int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) { int err; while (pg_start < pg_end) { struct dnode_of_data dn; pgoff_t end_offset, count; set_new_dnode(&dn, inode, NULL, NULL, 0); err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE); if (err) { if (err == -ENOENT) { pg_start++; continue; } return err; } end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode)); count = min(end_offset - dn.ofs_in_node, pg_end - pg_start); f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset); truncate_data_blocks_range(&dn, count); f2fs_put_dnode(&dn); pg_start += count; } return 0; }
int truncate_blocks(struct inode *inode, u64 from, bool lock) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); unsigned int blocksize = inode->i_sb->s_blocksize; struct dnode_of_data dn; pgoff_t free_from; int count = 0, err = 0; struct page *ipage; trace_f2fs_truncate_blocks_enter(inode, from); free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1); if (lock) f2fs_lock_op(sbi); ipage = get_node_page(sbi, inode->i_ino); if (IS_ERR(ipage)) { err = PTR_ERR(ipage); goto out; } if (f2fs_has_inline_data(inode)) { f2fs_put_page(ipage, 1); goto out; } set_new_dnode(&dn, inode, ipage, NULL, 0); err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE); if (err) { if (err == -ENOENT) goto free_next; goto out; } count = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode)); count -= dn.ofs_in_node; f2fs_bug_on(sbi, count < 0); if (dn.ofs_in_node || IS_INODE(dn.node_page)) { truncate_data_blocks_range(&dn, count); free_from += count; } f2fs_put_dnode(&dn); free_next: err = truncate_inode_blocks(inode, free_from); out: if (lock) f2fs_unlock_op(sbi); /* lastly zero out the first data page */ if (!err) err = truncate_partial_data_page(inode, from); trace_f2fs_truncate_blocks_exit(inode, err); return err; }
static void __allocate_data_blocks(struct inode *inode, loff_t offset, size_t count) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct dnode_of_data dn; u64 start = F2FS_BYTES_TO_BLK(offset); u64 len = F2FS_BYTES_TO_BLK(count); bool allocated; u64 end_offset; while (len) { f2fs_balance_fs(sbi); f2fs_lock_op(sbi); /* When reading holes, we need its node page */ set_new_dnode(&dn, inode, NULL, NULL, 0); if (get_dnode_of_data(&dn, start, ALLOC_NODE)) goto out; allocated = false; end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode)); while (dn.ofs_in_node < end_offset && len) { block_t blkaddr; if (unlikely(f2fs_cp_error(sbi))) goto sync_out; blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node); if (blkaddr == NULL_ADDR || blkaddr == NEW_ADDR) { if (__allocate_data_block(&dn)) goto sync_out; allocated = true; } len--; start++; dn.ofs_in_node++; } if (allocated) sync_inode_page(&dn); f2fs_put_dnode(&dn); f2fs_unlock_op(sbi); } return; sync_out: if (allocated) sync_inode_page(&dn); f2fs_put_dnode(&dn); out: f2fs_unlock_op(sbi); return; }
static int find_in_level(struct f2fs_sb_info *sbi,struct f2fs_node *dir, unsigned int level, struct dentry *de) { unsigned int nbucket, nblock; unsigned int bidx, end_block; struct f2fs_dir_entry *dentry = NULL; struct dnode_of_data dn; void *dentry_blk; int max_slots = 214; nid_t ino = le32_to_cpu(dir->footer.ino); f2fs_hash_t namehash; unsigned int dir_level = dir->i.i_dir_level; int ret = 0; namehash = f2fs_dentry_hash(de->name, de->len); nbucket = dir_buckets(level, dir_level); nblock = bucket_blocks(level); bidx = dir_block_index(level, dir_level, le32_to_cpu(namehash) % nbucket); end_block = bidx + nblock; dentry_blk = calloc(BLOCK_SZ, 1); ASSERT(dentry_blk); memset(&dn, 0, sizeof(dn)); for (; bidx < end_block; bidx++) { /* Firstly, we should know direct node of target data blk */ if (dn.node_blk && dn.node_blk != dn.inode_blk) free(dn.node_blk); set_new_dnode(&dn, dir, NULL, ino); get_dnode_of_data(sbi, &dn, bidx, LOOKUP_NODE); if (dn.data_blkaddr == NULL_ADDR) continue; ret = dev_read_block(dentry_blk, dn.data_blkaddr); ASSERT(ret >= 0); dentry = find_in_block(dentry_blk, de->name, de->len, namehash, &max_slots); if (dentry) { ret = 1; de->ino = le32_to_cpu(dentry->ino); break; } } if (dn.node_blk && dn.node_blk != dn.inode_blk) free(dn.node_blk); free(dentry_blk); return ret; }
int do_write_data_page(struct f2fs_io_info *fio) { struct page *page = fio->page; struct inode *inode = page->mapping->host; struct dnode_of_data dn; int err = 0; set_new_dnode(&dn, inode, NULL, NULL, 0); err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE); if (err) return err; fio->blk_addr = dn.data_blkaddr; /* This page is already truncated */ if (fio->blk_addr == NULL_ADDR) { ClearPageUptodate(page); goto out_writepage; } if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) { fio->encrypted_page = f2fs_encrypt(inode, fio->page); if (IS_ERR(fio->encrypted_page)) { err = PTR_ERR(fio->encrypted_page); goto out_writepage; } } set_page_writeback(page); /* * If current allocation needs SSR, * it had better in-place writes for updated data. */ if (unlikely(fio->blk_addr != NEW_ADDR && !is_cold_data(page) && need_inplace_update(inode))) { rewrite_data_page(fio); set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE); trace_f2fs_do_write_data_page(page, IPU); } else { write_data_page(&dn, fio); set_data_blkaddr(&dn); f2fs_update_extent_cache(&dn); trace_f2fs_do_write_data_page(page, OPU); set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE); if (page->index == 0) set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN); } out_writepage: f2fs_put_dnode(&dn); return err; }
int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index) { bool need_put = dn->inode_page ? false : true; int err; err = get_dnode_of_data(dn, index, ALLOC_NODE); if (err) return err; if (dn->data_blkaddr == NULL_ADDR) err = reserve_new_block(dn); if (err || need_put) f2fs_put_dnode(dn); return err; }
static int expand_inode_data(struct inode *inode, loff_t offset, loff_t len, int mode) { pgoff_t index, pg_start, pg_end; loff_t new_size = i_size_read(inode); loff_t off_start, off_end; struct dnode_of_data dn; int ret, ilock; struct hmfs_sb_info *sbi = HMFS_SB(inode->i_sb); ret = inode_newsize_ok(inode, (len + offset)); if (ret) return ret; pg_start = ((u64) offset) >> HMFS_PAGE_SIZE_BITS; pg_end = ((u64) offset + len) >> HMFS_PAGE_SIZE_BITS; off_start = offset & (HMFS_PAGE_SIZE - 1); off_end = (offset + len) & (HMFS_PAGE_SIZE - 1); for (index = pg_start; index <= pg_end; index++) { ilock = mutex_lock_op(sbi); set_new_dnode(&dn, inode, NULL, NULL, 0); ret = get_dnode_of_data(&dn, index, ALLOC_NODE); mutex_unlock_op(sbi, ilock); if (ret) { break; } if (pg_start == pg_end) new_size = offset + len; else if (index == pg_start && off_start) new_size = (index + 1) << HMFS_PAGE_SIZE_BITS; else if (index == pg_end) new_size = (index << HMFS_PAGE_SIZE_BITS) + off_end; else new_size += HMFS_PAGE_SIZE; } if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size) { mark_size_dirty(inode, new_size); } return ret; }
