Example #1
0
void sync_sensor_state(struct ssp_data *data)
{
	unsigned char uBuf[2] = {0,};
	unsigned int uSensorCnt;
/* umfa.ssp
	int iRet = 0;
	proximity_open_calibration(data);
	iRet = set_hw_offset(data);
	if (iRet < 0) {
		pr_err("[SSP]: %s - set_hw_offset failed\n", __func__);
	}
*/
	udelay(10);

	for (uSensorCnt = 0; uSensorCnt < (SENSOR_MAX - 1); uSensorCnt++) {
		if (atomic_read(&data->aSensorEnable) & (1 << uSensorCnt)) {
			uBuf[1] = (u8)get_msdelay(data->adDelayBuf[uSensorCnt]);
			uBuf[0] = (u8)get_delay_cmd(uBuf[1]);
			send_instruction(data, ADD_SENSOR, uSensorCnt, uBuf, 2);
			udelay(10);
		}
	}

	if (data->bProximityRawEnabled == true) {
		uBuf[0] = 1;
		uBuf[1] = 20;
		send_instruction(data, ADD_SENSOR, PROXIMITY_RAW, uBuf, 2);
	}
}
Example #2
0
static void change_sensor_delay(struct ssp_data *data,
	int iSensorType, int64_t dNewDelay)
{
	u8 uBuf[2];
	int64_t dTempDelay = data->adDelayBuf[iSensorType];

	data->adDelayBuf[iSensorType] = dNewDelay;

	if (iSensorType == ORIENTATION_SENSOR)
		iSensorType = ACCELEROMETER_SENSOR;

	switch (data->aiCheckStatus[iSensorType]) {
	case ADD_SENSOR_STATE:
		ssp_dbg("[SSP]: %s - add %u, New = %lldns\n",
			 __func__, 1 << iSensorType, dNewDelay);

		uBuf[1] = (u8)get_msdelay(dNewDelay);
		uBuf[0] = (u8)get_delay_cmd(uBuf[1]);
		send_instruction(data, ADD_SENSOR, iSensorType, uBuf, 2);

		data->aiCheckStatus[iSensorType] = RUNNING_SENSOR_STATE;

		if (iSensorType == PROXIMITY_SENSOR) {
			input_report_abs(data->prox_input_dev, ABS_DISTANCE, 1);
			input_sync(data->prox_input_dev);
		}
		break;
	case RUNNING_SENSOR_STATE:
		if (dTempDelay == data->adDelayBuf[iSensorType])
			break;

		ssp_dbg("[SSP]: %s - Change %u, New = %lldns\n",
			__func__, 1 << iSensorType, dNewDelay);

		uBuf[1] = (u8)get_msdelay(dNewDelay);
		uBuf[0] = (u8)get_delay_cmd(uBuf[1]);
		send_instruction(data, CHANGE_DELAY, iSensorType, uBuf, 2);
		break;
	default:
		data->aiCheckStatus[iSensorType] = ADD_SENSOR_STATE;
	}
}
Example #3
0
static int ssp_remove_sensor(struct ssp_data *data,
	unsigned int uChangedSensor, unsigned int uNewEnable)
{
	u8 uBuf[2];
	int64_t dSensorDelay = data->adDelayBuf[uChangedSensor];

	ssp_dbg("[SSP]: %s - remove sensor = %d, current state = %d\n",
		__func__, (1 << uChangedSensor), uNewEnable);

	data->adDelayBuf[uChangedSensor] = DEFUALT_POLLING_DELAY;

	if (data->aiCheckStatus[uChangedSensor] == INITIALIZATION_STATE) {
		data->aiCheckStatus[uChangedSensor] = NO_SENSOR_STATE;
		if (uChangedSensor == ACCELEROMETER_SENSOR)
			accel_open_calibration(data);
		else if (uChangedSensor == GYROSCOPE_SENSOR)
			gyro_open_calibration(data);
		else if (uChangedSensor == PRESSURE_SENSOR)
			pressure_open_calibration(data);
		else if (uChangedSensor == PROXIMITY_SENSOR)
			proximity_open_calibration(data);
		return 0;
	} else if (uChangedSensor == ORIENTATION_SENSOR) {
		if (!(atomic_read(&data->aSensorEnable)
			& (1 << ACCELEROMETER_SENSOR)))
			uChangedSensor = ACCELEROMETER_SENSOR;
		else {
			change_sensor_delay(data, ACCELEROMETER_SENSOR,
				data->adDelayBuf[ACCELEROMETER_SENSOR]);
			return 0;
		}
	} else if (uChangedSensor == ACCELEROMETER_SENSOR) {
		if (atomic_read(&data->aSensorEnable)
			& (1 << ORIENTATION_SENSOR)) {
			change_sensor_delay(data, ORIENTATION_SENSOR,
				data->adDelayBuf[ORIENTATION_SENSOR]);
			return 0;
		}
	}

