int main(int argc, char **argv) { // Start logs shrSetLogFileName ("quasirandomGenerator.txt"); shrLog("%s Starting...\n\n", argv[0]); unsigned int useDoublePrecision; char *precisionChoice; cutGetCmdLineArgumentstr(argc, (const char **)argv, "type", &precisionChoice); if(precisionChoice == NULL) useDoublePrecision = 0; else{ if(!strcasecmp(precisionChoice, "double")) useDoublePrecision = 1; else useDoublePrecision = 0; } unsigned int tableCPU[QRNG_DIMENSIONS][QRNG_RESOLUTION]; float *h_OutputGPU; float *d_Output; int dim, pos; double delta, ref, sumDelta, sumRef, L1norm, gpuTime; unsigned int hTimer; if(sizeof(INT64) != 8){ shrLog("sizeof(INT64) != 8\n"); return 0; } // use command-line specified CUDA device, otherwise use device with highest Gflops/s if( cutCheckCmdLineFlag(argc, (const char**)argv, "device") ) cutilDeviceInit(argc, argv); else cudaSetDevice( cutGetMaxGflopsDeviceId() ); cutilCheckError(cutCreateTimer(&hTimer)); int deviceIndex; cutilSafeCall(cudaGetDevice(&deviceIndex)); cudaDeviceProp deviceProp; cutilSafeCall(cudaGetDeviceProperties(&deviceProp, deviceIndex)); int version = deviceProp.major * 10 + deviceProp.minor; if(useDoublePrecision && version < 13){ shrLog("Double precision not supported.\n"); cudaThreadExit(); return 0; } shrLog("Allocating GPU memory...\n"); cutilSafeCall( cudaMalloc((void **)&d_Output, QRNG_DIMENSIONS * N * sizeof(float)) ); shrLog("Allocating CPU memory...\n"); h_OutputGPU = (float *)malloc(QRNG_DIMENSIONS * N * sizeof(float)); shrLog("Initializing QRNG tables...\n\n"); initQuasirandomGenerator(tableCPU); if(useDoublePrecision) initTable_SM13(tableCPU); else initTable_SM10(tableCPU); shrLog("Testing QRNG...\n\n"); cutilSafeCall( cudaMemset(d_Output, 0, QRNG_DIMENSIONS * N * sizeof(float)) ); int numIterations = 20; for (int i = -1; i < numIterations; i++) { if (i == 0) { cutilSafeCall( cudaThreadSynchronize() ); cutilCheckError( cutResetTimer(hTimer) ); cutilCheckError( cutStartTimer(hTimer) ); } if(useDoublePrecision) quasirandomGenerator_SM13(d_Output, 0, N); else quasirandomGenerator_SM10(d_Output, 0, N); } cutilSafeCall( cudaThreadSynchronize() ); cutilCheckError(cutStopTimer(hTimer)); gpuTime = cutGetTimerValue(hTimer)/(double)numIterations*1e-3; shrLogEx(LOGBOTH | MASTER, 0, "quasirandomGenerator, Throughput = %.4f GNumbers/s, Time = %.5f s, Size = %u Numbers, NumDevsUsed = %u, Workgroup = %u\n", (double)QRNG_DIMENSIONS * (double)N * 1.0E-9 / gpuTime, gpuTime, QRNG_DIMENSIONS*N, 1, 128*QRNG_DIMENSIONS); shrLog("\nReading GPU results...\n"); cutilSafeCall( cudaMemcpy(h_OutputGPU, d_Output, QRNG_DIMENSIONS * N * sizeof(float), cudaMemcpyDeviceToHost) ); shrLog("Comparing to the CPU results...\n\n"); sumDelta = 0; sumRef = 0; for(dim = 0; dim < QRNG_DIMENSIONS; dim++) for(pos = 0; pos < N; pos++){ ref = getQuasirandomValue63(pos, dim); delta = (double)h_OutputGPU[dim * N + pos] - ref; sumDelta += fabs(delta); sumRef += fabs(ref); } shrLog("L1 norm: %E\n", sumDelta / sumRef); shrLog("\nTesting inverseCNDgpu()...