bool IPLUndistort::processInputData(IPLImage* image, int, bool) { // get properties float k1 = getProcessPropertyDouble("k1"); float k2 = getProcessPropertyDouble("k2"); float k3 = getProcessPropertyDouble("k3"); float p1 = getProcessPropertyDouble("p1"); float p2 = getProcessPropertyDouble("p2"); float c1 = getProcessPropertyInt("f"); float c2 = c1; notifyProgressEventHandler(-1); cv::Mat cameraMatrix = (cv::Mat_<double>(3,3) << c1, 0, image->width()*0.5, 0, c2, image->height()*0.5, 0, 0, 1); cv::Mat distCoeffs(5, 1, CV_32FC1); distCoeffs.at<float>(0,0) = k1; distCoeffs.at<float>(1,0) = k2; distCoeffs.at<float>(2,0) = p1; distCoeffs.at<float>(3,0) = p2; distCoeffs.at<float>(4,0) = k3; cv::Mat result; cv::undistort(image->toCvMat(), result, cameraMatrix, distCoeffs); delete _result; _result = new IPLImage(result); return true; }
bool IPLGabor::processInputData(IPLImage* image , int, bool) { // delete previous result delete _result0; _result0 = NULL; delete _result1; _result1 = NULL; delete _result2; _result2 = NULL; int width = image->width(); int height = image->height(); _result0 = new IPLImage( image->type(), width, height ); _result1 = new IPLImage( image->type(), width, height ); _result2 = new IPLImage( image->type(), width, height ); // get properties int window = getProcessPropertyInt("window"); int wavelength = getProcessPropertyInt("wavelength"); double direction = getProcessPropertyDouble("direction"); double deviation = getProcessPropertyDouble("deviation"); //int progress = 0; //int maxProgress = image->height() * image->getNumberOfPlanes(); int w2 = window/2; int area = window*window; double* qEven = new double [area]; double* qOdd = new double [area]; double k = 2.0 * PI / (double) wavelength; double k2 = k * k; double d2 = deviation * deviation; double sig2 = 1.0 / (2.0 * d2); double kx = k * cos( direction ); double ky = -k * sin( direction ); int index = 0; double E = 0.0; double O =0.0; for( int x = -w2; x <= w2; x++ ) { for( int y = -w2; y <= w2; y++) { double compensate = k2/d2; double envelope = exp( -k2 * sig2 * (x*x+y*y) ); double DC = exp( -d2/2.0); E += qEven[index] = compensate * envelope * ( cos( kx*x + ky*y ) - DC ); O += qOdd[index++] = compensate * envelope * ( sin( kx*x + ky*y )- DC ); } } for( int planeNr=0; planeNr < image->getNumberOfPlanes(); planeNr++ ) { IPLImagePlane* plane = image->plane( planeNr ); IPLImagePlane* evenplane = _result0->plane( planeNr ); IPLImagePlane* oddplane = _result1->plane( planeNr ); IPLImagePlane* powerplane = _result2->plane( planeNr ); for(int x=w2; x<width-w2; x++) { for(int y=w2; y<height-w2; y++) { double even = 0; double odd = 0; double power = 0; int i = 0; for( int kx=-w2; kx<=w2; kx++ ) { for( int ky=-w2; ky<=w2; ky++ ) { double img = (double) plane->p(x+kx, y+ky); even += img * qEven[i]; odd += img * qOdd[i++]; } } power = (even*even + odd*odd )*2; even = even + 0.5; odd = odd + 0.5; even = (even>1.0)? 1.0 : (even<0)? 0 : even; odd = (odd>1.0)? 1.0 : (odd<0)? 0 : odd; power = (power>1.0)? 1.0 : (power<0)? 0 : power; evenplane->p(x,y) = even; oddplane->p(x,y) = odd; powerplane->p(x,y) = power; } } } delete [] qEven; delete [] qOdd; return true; }
