Example #1
0
/*
 *	Initialize all of the debugging state in a port.
 *	Insert the port into a global list of all allocated ports.
 */
void
ipc_port_init_debug(
	ipc_port_t	port,
	uintptr_t 	*callstack,
	unsigned int	callstack_max)
{
	unsigned int	i;

	port->ip_thread = current_thread();
	port->ip_timetrack = port_timestamp++;
	for (i = 0; i < callstack_max; ++i)
		port->ip_callstack[i] = callstack[i];	
	for (i = 0; i < IP_NSPARES; ++i)
		port->ip_spares[i] = 0;	

#ifdef MACH_BSD
	task_t task = current_task();
	if (task != TASK_NULL) {
		struct proc* proc = (struct proc*) get_bsdtask_info(task);
		if (proc)
			port->ip_spares[0] = proc_pid(proc);
	}
#endif /* MACH_BSD */

#if 0
	lck_spin_lock(&port_alloc_queue_lock);
	++port_count;
	if (port_count_warning > 0 && port_count >= port_count_warning)
		assert(port_count < port_count_warning);
	queue_enter(&port_alloc_queue, port, ipc_port_t, ip_port_links);
	lck_spin_unlock(&port_alloc_queue_lock);
#endif
}
Example #2
0
/*
 * pid_for_task
 *
 * Find the BSD process ID for the Mach task associated with the given Mach port 
 * name
 *
 * Parameters:	args		User argument descriptor (see below)
 *
 * Indirect parameters:	args->t		Mach port name
 * 			args->pid	Process ID (returned value; see below)
 *
 * Returns:	KERL_SUCCESS	Success
 * 		KERN_FAILURE	Not success           
 *
 * Implicit returns: args->pid		Process ID
 *
 */
kern_return_t
pid_for_task(
	struct pid_for_task_args *args)
{
	mach_port_name_t	t = args->t;
	user_addr_t		pid_addr  = args->pid;  
	proc_t p;
	task_t		t1;
	int	pid = -1;
	kern_return_t	err = KERN_SUCCESS;

	AUDIT_MACH_SYSCALL_ENTER(AUE_PIDFORTASK);
	AUDIT_ARG(mach_port1, t);

	t1 = port_name_to_task(t);

	if (t1 == TASK_NULL) {
		err = KERN_FAILURE;
		goto pftout;
	} else {
		p = get_bsdtask_info(t1);
		if (p) {
			pid  = proc_pid(p);
			err = KERN_SUCCESS;
		} else {
			err = KERN_FAILURE;
		}
	}
	task_deallocate(t1);
pftout:
	AUDIT_ARG(pid, pid);
	(void) copyout((char *) &pid, pid_addr, sizeof(int));
	AUDIT_MACH_SYSCALL_EXIT(err);
	return(err);
}
bool IOHIDEventSystemUserClient::
initWithTask(task_t owningTask, void * /* security_id */, UInt32 /* type */)
{
    bool result = false;
    
    OSObject* entitlement = copyClientEntitlement(owningTask, kIOHIDSystemUserAccessServiceEntitlement);
    if (entitlement) {
        result = (entitlement == kOSBooleanTrue);
        entitlement->release();
    }
    if (!result) {
        proc_t      process;
        process = (proc_t)get_bsdtask_info(owningTask);
        char name[255];
        bzero(name, sizeof(name));
        proc_name(proc_pid(process), name, sizeof(name));
        HIDLogError("%s is not entitled", name);
        goto exit;
    }
    
    result = super::init();
    require_action(result, exit, HIDLogError("failed"));
    
exit:
    return result;
}
Example #4
0
int
mac_exc_action_check_exception_send(struct task *victim_task, struct exception_action *action)
{
	int error = 0;

	struct proc *p = get_bsdtask_info(victim_task);
	struct label *bsd_label = NULL;
	struct label *label = NULL;

	if (p != NULL) {
		// Create a label from the still existing bsd process...
		label = bsd_label = mac_exc_action_label_alloc();
		MAC_PERFORM(exc_action_label_update, p, bsd_label);
	} else {
		// ... otherwise use the crash label on the task.
		label = get_task_crash_label(victim_task);
	}

	if (label == NULL) {
		MAC_MACH_UNEXPECTED("mac_exc_action_check_exception_send: no exc_action label for proc %p", p);
		return EPERM;
	}