\n\n"); cutilSafeCall( cudaMemset(d_Output, 0, QRNG_DIMENSIONS * N * sizeof(float)) ); for (int i = -1; i < numIterations; i++) { if (i == 0) { cutilSafeCall( cudaThreadSynchronize() ); cutilCheckError( cutResetTimer(hTimer) ); cutilCheckError( cutStartTimer(hTimer) ); } if(useDoublePrecision) inverseCND_SM13(d_Output, NULL, QRNG_DIMENSIONS * N); else inverseCND_SM10(d_Output, NULL, QRNG_DIMENSIONS * N); } cutilSafeCall( cudaThreadSynchronize() ); cutilCheckError(cutStopTimer(hTimer)); gpuTime = cutGetTimerValue(hTimer)/(double)numIterations*1e-3; shrLogEx(LOGBOTH | MASTER, 0, "quasirandomGenerator-inverse, Throughput = %.4f GNumbers/s, Time = %.5f s, Size = %u Numbers, NumDevsUsed = %u, Workgroup = %u\n", (double)QRNG_DIMENSIONS * (double)N * 1E-9 / gpuTime, gpuTime, QRNG_DIMENSIONS*N, 1, 128); shrLog("Reading GPU results...\n"); cutilSafeCall( cudaMemcpy(h_OutputGPU, d_Output, QRNG_DIMENSIONS * N * sizeof(float), cudaMemcpyDeviceToHost) ); shrLog("\nComparing to the CPU results...\n"); sumDelta = 0; sumRef = 0; for(pos = 0; pos < QRNG_DIMENSIONS * N; pos++){ double p = (double)(pos + 1) / (double)(QRNG_DIMENSIONS * N + 1); ref = MoroInvCNDcpu(p); delta = (double)h_OutputGPU[pos] - ref; sumDelta += fabs(delta); sumRef += fabs(ref); } shrLog("L1 norm: %E\n\n", L1norm = sumDelta / sumRef); shrLog((L1norm < 1E-6) ? "PASSED\n\n" : "FAILED\n\n"); shrLog("Shutting down...\n"); cutilCheckError(cutDeleteTimer(hTimer)); free(h_OutputGPU); cutilSafeCall( cudaFree(d_Output) ); cudaThreadExit(); shrEXIT(argc, (const char**)argv); }
int main(int argc, char **argv) { // Start logs printf("%s Starting...\n\n", argv[0]); unsigned int useDoublePrecision; char *precisionChoice; getCmdLineArgumentString(argc, (const char **)argv, "type", &precisionChoice); if (precisionChoice == NULL) { useDoublePrecision = 0; } else { if (!STRCASECMP(precisionChoice, "double")) { useDoublePrecision = 1; } else { useDoublePrecision = 0; } } unsigned int tableCPU[QRNG_DIMENSIONS][QRNG_RESOLUTION]; float *h_OutputGPU, *d_Output; int dim, pos; double delta, ref, sumDelta, sumRef, L1norm, gpuTime; StopWatchInterface *hTimer = NULL; if (sizeof(INT64) != 8) { printf("sizeof(INT64) != 8\n"); return 0; } // use command-line specified CUDA device, otherwise use device with highest Gflops/s int dev = findCudaDevice(argc, (const char **)argv); sdkCreateTimer(&hTimer); int deviceIndex; checkCudaErrors(cudaGetDevice(&deviceIndex)); cudaDeviceProp deviceProp; checkCudaErrors(cudaGetDeviceProperties(&deviceProp, deviceIndex)); int version = deviceProp.major * 10 + deviceProp.minor; if (useDoublePrecision && version < 13) { printf("Double precision not supported.\n"); // cudaDeviceReset causes the driver to clean up all state. While // not mandatory in normal operation, it is good practice. It is also // needed to ensure correct operation when the application is being // profiled. Calling cudaDeviceReset causes all profile data to be // flushed before the application exits cudaDeviceReset(); return 0; } printf("Allocating GPU memory...\n"); checkCudaErrors(cudaMalloc((void **)&d_Output, QRNG_DIMENSIONS * N * sizeof(float))); printf("Allocating CPU memory...\n"); h_OutputGPU = (float *)malloc(QRNG_DIMENSIONS * N * sizeof(float)); printf("Initializing QRNG tables...\n\n"); initQuasirandomGenerator(tableCPU); if (useDoublePrecision) { initTable_SM13(tableCPU); } else { initTable_SM10(tableCPU); } printf("Testing QRNG...