bool IPLBinarizeSavola::processInputData(IPLImage* image , int, bool) { // delete previous result delete _result; _result = NULL; int width = image->width(); int height = image->height(); _result = new IPLImage(image->type(), width, height); // get properties int window = getProcessPropertyInt("window"); double aboveMean = getProcessPropertyDouble("aboveMean"); IPLImage* mean = new IPLImage(image->type(), width, height); IPLImage* deviation = new IPLImage(image->type(), width, height); int progress = 0; int maxProgress = image->height() * image->getNumberOfPlanes(); int nrOfPlanes = image->getNumberOfPlanes(); #pragma omp parallel for for( int planeNr=0; planeNr < nrOfPlanes; planeNr++ ) { IPLImagePlane* plane = image->plane( planeNr ); IPLImagePlane* newplane = _result->plane( planeNr ); int w2 = window/2; float area = (float)(w2*2)*(float)(w2*2); float minI = FLT_MAX; float maxDeviation = 0.0; for(int y=0; y<height; y++) { // progress notifyProgressEventHandler(100*progress++/maxProgress); for(int x=0; x<width; x++) { if( plane->p(x,y) < minI ) minI = plane->p(x,y); float localMean = 0.0; for( int kx=-w2; kx<=w2; kx++ ) { for( int ky=-w2; ky<=w2; ky++ ) { localMean += (float)plane->cp(x+kx,y+ky); } } localMean /= area; mean->plane(planeNr)->p(x,y) = localMean; float dev = 0.0; for( int kx=-w2; kx<=w2; kx++ ) { for( int ky=-w2; ky<=w2; ky++ ) { float diff = (float)plane->cp(x+kx, y+ky) - localMean; dev += diff * diff; } } dev = sqrt( dev / area ); deviation->plane(planeNr)->p(x,y) = dev; if( dev > maxDeviation ) maxDeviation = dev; } for(int x=w2; x<width-w2; x++) { for(int y=w2; y<height-w2; y++) { float alpha = 1.0 - deviation->plane(planeNr)->p(x,y) / maxDeviation; int T = (int) ( mean->plane(planeNr)->p(x,y) - aboveMean * alpha *( mean->plane(planeNr)->p(x,y) - minI ) ); newplane->p(x,y) = ( plane->p(x,y) >= T ) ? 0.0 : 1.0; } } } } return true; }
bool IPLLocalThreshold::processInputData(IPLImage* image , int, bool) { // delete previous result delete _result; _result = NULL; int width = image->width(); int height = image->height(); if(image->type() == IPLImage::IMAGE_GRAYSCALE) _result = new IPLImage(IPLImage::IMAGE_BW, width, height); else _result = new IPLImage(image->type(), width, height); // get properties int window = getProcessPropertyInt("window"); float aboveMean = getProcessPropertyDouble("aboveMean"); int progress = 0; int maxProgress = image->height() * image->getNumberOfPlanes(); int nrOfPlanes = image->getNumberOfPlanes(); #pragma omp parallel for for( int planeNr=0; planeNr < nrOfPlanes; planeNr++ ) { IPLImagePlane* plane = image->plane( planeNr ); IPLImagePlane* newplane = _result->plane( planeNr ); int w2 = window/2; double area = (double)window*(double)window; for(int y=w2; y < height-w2; y++) { // progress notifyProgressEventHandler(100*progress++/maxProgress); for(int x=w2; x < width-w2; x++) { double localMean = 0.0; for( int kx=-w2; kx<=w2; kx++ ) { for( int ky=-w2; ky<=w2; ky++ ) { localMean += (double)plane->p(x+kx,y+ky); } } localMean /= area; double deviation = 0.0; for( int kx=-w2; kx<=w2; kx++ ) { for( int ky=-w2; ky<=w2; ky++ ) { double diff = (double)plane->p(x+kx, y+ky) - localMean; deviation += diff * diff; } } deviation = sqrt( deviation / area ); double T = (localMean + aboveMean*deviation); newplane->p(x,y) = (plane->p(x,y) >= T) ? 1.0 : 0.0; } } } return true; }