	MAC_CHECK(exc_action_check_exception_send, label, action, action->label);

	if (bsd_label != NULL) {
		mac_exc_action_label_free(bsd_label);
	}

	return (error);
}
Example #5
0
IOReturn RootDomainUserClient::secureSleepSystemOptions(
    const void      *inOptions,
    IOByteCount     inOptionsSize,
    uint32_t        *returnCode)
{

    int             local_priv = 0;
    int             admin_priv = 0;
    IOReturn        ret = kIOReturnNotPrivileged;
    OSDictionary    *unserializedOptions =  NULL;
    OSString        *unserializeErrorString = NULL;

    ret = clientHasPrivilege(fOwningTask, kIOClientPrivilegeLocalUser);
    local_priv = (kIOReturnSuccess == ret);

    ret = clientHasPrivilege(fOwningTask, kIOClientPrivilegeAdministrator);
    admin_priv = (kIOReturnSuccess == ret);


    if (inOptions)
    {
        unserializedOptions = OSDynamicCast( OSDictionary,
                                             OSUnserializeXML((const char *)inOptions, inOptionsSize, &unserializeErrorString));

        if (!unserializedOptions) {
            IOLog("IOPMRootDomain SleepSystem unserialization failure: %s\n",
                unserializeErrorString ? unserializeErrorString->getCStringNoCopy() : "Unknown");
        }
    }

    if ( (local_priv || admin_priv) && fOwner )
    {
        proc_t p;
        p = (proc_t)get_bsdtask_info(fOwningTask);
        if (p) {
            fOwner->setProperty("SleepRequestedByPID", proc_pid(p), 32);
        }

        if (unserializedOptions)
        {
            // Publish Sleep Options in registry under root_domain
            fOwner->setProperty( kRootDomainSleepOptionsKey, unserializedOptions);

            *returnCode = fOwner->sleepSystemOptions( unserializedOptions );

            unserializedOptions->release();
        } else {
            // No options
            // Clear any pre-existing options
            fOwner->removeProperty( kRootDomainSleepOptionsKey );

            *returnCode = fOwner->sleepSystemOptions( NULL );
        }

    } else {
        *returnCode = kIOReturnNotPrivileged;
    }

    return kIOReturnSuccess;
}
bool IOHIDLibUserClient::initWithTask(task_t owningTask, void * /* security_id */, UInt32 /* type */)
{
    if (!super::init())
        return false;

    if (IOUserClient::clientHasPrivilege(owningTask, kIOClientPrivilegeAdministrator) != kIOReturnSuccess) {
        // Preparing for extended data. Set a temporary key.
        setProperty(kIOHIDLibClientExtendedData, true);
    }

    fClient = owningTask;
    task_reference (fClient);

    proc_t p = (proc_t)get_bsdtask_info(fClient);
    fPid = proc_pid(p);

    fQueueMap = OSArray::withCapacity(4);
    if (!fQueueMap)
        return false;
    
    return true;
}
Example #7
0
/*
 * vfork_return
 *
 * Description:	"Return" to parent vfork thread() following execve/_exit;
 *		this is done by reassociating the parent process structure
 *		with the task, thread, and uthread.
 *
 *		Refer to the ASCII art above vfork() to figure out the
 *		state we're undoing.
 *
 * Parameters:	child_proc		Child process
 *		retval			System call return value array
 *		rval			Return value to present to parent
 *
 * Returns:	void
 *
 * Notes:	The caller resumes or exits the parent, as appropriate, after
 *		calling this function.
 */
void
vfork_return(proc_t child_proc, int32_t *retval, int rval)
{
	task_t parent_task = get_threadtask(child_proc->p_vforkact);
	proc_t parent_proc = get_bsdtask_info(parent_task);
	thread_t th = current_thread();
	uthread_t uth = get_bsdthread_info(th);
	
	act_thread_catt(uth->uu_userstate);

	/* clear vfork state in parent proc structure */
	proc_vfork_end(parent_proc);

	/* REPATRIATE PARENT TASK, THREAD, UTHREAD */
	uth->uu_userstate = 0;
	uth->uu_flag &= ~UT_VFORK;
	/* restore thread-set-id state */
	if (uth->uu_flag & UT_WASSETUID) {
		uth->uu_flag |= UT_SETUID;
		uth->uu_flag &= UT_WASSETUID;
	}
	uth->uu_proc = 0;
	uth->uu_sigmask = uth->uu_vforkmask;

	proc_lock(child_proc);
	child_proc->p_lflag &= ~P_LINVFORK;
	child_proc->p_vforkact = 0;
	proc_unlock(child_proc);

	thread_set_parent(th, rval);

	if (retval) {
		retval[0] = rval;
		retval[1] = 0;			/* mark parent */
	}
}
Example #8
0
/*
 * fork1
 *
 * Description:	common code used by all new process creation other than the
 *		bootstrap of the initial process on the system
 *
 * Parameters: parent_proc		parent process of the process being
 *		child_threadp		pointer to location to receive the
 *					Mach thread_t of the child process
 *					breated
 *		kind			kind of creation being requested
 *
 * Notes:	Permissable values for 'kind':
 *
 *		PROC_CREATE_FORK	Create a complete process which will
 *					return actively running in both the
 *					parent and the child; the child copies
 *					the parent address space.
 *		PROC_CREATE_SPAWN	Create a complete process which will
 *					return actively running in the parent
 *					only after returning actively running
 *					in the child; the child address space
 *					is newly created by an image activator,
 *					after which the child is run.
 *		PROC_CREATE_VFORK	Creates a partial process which will
 *					borrow the parent task, thread, and
 *					uthread to return running in the child;
 *					the child address space and other parts
 *					are lazily created at execve() time, or
 *					the child is terminated, and the parent
 *					does not actively run until that
 *					happens.
 *
 *		At first it may seem strange that we return the child thread
 *		address rather than process structure, since the process is
 *		the only part guaranteed to be "new"; however, since we do
 *		not actualy adjust other references between Mach and BSD (see
 *		the block diagram above the implementation of vfork()), this
 *		is the only method which guarantees us the ability to get
 *		back to the other information.
 */
int
fork1(proc_t parent_proc, thread_t *child_threadp, int kind)
{
	thread_t parent_thread = (thread_t)current_thread();
	uthread_t parent_uthread = (uthread_t)get_bsdthread_info(parent_thread);
	proc_t child_proc = NULL;	/* set in switch, but compiler... */
	thread_t child_thread = NULL;
	uid_t uid;
	int count;
	int err = 0;
	int spawn = 0;