\n\n"); checkCudaErrors(cudaMemset(d_Output, 0, QRNG_DIMENSIONS * N * sizeof(float))); int numIterations = 20; for (int i = -1; i < numIterations; i++) { if (i == 0) { checkCudaErrors(cudaDeviceSynchronize()); sdkResetTimer(&hTimer); sdkStartTimer(&hTimer); } if (useDoublePrecision) { quasirandomGenerator_SM13(d_Output, 0, N); } else { quasirandomGenerator_SM10(d_Output, 0, N); } } checkCudaErrors(cudaDeviceSynchronize()); sdkStopTimer(&hTimer); gpuTime = sdkGetTimerValue(&hTimer)/(double)numIterations*1e-3; printf("quasirandomGenerator, Throughput = %.4f GNumbers/s, Time = %.5f s, Size = %u Numbers, NumDevsUsed = %u, Workgroup = %u\n", (double)QRNG_DIMENSIONS * (double)N * 1.0E-9 / gpuTime, gpuTime, QRNG_DIMENSIONS*N, 1, 128*QRNG_DIMENSIONS); printf("\nReading GPU results...\n"); checkCudaErrors(cudaMemcpy(h_OutputGPU, d_Output, QRNG_DIMENSIONS * N * sizeof(float), cudaMemcpyDeviceToHost)); printf("Comparing to the CPU results...\n\n"); sumDelta = 0; sumRef = 0; for (dim = 0; dim < QRNG_DIMENSIONS; dim++) for (pos = 0; pos < N; pos++) { ref = getQuasirandomValue63(pos, dim); delta = (double)h_OutputGPU[dim * N + pos] - ref; sumDelta += fabs(delta); sumRef += fabs(ref); } printf("L1 norm: %E\n", sumDelta / sumRef); printf("\nTesting inverseCNDgpu()...\n\n"); checkCudaErrors(cudaMemset(d_Output, 0, QRNG_DIMENSIONS * N * sizeof(float))); for (int i = -1; i < numIterations; i++) { if (i == 0) { checkCudaErrors(cudaDeviceSynchronize()); sdkResetTimer(&hTimer); sdkStartTimer(&hTimer); } if (useDoublePrecision) { inverseCND_SM13(d_Output, NULL, QRNG_DIMENSIONS * N); } else { inverseCND_SM10(d_Output, NULL, QRNG_DIMENSIONS * N); } } checkCudaErrors(cudaDeviceSynchronize()); sdkStopTimer(&hTimer); gpuTime = sdkGetTimerValue(&hTimer)/(double)numIterations*1e-3; printf("quasirandomGenerator-inverse, Throughput = %.4f GNumbers/s, Time = %.5f s, Size = %u Numbers, NumDevsUsed = %u, Workgroup = %u\n", (double)QRNG_DIMENSIONS * (double)N * 1E-9 / gpuTime, gpuTime, QRNG_DIMENSIONS*N, 1, 128); printf("Reading GPU results...\n"); checkCudaErrors(cudaMemcpy(h_OutputGPU, d_Output, QRNG_DIMENSIONS * N * sizeof(float), cudaMemcpyDeviceToHost)); printf("\nComparing to the CPU results...\n"); sumDelta = 0; sumRef = 0; unsigned int distance = ((unsigned int)-1) / (QRNG_DIMENSIONS * N + 1); for (pos = 0; pos < QRNG_DIMENSIONS * N; pos++) { unsigned int d = (pos + 1) * distance; ref = MoroInvCNDcpu(d); delta = (double)h_OutputGPU[pos] - ref; sumDelta += fabs(delta); sumRef += fabs(ref); } printf("L1 norm: %E\n\n", L1norm = sumDelta / sumRef); printf("Shutting down...\n"); sdkDeleteTimer(&hTimer); free(h_OutputGPU); checkCudaErrors(cudaFree(d_Output)); // cudaDeviceReset causes the driver to clean up all state. While // not mandatory in normal operation, it is good practice. It is also // needed to ensure correct operation when the application is being // profiled. Calling cudaDeviceReset causes all profile data to be // flushed before the application exits cudaDeviceReset(); exit(L1norm < 1e-6 ? EXIT_SUCCESS : EXIT_FAILURE); }
int main(int argc, char **argv) { // Start logs printf("%s Starting...\n\n", argv[0]); unsigned int tableCPU[QRNG_DIMENSIONS][QRNG_RESOLUTION]; float *h_OutputGPU, *d_Output; int dim, pos; double delta, ref, sumDelta, sumRef, L1norm, gpuTime; StopWatchInterface *hTimer = NULL; if (sizeof(INT64) != 8) { printf("sizeof(INT64) != 8\n"); return 0; } cudaDeviceProp deviceProp; int dev = findCudaDevice(argc, (const char **)argv); checkCudaErrors(cudaGetDeviceProperties(&deviceProp, dev)); if (((deviceProp.major << 4) + deviceProp.minor) < 0x20) { fprintf(stderr, "quasirandomGenerator requires Compute Capability of SM 2.0 or higher to run.