bool IPLSynthesize::processInputData(IPLImage*, int, bool) { if(isResultReady()) { //return true; } // delete previous result delete _result; _result = NULL; // get properties _type = getProcessPropertyInt("type"); _width = getProcessPropertyInt("width"); _height = getProcessPropertyInt("height"); _amplitude = getProcessPropertyDouble("amplitude"); _offset = getProcessPropertyDouble("offset"); _wavelength = getProcessPropertyInt("wavelength"); _direction = getProcessPropertyInt("plane_direction"); _decay = getProcessPropertyInt("decay"); IPLColor color = getProcessPropertyColor("flat_color"); if( _type == 0 ) _result = new IPLImage( IPL_IMAGE_COLOR, _width, _height ); else _result = new IPLImage( IPL_IMAGE_GRAYSCALE, _width, _height ); double dx = (double)_width / 2.0; double dy = (double)_height / 2.0; double direction = _direction / 180.0 * PI; // deg to rad IPLImagePlane* plane = _result->plane( 0 ); int progress = 0; int maxProgress = _result->height(); switch( _type ) { case 0: // flat plane for( int y=0; y<_height; y++ ) { notifyProgressEventHandler(100*progress++/maxProgress); for( int x=0; x<_width; x++ ) { _result->plane(0)->p(x,y) = color.red(); _result->plane(1)->p(x,y) = color.green(); _result->plane(2)->p(x,y) = color.blue(); } } break; case 1: // plane wave for( int y=0; y<_height; y++ ) { notifyProgressEventHandler(100*progress++/maxProgress); for( int x=0; x<_width; x++ ) { double dist = (x)*cos( direction ) + (_height-y)*sin( direction ); double fade = (_decay!=0) ? exp( -dist/_decay ) : 1.0; double value = _amplitude * cos(dist/_wavelength * PI * 2.0) * fade + _offset; plane->p(x,y) = ( (value<0.0)? 0.0 : (value>1.0)? 1.0 : value ); } } break; case 2:// center wave for( int y=0; y<_height; y++ ) { notifyProgressEventHandler(100*progress++/maxProgress); for( int x=0; x<_width; x++ ) { double dist = sqrt( (x-dx)*(x-dx) + (y-dy)*(y-dy) ); double fade = (_decay!=0) ? exp( -dist/_decay ) : 1.0; double value = _amplitude * cos( dist/_wavelength * PI * 2.0 ) * fade + _offset; plane->p(x,y) = ( (value<0.0)? 0.0 : (value>1.0)? 1.0 : value ); } } break; } return true; }
bool IPLConvolutionFilter::processInputData(IPLImage* image , int, bool useOpenCV) { // delete previous result delete _result; _result = NULL; int width = image->width(); int height = image->height(); // get properties _kernel = getProcessPropertyVectorInt("kernel"); _divisor = getProcessPropertyInt("divisor"); _offset = getProcessPropertyDouble("offset"); _normalize = getProcessPropertyBool("normalize"); _borders = getProcessPropertyInt("borders"); if(_normalize) { int sum = 0; for(size_t i=0; i<_kernel.size(); i++) { sum += _kernel[i]; } _divisor = (sum != 0 ? sum : 1); } if (_divisor == 0) { addError("Invalid divisor: 0"); return false; } float divFactor = 1.0f/_divisor; int kernelWidth = (int)sqrt((float)_kernel.size()); int kernelOffset = kernelWidth / 2; int progress = 0; int maxProgress = image->height() * image->getNumberOfPlanes(); if (!useOpenCV) { _result = new IPLImage( image->type(), width, height ); #pragma omp parallel for default(shared) for( int planeNr=0; planeNr < image->getNumberOfPlanes(); planeNr++ ) { IPLImagePlane* plane = image->plane( planeNr ); IPLImagePlane* newplane = _result->plane( planeNr ); for(int y=0; y<plane->height(); y++) { // progress notifyProgressEventHandler(100*progress++/maxProgress); for(int x=0; x<plane->width(); x++) { float sum = 0; int i = 0; for( int ky=-kernelOffset; ky<=kernelOffset; ky++ ) { for( int kx=-kernelOffset; kx<=kernelOffset; kx++ ) { int h = _kernel[i++]; if( h ) { if(_borders == 0) { // Crop borders sum += plane->cp(x+kx, y+ky) * h; } else if(_borders == 1) { // Extend borders sum += plane->bp(x+kx, y+ky) * h; } else { // Wrap borders sum += plane->wp(x+kx, y+ky) * h; } } } } sum = sum * divFactor + _offset; sum = (sum>1.0) ? 1.0 : (sum<0) ? 