int truncate_hole(struct inode *inode, pgoff_t start, pgoff_t end) { pgoff_t index; int err; struct dnode_of_data dn; for (index = start; index < end; index++) { set_new_dnode(&dn, inode, NULL, NULL, 0); err = get_dnode_of_data(&dn, index, LOOKUP_NODE); if (err) { if (err == -ENODATA) continue; return err; } truncate_data_blocks_range(&dn, 1); } return 0; }
int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end) { pgoff_t index; int err; for (index = pg_start; index < pg_end; index++) { struct dnode_of_data dn; set_new_dnode(&dn, inode, NULL, NULL, 0); err = get_dnode_of_data(&dn, index, LOOKUP_NODE); if (err) { if (err == -ENOENT) continue; return err; } if (dn.data_blkaddr != NULL_ADDR) truncate_data_blocks_range(&dn, 1); f2fs_put_dnode(&dn); } return 0; }
static int truncate_blocks(struct inode *inode, u64 from) { struct dnode_of_data dn; struct hmfs_sb_info *sbi = HMFS_SB(inode->i_sb); int count, err; u64 free_from; int ilock; free_from = (from + HMFS_PAGE_SIZE - 1) >> HMFS_PAGE_SIZE_BITS; ilock = mutex_lock_op(sbi); set_new_dnode(&dn, inode, NULL, NULL, 0); err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE); if (err) { goto free_next; } if (!dn.level) count = NORMAL_ADDRS_PER_INODE; else count = ADDRS_PER_BLOCK; count -= dn.ofs_in_node; BUG_ON(count < 0); if (dn.ofs_in_node || !dn.level) { truncate_data_blocks_range(&dn, count); free_from += count; } free_next:err = truncate_inode_blocks(inode, free_from); truncate_partial_data_page(inode, from); mutex_unlock_op(sbi, ilock); return err; }
static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct dnode_of_data dn; pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE; int ret = 0; for (; end < nrpages; start++, end++) { block_t new_addr, old_addr; f2fs_lock_op(sbi); set_new_dnode(&dn, inode, NULL, NULL, 0); ret = get_dnode_of_data(&dn, end, LOOKUP_NODE_RA); if (ret && ret != -ENOENT) { goto out; } else if (ret == -ENOENT) { new_addr = NULL_ADDR; } else { new_addr = dn.data_blkaddr; truncate_data_blocks_range(&dn, 1); f2fs_put_dnode(&dn); } if (new_addr == NULL_ADDR) { set_new_dnode(&dn, inode, NULL, NULL, 0); ret = get_dnode_of_data(&dn, start, LOOKUP_NODE_RA); if (ret && ret != -ENOENT) { goto out; } else if (ret == -ENOENT) { f2fs_unlock_op(sbi); continue; } if (dn.data_blkaddr == NULL_ADDR) { f2fs_put_dnode(&dn); f2fs_unlock_op(sbi); continue; } else { truncate_data_blocks_range(&dn, 1); } f2fs_put_dnode(&dn); } else { struct page *ipage; ipage = get_node_page(sbi, inode->i_ino); if (IS_ERR(ipage)) { ret = PTR_ERR(ipage); goto out; } set_new_dnode(&dn, inode, ipage, NULL, 0); ret = f2fs_reserve_block(&dn, start); if (ret) goto out; old_addr = dn.data_blkaddr; if (old_addr != NEW_ADDR && new_addr == NEW_ADDR) { dn.data_blkaddr = NULL_ADDR; f2fs_update_extent_cache(&dn); invalidate_blocks(sbi, old_addr); dn.data_blkaddr = new_addr; set_data_blkaddr(&dn); } else if (new_addr != NEW_ADDR) { struct node_info ni; get_node_info(sbi, dn.nid, &ni); f2fs_replace_block(sbi, &dn, old_addr, new_addr, ni.version, true); } f2fs_put_dnode(&dn); } f2fs_unlock_op(sbi); } return 0; out: f2fs_unlock_op(sbi); return ret; }