\n"); cudaDeviceReset(); exit(EXIT_WAIVED); } sdkCreateTimer(&hTimer); printf("Allocating GPU memory...\n"); checkCudaErrors(cudaMalloc((void **)&d_Output, QRNG_DIMENSIONS * N * sizeof(float))); printf("Allocating CPU memory...\n"); h_OutputGPU = (float *)malloc(QRNG_DIMENSIONS * N * sizeof(float)); printf("Initializing QRNG tables...\n\n"); initQuasirandomGenerator(tableCPU); initTableGPU(tableCPU); printf("Testing QRNG...\n\n"); checkCudaErrors(cudaMemset(d_Output, 0, QRNG_DIMENSIONS * N * sizeof(float))); int numIterations = 20; for (int i = -1; i < numIterations; i++) { if (i == 0) { checkCudaErrors(cudaDeviceSynchronize()); sdkResetTimer(&hTimer); sdkStartTimer(&hTimer); } quasirandomGeneratorGPU(d_Output, 0, N); } checkCudaErrors(cudaDeviceSynchronize()); sdkStopTimer(&hTimer); gpuTime = sdkGetTimerValue(&hTimer)/(double)numIterations*1e-3; printf("quasirandomGenerator, Throughput = %.4f GNumbers/s, Time = %.5f s, Size = %u Numbers, NumDevsUsed = %u, Workgroup = %u\n", (double)QRNG_DIMENSIONS * (double)N * 1.0E-9 / gpuTime, gpuTime, QRNG_DIMENSIONS*N, 1, 128*QRNG_DIMENSIONS); printf("\nReading GPU results...\n"); checkCudaErrors(cudaMemcpy(h_OutputGPU, d_Output, QRNG_DIMENSIONS * N * sizeof(float), cudaMemcpyDeviceToHost)); printf("Comparing to the CPU results...\n\n"); sumDelta = 0; sumRef = 0; for (dim = 0; dim < QRNG_DIMENSIONS; dim++) for (pos = 0; pos < N; pos++) { ref = getQuasirandomValue63(pos, dim); delta = (double)h_OutputGPU[dim * N + pos] - ref; sumDelta += fabs(delta); sumRef += fabs(ref); } printf("L1 norm: %E\n", sumDelta / sumRef); printf("\nTesting inverseCNDgpu()...\n\n"); checkCudaErrors(cudaMemset(d_Output, 0, QRNG_DIMENSIONS * N * sizeof(float))); for (int i = -1; i < numIterations; i++) { if (i == 0) { checkCudaErrors(cudaDeviceSynchronize()); sdkResetTimer(&hTimer); sdkStartTimer(&hTimer); } inverseCNDgpu(d_Output, NULL, QRNG_DIMENSIONS * N); } checkCudaErrors(cudaDeviceSynchronize()); sdkStopTimer(&hTimer); gpuTime = sdkGetTimerValue(&hTimer)/(double)numIterations*1e-3; printf("quasirandomGenerator-inverse, Throughput = %.4f GNumbers/s, Time = %.5f s, Size = %u Numbers, NumDevsUsed = %u, Workgroup = %u\n", (double)QRNG_DIMENSIONS * (double)N * 1E-9 / gpuTime, gpuTime, QRNG_DIMENSIONS*N, 1, 128); printf("Reading GPU results...\n"); checkCudaErrors(cudaMemcpy(h_OutputGPU, d_Output, QRNG_DIMENSIONS * N * sizeof(float), cudaMemcpyDeviceToHost)); printf("\nComparing to the CPU results...\n"); sumDelta = 0; sumRef = 0; unsigned int distance = ((unsigned int)-1) / (QRNG_DIMENSIONS * N + 1); for (pos = 0; pos < QRNG_DIMENSIONS * N; pos++) { unsigned int d = (pos + 1) * distance; ref = MoroInvCNDcpu(d); delta = (double)h_OutputGPU[pos] - ref; sumDelta += fabs(delta); sumRef += fabs(ref); } printf("L1 norm: %E\n\n", L1norm = sumDelta / sumRef); printf("Shutting down...\n"); sdkDeleteTimer(&hTimer); free(h_OutputGPU); checkCudaErrors(cudaFree(d_Output)); // cudaDeviceReset causes the driver to clean up all state. While // not mandatory in normal operation, it is good practice. It is also // needed to ensure correct operation when the application is being // profiled. Calling cudaDeviceReset causes all profile data to be // flushed before the application exits cudaDeviceReset(); exit(L1norm < 1e-6 ? EXIT_SUCCESS : EXIT_FAILURE); }