuffers = mActiveBuffers.count(slot) != 0; bool isInUnusedSlots = std::find(mUnusedSlots.cbegin(), mUnusedSlots.cend(), slot) != mUnusedSlots.cend(); if (isInFreeSlots || isInFreeBuffers || isInActiveBuffers) { allocatedSlots++; } if (isInUnusedSlots) { if (isInFreeSlots) { BQ_LOGE("Slot %d is in mUnusedSlots and in mFreeSlots", slot); usleep(PAUSE_TIME); } if (isInFreeBuffers) { BQ_LOGE("Slot %d is in mUnusedSlots and in mFreeBuffers", slot); usleep(PAUSE_TIME); } if (isInActiveBuffers) { BQ_LOGE("Slot %d is in mUnusedSlots and in mActiveBuffers", slot); usleep(PAUSE_TIME); } if (!mSlots[slot].mBufferState.isFree()) { BQ_LOGE("Slot %d is in mUnusedSlots but is not FREE", slot); usleep(PAUSE_TIME); } if (mSlots[slot].mGraphicBuffer != NULL) { BQ_LOGE("Slot %d is in mUnusedSluts but has an active buffer", slot); usleep(PAUSE_TIME); } } else if (isInFreeSlots) { if (isInUnusedSlots) { BQ_LOGE("Slot %d is in mFreeSlots and in mUnusedSlots", slot); usleep(PAUSE_TIME); } if (isInFreeBuffers) { BQ_LOGE("Slot %d is in mFreeSlots and in mFreeBuffers", slot); usleep(PAUSE_TIME); } if (isInActiveBuffers) { BQ_LOGE("Slot %d is in mFreeSlots and in mActiveBuffers", slot); usleep(PAUSE_TIME); } if (!mSlots[slot].mBufferState.isFree()) { BQ_LOGE("Slot %d is in mFreeSlots but is not FREE", slot); usleep(PAUSE_TIME); } if (mSlots[slot].mGraphicBuffer != NULL) { BQ_LOGE("Slot %d is in mFreeSlots but has a buffer", slot); usleep(PAUSE_TIME); } } else if (isInFreeBuffers) { if (isInUnusedSlots) { BQ_LOGE("Slot %d is in mFreeBuffers and in mUnusedSlots", slot); usleep(PAUSE_TIME); } if (isInFreeSlots) { BQ_LOGE("Slot %d is in mFreeBuffers and in mFreeSlots", slot); usleep(PAUSE_TIME); } if (isInActiveBuffers) { BQ_LOGE("Slot %d is in mFreeBuffers and in mActiveBuffers", slot); usleep(PAUSE_TIME); } if (!mSlots[slot].mBufferState.isFree()) { BQ_LOGE("Slot %d is in mFreeBuffers but is not FREE", slot); usleep(PAUSE_TIME); } if (mSlots[slot].mGraphicBuffer == NULL) { BQ_LOGE("Slot %d is in mFreeBuffers but has no buffer", slot); usleep(PAUSE_TIME); } } else if (isInActiveBuffers) { if (isInUnusedSlots) { BQ_LOGE("Slot %d is in mActiveBuffers and in mUnusedSlots", slot); usleep(PAUSE_TIME); } if (isInFreeSlots) { BQ_LOGE("Slot %d is in mActiveBuffers and in mFreeSlots", slot); usleep(PAUSE_TIME); } if (isInFreeBuffers) { BQ_LOGE("Slot %d is in mActiveBuffers and in mFreeBuffers", slot); usleep(PAUSE_TIME); } if (mSlots[slot].mBufferState.isFree() && !mSlots[slot].mBufferState.isShared()) { BQ_LOGE("Slot %d is in mActiveBuffers but is FREE", slot); usleep(PAUSE_TIME); } if (mSlots[slot].mGraphicBuffer == NULL && !mIsAllocating) { BQ_LOGE("Slot %d is in mActiveBuffers but has no buffer", slot); usleep(PAUSE_TIME); } } else { BQ_LOGE("Slot %d isn't in any of mUnusedSlots, mFreeSlots, " "mFreeBuffers, or mActiveBuffers", slot); usleep(PAUSE_TIME); } } if (allocatedSlots != getMaxBufferCountLocked()) { BQ_LOGE("Number of allocated slots is incorrect. Allocated = %d, " "Should be %d (%zu free slots, %zu free buffers, " "%zu activeBuffers, %zu unusedSlots)", allocatedSlots, getMaxBufferCountLocked(), mFreeSlots.size(), mFreeBuffers.size(), mActiveBuffers.size(), mUnusedSlots.size()); } }