	/*
	 * Although process entries are dynamically created, we still keep
	 * a global limit on the maximum number we will create.  Don't allow
	 * a nonprivileged user to use the last process; don't let root
	 * exceed the limit. The variable nprocs is the current number of
	 * processes, maxproc is the limit.
	 */
	uid = kauth_cred_get()->cr_ruid;
	proc_list_lock();
	if ((nprocs >= maxproc - 1 && uid != 0) || nprocs >= maxproc) {
		proc_list_unlock();
		tablefull("proc");
		return (EAGAIN);
	}
	proc_list_unlock();

	/*
	 * Increment the count of procs running with this uid. Don't allow
	 * a nonprivileged user to exceed their current limit, which is
	 * always less than what an rlim_t can hold.
	 * (locking protection is provided by list lock held in chgproccnt)
	 */
	count = chgproccnt(uid, 1);
	if (uid != 0 &&
	    (rlim_t)count > parent_proc->p_rlimit[RLIMIT_NPROC].rlim_cur) {
	    	err = EAGAIN;
		goto bad;
	}

#if CONFIG_MACF
	/*
	 * Determine if MAC policies applied to the process will allow
	 * it to fork.  This is an advisory-only check.
	 */
	err = mac_proc_check_fork(parent_proc);
	if (err  != 0) {
		goto bad;
	}
#endif

	switch(kind) {
	case PROC_CREATE_VFORK:
		/*
		 * Prevent a vfork while we are in vfork(); we should
		 * also likely preventing a fork here as well, and this
		 * check should then be outside the switch statement,
		 * since the proc struct contents will copy from the
		 * child and the tash/thread/uthread from the parent in
		 * that case.  We do not support vfork() in vfork()
		 * because we don't have to; the same non-requirement
		 * is true of both fork() and posix_spawn() and any
		 * call  other than execve() amd _exit(), but we've
		 * been historically lenient, so we continue to be so
		 * (for now).
		 *
		 * <rdar://6640521> Probably a source of random panics
		 */
		if (parent_uthread->uu_flag & UT_VFORK) {
			printf("fork1 called within vfork by %s\n", parent_proc->p_comm);
			err = EINVAL;
			goto bad;
		}

		/*
		 * Flag us in progress; if we chose to support vfork() in
		 * vfork(), we would chain our parent at this point (in
		 * effect, a stack push).  We don't, since we actually want
		 * to disallow everything not specified in the standard
		 */
		proc_vfork_begin(parent_proc);

		/* The newly created process comes with signal lock held */
		if ((child_proc = forkproc(parent_proc)) == NULL) {
			/* Failed to allocate new process */
			proc_vfork_end(parent_proc);
			err = ENOMEM;
			goto bad;
		}

// XXX BEGIN: wants to move to be common code (and safe)
#if CONFIG_MACF
		/*
		 * allow policies to associate the credential/label that
		 * we referenced from the parent ... with the child
		 * JMM - this really isn't safe, as we can drop that
		 *       association without informing the policy in other
		 *       situations (keep long enough to get policies changed)
		 */
		mac_cred_label_associate_fork(child_proc->p_ucred, child_proc);
#endif

		/*
		 * Propogate change of PID - may get new cred if auditing.
		 *
		 * NOTE: This has no effect in the vfork case, since
		 *	child_proc->task != current_task(), but we duplicate it
		 *	because this is probably, ultimately, wrong, since we
		 *	will be running in the "child" which is the parent task
		 *	with the wrong token until we get to the execve() or
		 *	_exit() call; a lot of "undefined" can happen before
		 *	that.
		 *
		 * <rdar://6640530> disallow everything but exeve()/_exit()?
		 */
		set_security_token(child_proc);

		AUDIT_ARG(pid, child_proc->p_pid);

		AUDIT_SESSION_PROCNEW(child_proc->p_ucred);
// XXX END: wants to move to be common code (and safe)