	if (!uNewEnable) {
		if (data->bCheckSuspend == false) {
			disable_debug_timer(data);
			data->bDebugEnabled = false;
		}
	}

	uBuf[1] = (u8)get_msdelay(dSensorDelay);
	uBuf[0] = (u8)get_delay_cmd(uBuf[1]);

	send_instruction(data, REMOVE_SENSOR, uChangedSensor, uBuf, 2);
	data->aiCheckStatus[uChangedSensor] = NO_SENSOR_STATE;
	return 0;
}
Example #4
0
static void disable_accel_for_cal(struct ssp_data *data, int iDelayChanged)
{
	u8 uBuf[2] = {0, 10};

	if (atomic_read(&data->aSensorEnable) & (1 << ACCELEROMETER_SENSOR)) {
		uBuf[1] = get_msdelay(data->adDelayBuf[ACCELEROMETER_SENSOR]);
		uBuf[0] = get_delay_cmd(uBuf[1]);
		if (iDelayChanged)
			send_instruction(data, CHANGE_DELAY,
				ACCELEROMETER_SENSOR, uBuf, 2);
	} else {
		send_instruction(data, REMOVE_SENSOR,
			ACCELEROMETER_SENSOR, uBuf, 2);
	}
}
void sync_sensor_state(struct ssp_data *data)
{
	unsigned char uBuf[2] = {0,};
	unsigned int uSensorCnt;
	int iRet = 0;
	iRet = set_hw_offset(data);
	if (iRet < 0) {
		pr_err("[SSP]: %s - set_hw_offset failed\n", __func__);
	}
	iRet = set_gyro_cal(data);
	if (iRet < 0) {
		pr_err("[SSP]: %s - set_gyro_cal failed\n", __func__);
	}
	iRet = set_accel_cal(data);
	if (iRet < 0) {
		pr_err("[SSP]: %s - set_accel_cal failed\n", __func__);
	}
	udelay(10);

	for (uSensorCnt = 0; uSensorCnt < (SENSOR_MAX - 1); uSensorCnt++) {
		if (atomic_read(&data->aSensorEnable) & (1 << uSensorCnt)) {
			uBuf[1] = (u8)get_msdelay(data->adDelayBuf[uSensorCnt]);
			uBuf[0] = (u8)get_delay_cmd(uBuf[1]);
			send_instruction(data, ADD_SENSOR, uSensorCnt, uBuf, 2);
			udelay(10);
		}
	}

	if (data->bProximityRawEnabled == true) {
		uBuf[0] = 1;
		uBuf[1] = 20;
		send_instruction(data, ADD_SENSOR, PROXIMITY_RAW, uBuf, 2);
	}

	set_proximity_threshold(data, data->uProxHiThresh,data->uProxLoThresh);
	


	data->bMcuDumpMode = sec_debug_is_enabled();
	iRet = ssp_send_cmd(data, MSG2SSP_AP_MCU_SET_DUMPMODE,data->bMcuDumpMode);
	if (iRet < 0) {
		pr_err("[SSP]: %s - MSG2SSP_AP_MCU_SET_DUMPMODE failed\n", __func__);
	}