0.0 : sum; // clamp to 0.0 - 1.0 newplane->p(x,y) = sum; } } } } else { notifyProgressEventHandler(-1); cv::Mat src = image->toCvMat(); cv::Mat dst; cv::Mat kernel(kernelWidth, kernelWidth, CV_32FC1 ); int i = 0; for( int y=0; y < kernelWidth; y++ ) for( int x=0; x < kernelWidth; x++ ) kernel.at<float>(cv::Point(x,y)) = _kernel[i++]; kernel *= divFactor; static const int BORDER_TYPES[3] = { cv::BORDER_CONSTANT, cv::BORDER_REPLICATE, cv::BORDER_WRAP }; cv::filter2D(src, dst, -1, kernel, cv::Point(-1,-1), _offset, BORDER_TYPES[_borders]); _result = new IPLImage(dst); } return true; }
bool IPLCanny::processInputData(IPLImage* image , int, bool useOpenCV) { // delete previous result delete _result; _result = NULL; delete _binaryImage; _binaryImage = NULL; int width = image->width(); int height = image->height(); _result = new IPLImage( image->type(), width, height ); _binaryImage = new IPLImage( IPLData::IMAGE_BW, width, height ); // get properties int window = getProcessPropertyInt("window"); double sigma = getProcessPropertyDouble("sigma"); double lowThreshold = getProcessPropertyDouble("lowThreshold"); double highThreshold = getProcessPropertyDouble("highThreshold"); std::stringstream s; s << "Window: "; s << window; addInformation(s.str()); //! @todo currently only the opencv implementation works if(useOpenCV || true) { notifyProgressEventHandler(-1); cv::Mat input; cv::Mat output; cvtColor(image->toCvMat(), input, CV_BGR2GRAY); cv::Canny(input, output, lowThreshold*255, highThreshold*255, window); delete _result; _result = new IPLImage(output); return true; } return false; // Create a Gaussian 1D filter int N = ceil( sigma * sqrt( 2.0*log( 1.0/0.015 ) ) + 1.0 ); double ssq = sigma*sigma; double* gau = new double [window]; double* dgau = new double [window]; for( int k = -N; k <= N; ++k ) { gau[k+N] = gauss ( (double)k, ssq ); dgau[k+N] = dGauss ( (double)k, 0, ssq ); } // Create a directional derivative of 2D Gaussian (along X-axis) // Since the result is symmetric along X, we can get the derivative along // Y-axis simply by transposing the result for X direction. // DoubleImage* dgau = new DoubleImage( window, window ); // for( int y = -N; y <= N; ++y ) // for( int x = -N; x <= N; ++x ) // dgau->f(x+N, y+N) = dGauss( x, y, ssq ); int progress = 0; int maxProgress = width * image->getNumberOfPlanes(); int nrOfPlanes = image->getNumberOfPlanes(); //#pragma omp parallel for for( int planeNr=0; planeNr < nrOfPlanes; planeNr++ ) { IPLImagePlane* plane = image->plane( planeNr ); IPLImagePlane* newplane = _result->plane( planeNr ); // ******** Gaussian filtering of input image IPLImagePlane* gI = new IPLImagePlane( width, height ); // horizontal run (normalizing original image) IPLImagePlane* tmpI = new IPLImagePlane( width, height ); for(int x=0; x<width; x++) { // progress notifyProgressEventHandler(100*progress++/maxProgress); for(int y=0; y<height; y++) { double sum = 0; int i = 0; for( int kx=-N; kx<=N; kx++ ) { double img = (double) plane->bp(x+kx, y); sum += (img * gau[i++]); } tmpI->p(x,y) = (double) (sum); } } // vertiacl run for(int x=0; x<width; x++) { for(int y=0; y<height; y++) { double sum = 0; int i = 0; for( int ky=-N; ky<=N; ky++ ) { double img = tmpI->bp(x, y+ky); sum += (img * gau[i++]); } gI->p(x,y) = sum; } } //delete tmpI; // ******** Apply directional derivatives ... // ... in x-direction IPLImagePlane* dx = new IPLImagePlane( width, height ); for(int x=0; x<width; x++) { for(int