		/*
		 * BORROW PARENT TASK, THREAD, UTHREAD FOR CHILD
		 *
		 * Note: this is where we would "push" state instead of setting
		 * it for nested vfork() support (see proc_vfork_end() for
		 * description if issues here).
		 */
		child_proc->task = parent_proc->task;

		child_proc->p_lflag  |= P_LINVFORK;
		child_proc->p_vforkact = parent_thread;
		child_proc->p_stat = SRUN;

		parent_uthread->uu_flag |= UT_VFORK;
		parent_uthread->uu_proc = child_proc;
		parent_uthread->uu_userstate = (void *)act_thread_csave();
		parent_uthread->uu_vforkmask = parent_uthread->uu_sigmask;

		/* temporarily drop thread-set-id state */
		if (parent_uthread->uu_flag & UT_SETUID) {
			parent_uthread->uu_flag |= UT_WASSETUID;
			parent_uthread->uu_flag &= ~UT_SETUID;
		}

		/* blow thread state information */
		/* XXX is this actually necessary, given syscall return? */
		thread_set_child(parent_thread, child_proc->p_pid);

		child_proc->p_acflag = AFORK;	/* forked but not exec'ed */

		/*
		 * Preserve synchronization semantics of vfork.  If
		 * waiting for child to exec or exit, set P_PPWAIT
		 * on child, and sleep on our proc (in case of exit).
		 */
		child_proc->p_lflag |= P_LPPWAIT;
		pinsertchild(parent_proc, child_proc);	/* set visible */

		break;

	case PROC_CREATE_SPAWN:
		/*
		 * A spawned process differs from a forked process in that
		 * the spawned process does not carry around the parents
		 * baggage with regard to address space copying, dtrace,
		 * and so on.
		 */
		spawn = 1;

		/* FALLSTHROUGH */

	case PROC_CREATE_FORK:
		/*
		 * When we clone the parent process, we are going to inherit
		 * its task attributes and memory, since when we fork, we
		 * will, in effect, create a duplicate of it, with only minor
		 * differences.  Contrarily, spawned processes do not inherit.
		 */
		if ((child_thread = cloneproc(parent_proc->task, parent_proc, spawn ? FALSE : TRUE)) == NULL) {
			/* Failed to create thread */
			err = EAGAIN;
			goto bad;
		}

		/* copy current thread state into the child thread (only for fork) */
		if (!spawn) {
			thread_dup(child_thread);
		}

		/* child_proc = child_thread->task->proc; */
		child_proc = (proc_t)(get_bsdtask_info(get_threadtask(child_thread)));

// XXX BEGIN: wants to move to be common code (and safe)
#if CONFIG_MACF
		/*
		 * allow policies to associate the credential/label that
		 * we referenced from the parent ... with the child
		 * JMM - this really isn't safe, as we can drop that
		 *       association without informing the policy in other
		 *       situations (keep long enough to get policies changed)
		 */
		mac_cred_label_associate_fork(child_proc->p_ucred, child_proc);
#endif

		/*
		 * Propogate change of PID - may get new cred if auditing.
		 *
		 * NOTE: This has no effect in the vfork case, since
		 *	child_proc->task != current_task(), but we duplicate it
		 *	because this is probably, ultimately, wrong, since we
		 *	will be running in the "child" which is the parent task
		 *	with the wrong token until we get to the execve() or
		 *	_exit() call; a lot of "undefined" can happen before
		 *	that.
		 *
		 * <rdar://6640530> disallow everything but exeve()/_exit()?
		 */
		set_security_token(child_proc);

		AUDIT_ARG(pid, child_proc->p_pid);

		AUDIT_SESSION_PROCNEW(child_proc->p_ucred);
// XXX END: wants to move to be common code (and safe)

		/*
		 * Blow thread state information; this is what gives the child
		 * process its "return" value from a fork() call.
		 *
		 * Note: this should probably move to fork() proper, since it
		 * is not relevent to spawn, and the value won't matter
		 * until we resume the child there.  If you are in here
		 * refactoring code, consider doing this at the same time.
		 */
		thread_set_child(child_thread, child_proc->p_pid);

		child_proc->p_acflag = AFORK;	/* forked but not exec'ed */

// <rdar://6598155> dtrace code cleanup needed
#if CONFIG_DTRACE
		/*
		 * This code applies to new processes who are copying the task
		 * and thread state and address spaces of their parent process.
		 */
		if (!spawn) {
// <rdar://6598155> call dtrace specific function here instead of all this...
		/*
		 * APPLE NOTE: Solaris does a sprlock() and drops the
		 * proc_lock here. We're cheating a bit and only taking
		 * the p_dtrace_sprlock lock. A full sprlock would
		 * task_suspend the parent.
		 */
		lck_mtx_lock(&parent_proc->p_dtrace_sprlock);

		/*
		 * Remove all DTrace tracepoints from the child process. We
		 * need to do this _before_ duplicating USDT providers since
		 * any associated probes may be immediately enabled.
		 */
		if (parent_proc->p_dtrace_count > 0) {
			dtrace_fasttrap_fork(parent_proc, child_proc);
		}

		lck_mtx_unlock(&parent_proc->p_dtrace_sprlock);