}
Example #6
0
static int ssp_remove_sensor(struct ssp_data *data,
	unsigned int uChangedSensor, unsigned int uNewEnable)
{
	u8 uBuf[2];
	int64_t dSensorDelay = data->adDelayBuf[uChangedSensor];

	ssp_dbg("[SSP]: %s - remove sensor = %d, current state = %d\n",
		__func__, (1 << uChangedSensor), uNewEnable);

	data->adDelayBuf[uChangedSensor] = DEFUALT_POLLING_DELAY;

        if (uChangedSensor == ORIENTATION_SENSOR) {
		if (!(atomic_read(&data->aSensorEnable)
			& (1 << ACCELEROMETER_SENSOR))) {
			uChangedSensor = ACCELEROMETER_SENSOR;
		} else {
			change_sensor_delay(data, ACCELEROMETER_SENSOR,
				data->adDelayBuf[ACCELEROMETER_SENSOR]);
			return 0;
		}
	} else if (uChangedSensor == ACCELEROMETER_SENSOR) {
		if (atomic_read(&data->aSensorEnable)
			& (1 << ORIENTATION_SENSOR)) {
			change_sensor_delay(data, ORIENTATION_SENSOR,
				data->adDelayBuf[ORIENTATION_SENSOR]);
			return 0;
		}
	}

	if (!uNewEnable) {
		if (data->bCheckSuspend == false)
			data->bDebugEnabled = false;
	}

	if (atomic_read(&data->aSensorEnable) & (1 << uChangedSensor)) {
		uBuf[1] = (u8)get_msdelay(dSensorDelay);
		uBuf[0] = (u8)get_delay_cmd(uBuf[1]);

		send_instruction(data, REMOVE_SENSOR, uChangedSensor, uBuf, 2);
	}
	data->aiCheckStatus[uChangedSensor] = NO_SENSOR_STATE;
	return 0;
}
Example #7
0
void sync_sensor_state(struct ssp_data *data)
{
	unsigned char uBuf[2] = {0,};
	unsigned int uSensorCnt;

	set_proximity_threshold(data);

	udelay(10);

	for (uSensorCnt = 0; uSensorCnt < (SENSOR_MAX - 1); uSensorCnt++) {
		if (atomic_read(&data->aSensorEnable) & (1 << uSensorCnt)) {
			uBuf[1] = (u8)get_msdelay(data->adDelayBuf[uSensorCnt]);
			uBuf[0] = (u8)get_delay_cmd(uBuf[1]);
			send_instruction(data, ADD_SENSOR, uSensorCnt, uBuf, 2);
			udelay(10);
		}
	}

	data->uTimeOutCnt = 0;
	data->uBusyCnt = 0;
}
Example #8
0
void sync_sensor_state(struct ssp_data *data)
{
	unsigned char uBuf[2] = {0,};
	unsigned int uSensorCnt;

	proximity_open_calibration(data);

	udelay(10);

	for (uSensorCnt = 0; uSensorCnt < (SENSOR_MAX - 1); uSensorCnt++) {
		if (atomic_read(&data->aSensorEnable) & (1 << uSensorCnt)) {
			uBuf[1] = (u8)get_msdelay(data->adDelayBuf[uSensorCnt]);
			uBuf[0] = (u8)get_delay_cmd(uBuf[1]);
			send_instruction(data, ADD_SENSOR, uSensorCnt, uBuf, 2);
			udelay(10);
		}
	}

	if (data->bProximityRawEnabled == true) {
		uBuf[0] = 1;
		uBuf[1] = 20;
		send_instruction(data, ADD_SENSOR, PROXIMITY_RAW, uBuf, 2);
	}
}
static void change_sensor_delay(struct ssp_data *data,
	int iSensorType, int64_t dNewDelay)
{
	u8 uBuf[2];
	unsigned int uNewEnable = 0;
	int64_t dTempDelay = data->adDelayBuf[iSensorType];

	if (!(atomic_read(&data->aSensorEnable) & (1 << iSensorType))) {
		data->aiCheckStatus[iSensorType] = NO_SENSOR_STATE;
		return;
	}

	data->adDelayBuf[iSensorType] = dNewDelay;

	if (iSensorType == ORIENTATION_SENSOR)
		iSensorType = ACCELEROMETER_SENSOR;

	switch (data->aiCheckStatus[iSensorType]) {
	case ADD_SENSOR_STATE:
		ssp_dbg("[SSP]: %s - add %u, New = %lldns\n",
			 __func__, 1 << iSensorType, dNewDelay);

		uBuf[1] = (u8)get_msdelay(dNewDelay);
		uBuf[0] = (u8)get_delay_cmd(uBuf[1]);

		if (send_instruction(data, ADD_SENSOR, iSensorType, uBuf, 2)
			!= SUCCESS) {
			uNewEnable =
				(unsigned int)atomic_read(&data->aSensorEnable)
				& (~(unsigned int)(1 << iSensorType));
			atomic_set(&data->aSensorEnable, uNewEnable);