y=0; y<height; y++) { dx->p(x,y) = 0.0; for( int k=1; k<N; k++ ) { dx->p(x,y) += ( gI->bp(x-k,y) - gI->bp(x+k,y) ) * dgau[k]; } } } // double maxVal = 0.0; // for(int x=0; x<width; x++) // for(int y=0; y<height; y++) // if( dx->f(x,y) > maxVal ) maxVal = dx->f(x,y); // ... in y-direction IPLImagePlane* dy = new IPLImagePlane( width, height ); for(int x=0; x<width; x++) { for(int y=0; y<height; y++) { dy->p(x,y) = 0.0; for( int k=1; k<N; k++ ) { dy->p(x,y) += ( gI->bp(x,y-k) - gI->bp(x,y+k) ) * dgau[k]; } } } // ******** Compute magnitude and binarization thresholds IPLImagePlane* mag = new IPLImagePlane( width, height ); double magMax = 0.0; double magMin = 999999999.0; for(int x=0; x<width; x++) { for(int y=0; y<height; y++) { double val = sqrt( dx->p(x,y)*dx->p(x,y) + dy->p(x,y)*dy->p(x,y) ); mag->p(x,y) = val; if( val > magMax ) magMax = val; if( val < magMin ) magMin = val; } } //// ******** Non-maxima suppression - edge pixels should be a local maximum _orientedImage = new IPLOrientedImage( width, height ); for(int x=0; x<width; x++) { for(int y=0; y<height; y++) { double ix = dx->p(x,y); double iy = dy->p(x,y); double g = mag->p(x,y); // determine 4-neighbor direction of gradient int dir4 = 0; if( (iy<=0.0 && ix>-iy) || (iy>=0.0 && ix<-iy) ) dir4 = 1; else if( (ix>0.0 && -iy>=ix) || (ix<0.0 && -iy<=ix) ) dir4 = 2; else if( (ix<=0.0 && ix>iy) || (ix>=0.0 && ix<iy) ) dir4 = 3; else if( (iy<0.0 && ix<=iy) || (iy>0.0 && ix>=iy) ) dir4 = 4; else continue; double gradmag1, gradmag2, d; switch(dir4) { case 1: d = std::fabs(iy/ix); gradmag1 = mag->bp(x+1,y)*(1-d) + mag->bp(x+1,y-1)*d; gradmag2 = mag->bp(x-1,y)*(1-d) + mag->bp(x-1,y+1)*d; break; case 2: d = std::fabs(ix/iy); gradmag1 = mag->bp(x,y-1)*(1-d) + mag->bp(x+1,y-1)*d; gradmag2 = mag->bp(x,y+1)*(1-d) + mag->bp(x-1,y+1)*d; break; case 3: d = std::fabs(ix/iy); gradmag1 = mag->bp(x,y-1)*(1-d) + mag->bp(x-1,y-1)*d; gradmag2 = mag->bp(x,y+1)*(1-d) + mag->bp(x+1,y+1)*d; break; case 4: d = std::fabs(iy/ix); gradmag1 = mag->bp(x-1,y)*(1-d) + mag->bp(x-1,y-1)*d; gradmag2 = mag->bp(x+1,y)*(1-d) + mag->bp(x+1,y+1)*d; break; } if( g > gradmag1 && g > gradmag2 ) { _orientedImage->magnitude(x,y) = g; _orientedImage->phase(x,y) = atan2(iy,ix); } } } for(int x=0; x<width; x++) { for(int y=0; y<height; y++) { _orientedImage->magnitude(x,y) /= magMax; double val = _orientedImage->magnitude(x,y)*255.0; // double val = mag->f(x,y)/magMax*255.0; if (val > 255.0 ) val = 255.0; if (val < 0.0 ) val = 0.0; newplane->p(x,y) = (unsigned char ) val; } } // ******** Binarize with hysteresis threshold double hist[ 256 ]; for( int i=0; i<256; ++i ) hist[i] = 0; int pixCount = 0; for(int x=0; x<width; x++) { for(int y=0; y<height; y++) { if( _orientedImage->magnitude(x,y) > 0.0 ) { int index = floor( _orientedImage->magnitude(x,y)*256.0+0.5 ); ++hist[ index ]; ++pixCount; } } } double PercentOfPixelsNotEdges = 0.7*pixCount; double highThresh = 0.0; double cumsum = 0.0; for( int i=0; i<256; ++i ) { cumsum += hist[i]; if( cumsum > PercentOfPixelsNotEdges ) { highThresh = (double)i / 256.0; break; } } double lowThresh = 0.4 * highThresh; IPLImagePlane* binPlane = _binaryImage->plane( 0 ); for(int x=0; x<width; x++) { for(int y=0; y<height; y++) { if(_orientedImage->magnitude(x,y) >= highThresh) trace(x, y, lowThresh, _orientedImage, binPlane); } } //delete dx; //delete dy; //delete gI; thinning(_orientedImage, binPlane, newplane ); } //delete [] gau; //delete [] dgau; return true; }