		/*
		 * Duplicate any lazy dof(s). This must be done while NOT
		 * holding the parent sprlock! Lock ordering is
		 * dtrace_dof_mode_lock, then sprlock.  It is imperative we
		 * always call dtrace_lazy_dofs_duplicate, rather than null
		 * check and call if !NULL. If we NULL test, during lazy dof
		 * faulting we can race with the faulting code and proceed
		 * from here to beyond the helpers copy. The lazy dof
		 * faulting will then fail to copy the helpers to the child
		 * process.
		 */
		dtrace_lazy_dofs_duplicate(parent_proc, child_proc);
		
		/*
		 * Duplicate any helper actions and providers. The SFORKING
		 * we set above informs the code to enable USDT probes that
		 * sprlock() may fail because the child is being forked.
		 */
		/*
		 * APPLE NOTE: As best I can tell, Apple's sprlock() equivalent
		 * never fails to find the child. We do not set SFORKING.
		 */
		if (parent_proc->p_dtrace_helpers != NULL && dtrace_helpers_fork) {
			(*dtrace_helpers_fork)(parent_proc, child_proc);
		}

		}
#endif	/* CONFIG_DTRACE */

		break;

	default:
		panic("fork1 called with unknown kind %d", kind);
		break;
	}


	/* return the thread pointer to the caller */
	*child_threadp = child_thread;

bad:
	/*
	 * In the error case, we return a 0 value for the returned pid (but
	 * it is ignored in the trampoline due to the error return); this
	 * is probably not necessary.
	 */
	if (err) {
		(void)chgproccnt(uid, -1);
	}

	return (err);
}
Example #9
0
/* 
 * This routine frees all the BSD context in uthread except the credential.
 * It does not free the uthread structure as well
 */
void
uthread_cleanup(task_t task, void *uthread, void * bsd_info)
{
	struct _select *sel;
	uthread_t uth = (uthread_t)uthread;
	proc_t p = (proc_t)bsd_info;


	if (uth->uu_lowpri_window || uth->uu_throttle_info) {
	        /*
		 * task is marked as a low priority I/O type
		 * and we've somehow managed to not dismiss the throttle
		 * through the normal exit paths back to user space...
		 * no need to throttle this thread since its going away
		 * but we do need to update our bookeeping w/r to throttled threads
		 *
		 * Calling this routine will clean up any throttle info reference
		 * still inuse by the thread.
		 */
		throttle_lowpri_io(FALSE);
	}
	/*
	 * Per-thread audit state should never last beyond system
	 * call return.  Since we don't audit the thread creation/
	 * removal, the thread state pointer should never be
	 * non-NULL when we get here.
	 */
	assert(uth->uu_ar == NULL);

	sel = &uth->uu_select;
	/* cleanup the select bit space */
	if (sel->nbytes) {
		FREE(sel->ibits, M_TEMP);
		FREE(sel->obits, M_TEMP);
		sel->nbytes = 0;
	}

	if (uth->uu_cdir) {
		vnode_rele(uth->uu_cdir);
		uth->uu_cdir = NULLVP;
	}

	if (uth->uu_allocsize && uth->uu_wqset){
		kfree(uth->uu_wqset, uth->uu_allocsize);
		sel->count = 0;
		uth->uu_allocsize = 0;
		uth->uu_wqset = 0;
		sel->wql = 0;
	}

	if(uth->pth_name != NULL)
	{
		kfree(uth->pth_name, MAXTHREADNAMESIZE);
		uth->pth_name = 0;
	}
	if ((task != kernel_task) && p) {

		if (((uth->uu_flag & UT_VFORK) == UT_VFORK) && (uth->uu_proc != PROC_NULL))  {
			vfork_exit_internal(uth->uu_proc, 0, 1);
		}
		/*
		 * Remove the thread from the process list and
		 * transfer [appropriate] pending signals to the process.
		 */
		if (get_bsdtask_info(task) == p) { 
			proc_lock(p);
			TAILQ_REMOVE(&p->p_uthlist, uth, uu_list);
			p->p_siglist |= (uth->uu_siglist & execmask & (~p->p_sigignore | sigcantmask));
			proc_unlock(p);
		}
#if CONFIG_DTRACE
		struct dtrace_ptss_page_entry *tmpptr = uth->t_dtrace_scratch;
		uth->t_dtrace_scratch = NULL;
		if (tmpptr != NULL) {
			dtrace_ptss_release_entry(p, tmpptr);
		}
#endif
	}
}
Example #10
0
void *
uthread_alloc(task_t task, thread_t thread, int noinherit)
{
	proc_t p;
	uthread_t uth;
	uthread_t uth_parent;
	void *ut;

	if (!uthread_zone_inited)
		uthread_zone_init();

	ut = (void *)zalloc(uthread_zone);
	bzero(ut, sizeof(struct uthread));

	p = (proc_t) get_bsdtask_info(task);
	uth = (uthread_t)ut;