			data->aiCheckStatus[iSensorType] = NO_SENSOR_STATE;
			data->uMissSensorCnt++;
			break;
		}

		data->aiCheckStatus[iSensorType] = RUNNING_SENSOR_STATE;

		if (iSensorType == PROXIMITY_SENSOR) {
			proximity_open_lcd_ldi(data);
			proximity_open_calibration(data);

			input_report_abs(data->prox_input_dev, ABS_DISTANCE, 1);
			input_sync(data->prox_input_dev);
		}
		break;
	case RUNNING_SENSOR_STATE:
		if (get_msdelay(dTempDelay)
			== get_msdelay(data->adDelayBuf[iSensorType]))
			break;

		ssp_dbg("[SSP]: %s - Change %u, New = %lldns\n",
			__func__, 1 << iSensorType, dNewDelay);

		uBuf[1] = (u8)get_msdelay(dNewDelay);
		uBuf[0] = (u8)get_delay_cmd(uBuf[1]);
		send_instruction(data, CHANGE_DELAY, iSensorType, uBuf, 2);

		break;
	default:
		data->aiCheckStatus[iSensorType] = ADD_SENSOR_STATE;
	}
}
Example #10
0
static int ssp_remove_sensor(struct ssp_data *data,
	unsigned int uChangedSensor, unsigned int uNewEnable)
{
	u8 uBuf[2];
	int iRet = 0;
	int64_t dSensorDelay = data->adDelayBuf[uChangedSensor];

	ssp_dbg("[SSP]: %s - remove sensor = %d, current state = %d\n",
		__func__, (1 << uChangedSensor), uNewEnable);

	data->adDelayBuf[uChangedSensor] = DEFUALT_POLLING_DELAY;

	if (data->aiCheckStatus[uChangedSensor] == INITIALIZATION_STATE) {
		data->aiCheckStatus[uChangedSensor] = NO_SENSOR_STATE;
		if (uChangedSensor == ACCELEROMETER_SENSOR)
			accel_open_calibration(data);
		else if (uChangedSensor == GYROSCOPE_SENSOR)
			gyro_open_calibration(data);
		else if (uChangedSensor == PRESSURE_SENSOR)
			pressure_open_calibration(data);
		else if (uChangedSensor == PROXIMITY_SENSOR) {
			proximity_open_lcd_ldi(data);
			proximity_open_calibration(data);
		} else if (uChangedSensor == GEOMAGNETIC_SENSOR) {
			iRet = mag_open_hwoffset(data);
			if (iRet < 0)
				pr_err("[SSP]: %s - mag_open_hw_offset"
				" failed, %d\n", __func__, iRet);

			iRet = set_hw_offset(data);
			if (iRet < 0) {
				pr_err("[SSP]: %s - set_hw_offset failed\n",
					__func__);
			}
		}
		return 0;
	} else if (uChangedSensor == ORIENTATION_SENSOR) {
		if (!(atomic_read(&data->aSensorEnable)
			& (1 << ACCELEROMETER_SENSOR))) {
			uChangedSensor = ACCELEROMETER_SENSOR;
		} else {
			change_sensor_delay(data, ACCELEROMETER_SENSOR,
				data->adDelayBuf[ACCELEROMETER_SENSOR]);
			return 0;
		}
	} else if (uChangedSensor == ACCELEROMETER_SENSOR) {
		if (atomic_read(&data->aSensorEnable)
			& (1 << ORIENTATION_SENSOR)) {
			change_sensor_delay(data, ORIENTATION_SENSOR,
				data->adDelayBuf[ORIENTATION_SENSOR]);
			return 0;
		}
	} else if (uChangedSensor == GEOMAGNETIC_SENSOR) {
		if (mag_store_hwoffset(data))
			pr_err("mag_store_hwoffset success\n");
	}

	if (atomic_read(&data->aSensorEnable) & (1 << uChangedSensor)) {
		uBuf[1] = (u8)get_msdelay(dSensorDelay);
		uBuf[0] = (u8)get_delay_cmd(uBuf[1]);

		send_instruction(data, REMOVE_SENSOR, uChangedSensor, uBuf, 2);
	}
	data->aiCheckStatus[uChangedSensor] = NO_SENSOR_STATE;
	return 0;
}