	/*
	 * Thread inherits credential from the creating thread, if both
	 * are in the same task.
	 *
	 * If the creating thread has no credential or is from another
	 * task we can leave the new thread credential NULL.  If it needs
	 * one later, it will be lazily assigned from the task's process.
	 */
	uth_parent = (uthread_t)get_bsdthread_info(current_thread());
	if ((noinherit == 0) && task == current_task() && 
	    uth_parent != NULL &&
	    IS_VALID_CRED(uth_parent->uu_ucred)) {
		/*
		 * XXX The new thread is, in theory, being created in context
		 * XXX of parent thread, so a direct reference to the parent
		 * XXX is OK.
		 */
		kauth_cred_ref(uth_parent->uu_ucred);
		uth->uu_ucred = uth_parent->uu_ucred;
		/* the credential we just inherited is an assumed credential */
		if (uth_parent->uu_flag & UT_SETUID)
			uth->uu_flag |= UT_SETUID;
	} else {
		/* sometimes workqueue threads are created out task context */
		if ((task != kernel_task) && (p != PROC_NULL))
			uth->uu_ucred = kauth_cred_proc_ref(p);
		else
			uth->uu_ucred = NOCRED;
	}

	
	if ((task != kernel_task) && p) {
		
		proc_lock(p);
		if (noinherit != 0) {
			/* workq threads will not inherit masks */
			uth->uu_sigmask = ~workq_threadmask;
		} else if (uth_parent) {
			if (uth_parent->uu_flag & UT_SAS_OLDMASK)
				uth->uu_sigmask = uth_parent->uu_oldmask;
			else
				uth->uu_sigmask = uth_parent->uu_sigmask;
		}
		uth->uu_context.vc_thread = thread;
		TAILQ_INSERT_TAIL(&p->p_uthlist, uth, uu_list);
		proc_unlock(p);

#if CONFIG_DTRACE
		if (p->p_dtrace_ptss_pages != NULL) {
			uth->t_dtrace_scratch = dtrace_ptss_claim_entry(p);
		}
#endif
	}

	return (ut);
}
Example #11
0
/*
 * Function:	unix_syscall
 *
 * Inputs:	regs	- pointer to i386 save area
 *
 * Outputs:	none
 */
void
unix_syscall(x86_saved_state_t *state)
{
	thread_t		thread;
	void			*vt;
	unsigned int		code;
	struct sysent		*callp;

	int			error;
	vm_offset_t		params;
	struct proc		*p;
	struct uthread		*uthread;
	x86_saved_state32_t	*regs;
	boolean_t		is_vfork;

	assert(is_saved_state32(state));
	regs = saved_state32(state);
#if DEBUG
	if (regs->eax == 0x800)
		thread_exception_return();
#endif
	thread = current_thread();
	uthread = get_bsdthread_info(thread);

	/* Get the approriate proc; may be different from task's for vfork() */
	is_vfork = uthread->uu_flag & UT_VFORK;
	if (__improbable(is_vfork != 0))
		p = current_proc();
	else 
		p = (struct proc *)get_bsdtask_info(current_task());

	/* Verify that we are not being called from a task without a proc */
	if (__improbable(p == NULL)) {
		regs->eax = EPERM;
		regs->efl |= EFL_CF;
		task_terminate_internal(current_task());
		thread_exception_return();
		/* NOTREACHED */
	}

	code = regs->eax & I386_SYSCALL_NUMBER_MASK;
	DEBUG_KPRINT_SYSCALL_UNIX("unix_syscall: code=%d(%s) eip=%u\n",
							  code, syscallnames[code >= NUM_SYSENT ? 63 : code], (uint32_t)regs->eip);
	params = (vm_offset_t) (regs->uesp + sizeof (int));

	regs->efl &= ~(EFL_CF);

	callp = (code >= NUM_SYSENT) ? &sysent[63] : &sysent[code];

	if (__improbable(callp == sysent)) {
		code = fuword(params);
		params += sizeof(int);
		callp = (code >= NUM_SYSENT) ? &sysent[63] : &sysent[code];
	}

	vt = (void *)uthread->uu_arg;

	if (callp->sy_arg_bytes != 0) {
#if CONFIG_REQUIRES_U32_MUNGING
		sy_munge_t	*mungerp;
#else
#error U32 syscalls on x86_64 kernel requires munging
#endif
		uint32_t	 nargs;

		assert((unsigned) callp->sy_arg_bytes <= sizeof (uthread->uu_arg));
		nargs = callp->sy_arg_bytes;
		error = copyin((user_addr_t) params, (char *) vt, nargs);
		if (error) {
			regs->eax = error;
			regs->efl |= EFL_CF;
			thread_exception_return();
			/* NOTREACHED */
		}

		if (__probable(code != 180)) {
	        	int *ip = (int *)vt;

			KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
				BSDDBG_CODE(DBG_BSD_EXCP_SC, code) | DBG_FUNC_START,
				*ip, *(ip+1), *(ip+2), *(ip+3), 0);
		}

#if CONFIG_REQUIRES_U32_MUNGING
		mungerp = callp->sy_arg_munge32;

		if (mungerp != NULL)
			(*mungerp)(vt);
#endif
	} else
		KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, 
			BSDDBG_CODE(DBG_BSD_EXCP_SC, code) | DBG_FUNC_START,
			0, 0, 0, 0, 0);

	/*
	 * Delayed binding of thread credential to process credential, if we
	 * are not running with an explicitly set thread credential.
	 */
	kauth_cred_uthread_update(uthread, p);

	uthread->uu_rval[0] = 0;
	uthread->uu_rval[1] = 0;
	uthread->uu_flag |= UT_NOTCANCELPT;
	uthread->syscall_code = code;

#ifdef JOE_DEBUG
        uthread->uu_iocount = 0;
        uthread->uu_vpindex = 0;
#endif

	AUDIT_SYSCALL_ENTER(code, p, uthread);
	error = (*(callp->sy_call))((void *) p, (void *) vt, &(uthread->uu_rval[0]));
	AUDIT_SYSCALL_EXIT(code, p, uthread, error);

#ifdef JOE_DEBUG
        if (uthread->uu_iocount)
                printf("system call returned with uu_iocount != 0\n");
#endif
#if CONFIG_DTRACE
	uthread->t_dtrace_errno = error;
#endif /* CONFIG_DTRACE */

	if (__improbable(error == ERESTART)) {
		/*
		 * Move the user's pc back to repeat the syscall:
		 * 5 bytes for a sysenter, or 2 for an int 8x.
		 * The SYSENTER_TF_CS covers single-stepping over a sysenter
		 * - see debug trap handler in idt.s/idt64.s
		 */

		pal_syscall_restart(thread, state);
	}
	else if (error != EJUSTRETURN) {
		if (__improbable(error)) {
		    regs->eax = error;
		    regs->efl |= EFL_CF;	/* carry bit */
		} else { /* (not error) */
			/*
			 * We split retval across two registers, in case the
			 * syscall had a 64-bit return value, in which case
			 * eax/edx matches the function call ABI.
			 */
		    regs->eax = uthread->uu_rval[0];
		    regs->edx = uthread->uu_rval[1];
		} 
	}

	DEBUG_KPRINT_SYSCALL_UNIX(
		"unix_syscall: error=%d retval=(%u,%u)\n",
		error, regs->eax, regs->edx);

	uthread->uu_flag &= ~UT_NOTCANCELPT;

	if (__improbable(uthread->uu_lowpri_window)) {
	        /*
		 * task is marked as a low priority I/O type
		 * and the I/O we issued while in this system call
		 * collided with normal I/O operations... we'll
		 * delay in order to mitigate the impact of this
		 * task on the normal operation of the system
		 */
		throttle_lowpri_io(1);
	}
	if (__probable(code != 180))
		KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, 
			BSDDBG_CODE(DBG_BSD_EXCP_SC, code) | DBG_FUNC_END,
			error, uthread->uu_rval[0], uthread->uu_rval[1], p->p_pid, 0);

	if (__improbable(!is_vfork && callp->sy_call == (sy_call_t *)execve && !error)) {
		pal_execve_return(thread);
	}

	thread_exception_return();
	/* NOTREACHED */
}
Example #12
0
void
unix_syscall64(x86_saved_state_t *state)
{
	thread_t	thread;
	void			*vt;
	unsigned int	code;
	struct sysent	*callp;
	int		args_in_regs;
	boolean_t	args_start_at_rdi;
	int		error;
	struct proc	*p;
	struct uthread	*uthread;
	x86_saved_state64_t *regs;

	assert(is_saved_state64(state));
	regs = saved_state64(state);
#if	DEBUG
	if (regs->rax == 0x2000800)
		thread_exception_return();
#endif
	thread = current_thread();
	uthread = get_bsdthread_info(thread);

	/* Get the approriate proc; may be different from task's for vfork() */
	if (__probable(!(uthread->uu_flag & UT_VFORK)))
		p = (struct proc *)get_bsdtask_info(current_task());
	else 
		p = current_proc();

	/* Verify that we are not being called from a task without a proc */
	if (__improbable(p == NULL)) {
		regs->rax = EPERM;
		regs->isf.rflags |= EFL_CF;
		task_terminate_internal(current_task());
		thread_exception_return();
		/* NOTREACHED */
	}

	code = regs->rax & SYSCALL_NUMBER_MASK;
	DEBUG_KPRINT_SYSCALL_UNIX(
		"unix_syscall64: code=%d(%s) rip=%llx\n",
		code, syscallnames[code >= NUM_SYSENT ? 63 : code], regs->isf.rip);
	callp = (code >= NUM_SYSENT) ? &sysent[63] : &sysent[code];

	vt = (void *)uthread->uu_arg;

	if (__improbable(callp == sysent)) {
	        /*
		 * indirect system call... system call number
		 * passed as 'arg0'
		 */
		code = regs->rdi;
		callp = (code >= NUM_SYSENT) ? &sysent[63] : &sysent[code];
		args_start_at_rdi = FALSE;
		args_in_regs = 5;
	} else {
		args_start_at_rdi = TRUE;
		args_in_regs = 6;
	}

	if (callp->sy_narg != 0) {
		assert(callp->sy_narg <= 8); /* size of uu_arg */

		args_in_regs = MIN(args_in_regs, callp->sy_narg);
		memcpy(vt, args_start_at_rdi ? &regs->rdi : &regs->rsi, args_in_regs * sizeof(syscall_arg_t));


		if (code != 180) {
			uint64_t *ip = (uint64_t *)vt;

			KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, 
				BSDDBG_CODE(DBG_BSD_EXCP_SC, code) | DBG_FUNC_START,
				(int)(*ip), (int)(*(ip+1)), (int)(*(ip+2)), (int)(*(ip+3)), 0);
		}

		if (__improbable(callp->sy_narg > args_in_regs)) {
			int copyin_count;

			copyin_count = (callp->sy_narg - args_in_regs) * sizeof(syscall_arg_t);

			error = copyin((user_addr_t)(regs->isf.rsp + sizeof(user_addr_t)), (char *)&uthread->uu_arg[args_in_regs], copyin_count);
			if (error) {
				regs->rax = error;
				regs->isf.rflags |= EFL_CF;
				thread_exception_return();
				/* NOTREACHED */
			}
		}
	} else
		KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
			BSDDBG_CODE(DBG_BSD_EXCP_SC, code) | DBG_FUNC_START,
			0, 0, 0, 0, 0);

	/*
	 * Delayed binding of thread credential to process credential, if we
	 * are not running with an explicitly set thread credential.
	 */
	kauth_cred_uthread_update(uthread, p);

	uthread->uu_rval[0] = 0;
	uthread->uu_rval[1] = 0;
	uthread->uu_flag |= UT_NOTCANCELPT;
	uthread->syscall_code = code;

#ifdef JOE_DEBUG
        uthread->uu_iocount = 0;
        uthread->uu_vpindex = 0;
#endif

	AUDIT_SYSCALL_ENTER(code, p, uthread);
	error = (*(callp->sy_call))((void *) p, vt, &(uthread->uu_rval[0]));
	AUDIT_SYSCALL_EXIT(code, p, uthread, error);

#ifdef JOE_DEBUG
        if (uthread->uu_iocount)
               printf("system call returned with uu_iocount != 0\n");
#endif

#if CONFIG_DTRACE
	uthread->t_dtrace_errno = error;
#endif /* CONFIG_DTRACE */
	
	if (__improbable(error == ERESTART)) {
		/*
		 * all system calls come through via the syscall instruction
		 * in 64 bit mode... its 2 bytes in length
		 * move the user's pc back to repeat the syscall:
		 */
		pal_syscall_restart( thread, state );
	}
	else if (error != EJUSTRETURN) {
		if (__improbable(error)) {
			regs->rax = error;
			regs->isf.rflags |= EFL_CF;	/* carry bit */
		} else { /* (not error) */

			switch (callp->sy_return_type) {
			case _SYSCALL_RET_INT_T:
				regs->rax = uthread->uu_rval[0];
				regs->rdx = uthread->uu_rval[1];
				break;
			case _SYSCALL_RET_UINT_T:
				regs->rax = ((u_int)uthread->uu_rval[0]);
				regs->rdx = ((u_int)uthread->uu_rval[1]);
				break;
			case _SYSCALL_RET_OFF_T:
			case _SYSCALL_RET_ADDR_T:
			case _SYSCALL_RET_SIZE_T:
			case _SYSCALL_RET_SSIZE_T:
			case _SYSCALL_RET_UINT64_T:
			        regs->rax = *((uint64_t *)(&uthread->uu_rval[0]));
				regs->rdx = 0;
				break;
			case _SYSCALL_RET_NONE:
				break;
			default:
				panic("unix_syscall: unknown return type");
				break;
			}
			regs->isf.rflags &= ~EFL_CF;
		} 
	}

	DEBUG_KPRINT_SYSCALL_UNIX(
		"unix_syscall64: error=%d retval=(%llu,%llu)\n",
		error, regs->rax, regs->rdx);
	
	uthread->uu_flag &= ~UT_NOTCANCELPT;

	if (__improbable(uthread->uu_lowpri_window)) {
	        /*
		 * task is marked as a low priority I/O type
		 * and the I/O we issued while in this system call
		 * collided with normal I/O operations... we'll
		 * delay in order to mitigate the impact of this
		 * task on the normal operation of the system
		 */
		throttle_lowpri_io(1);
	}
	if (__probable(code != 180))
		KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, 
			BSDDBG_CODE(DBG_BSD_EXCP_SC, code) | DBG_FUNC_END,
			error, uthread->uu_rval[0], uthread->uu_rval[1], p->p_pid, 0);

	thread_exception_return();
	/* NOTREACHED */
}