int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) { struct inode *inode = file->f_mapping->host; struct f2fs_inode_info *fi = F2FS_I(inode); struct f2fs_sb_info *sbi = F2FS_I_SB(inode); nid_t ino = inode->i_ino; int ret = 0; bool need_cp = false; struct writeback_control wbc = { .sync_mode = WB_SYNC_ALL, .nr_to_write = LONG_MAX, .for_reclaim = 0, }; if (unlikely(f2fs_readonly(inode->i_sb))) return 0; trace_f2fs_sync_file_enter(inode); /* if fdatasync is triggered, let's do in-place-update */ if (get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks) set_inode_flag(fi, FI_NEED_IPU); ret = filemap_write_and_wait_range(inode->i_mapping, start, end); clear_inode_flag(fi, FI_NEED_IPU); if (ret) { trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret); return ret; } /* if the inode is dirty, let's recover all the time */ if (!datasync && is_inode_flag_set(fi, FI_DIRTY_INODE)) { update_inode_page(inode); goto go_write; } /* * if there is no written data, don't waste time to write recovery info. */ if (!is_inode_flag_set(fi, FI_APPEND_WRITE) && !exist_written_data(sbi, ino, APPEND_INO)) { /* it may call write_inode just prior to fsync */ if (need_inode_page_update(sbi, ino)) goto go_write; if (is_inode_flag_set(fi, FI_UPDATE_WRITE) || exist_written_data(sbi, ino, UPDATE_INO)) goto flush_out; goto out; } go_write: /* guarantee free sections for fsync */ f2fs_balance_fs(sbi); /* * Both of fdatasync() and fsync() are able to be recovered from * sudden-power-off. */ down_read(&fi->i_sem); need_cp = need_do_checkpoint(inode); up_read(&fi->i_sem); if (need_cp) { /* all the dirty node pages should be flushed for POR */ ret = f2fs_sync_fs(inode->i_sb, 1); /* * We've secured consistency through sync_fs. Following pino * will be used only for fsynced inodes after checkpoint. */ try_to_fix_pino(inode); clear_inode_flag(fi, FI_APPEND_WRITE); clear_inode_flag(fi, FI_UPDATE_WRITE); goto out; } sync_nodes: sync_node_pages(sbi, ino, &wbc); /* if cp_error was enabled, we should avoid infinite loop */ if (unlikely(f2fs_cp_error(sbi))) goto out; if (need_inode_block_update(sbi, ino)) { mark_inode_dirty_sync(inode); f2fs_write_inode(inode, NULL); goto sync_nodes; } ret = wait_on_node_pages_writeback(sbi, ino); if (ret) goto out; /* once recovery info is written, don't need to tack this */ remove_dirty_inode(sbi, ino, APPEND_INO); clear_inode_flag(fi, FI_APPEND_WRITE); flush_out: remove_dirty_inode(sbi, ino, UPDATE_INO); clear_inode_flag(fi, FI_UPDATE_WRITE); ret = f2fs_issue_flush(sbi); out: trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret); f2fs_trace_ios(NULL, 1); return ret; } static pgoff_t __get_first_dirty_index(struct address_space *mapping, pgoff_t pgofs, int whence) { struct pagevec pvec; int nr_pages; if (whence != SEEK_DATA) return 0; /* find first dirty page index */ pagevec_init(&pvec, 0); nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs, PAGECACHE_TAG_DIRTY, 1); pgofs = nr_pages ? pvec.pages[0]->index : LONG_MAX; pagevec_release(&pvec); return pgofs; } static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs, int whence) { switch (whence) { case SEEK_DATA: if ((blkaddr == NEW_ADDR && dirty == pgofs) || (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR)) return true; break; case SEEK_HOLE: if (blkaddr == NULL_ADDR) return true; break; } return false; } static inline int unsigned_offsets(struct file *file) { return file->f_mode & FMODE_UNSIGNED_OFFSET; } static loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize) { if (offset < 0 && !unsigned_offsets(file)) return -EINVAL; if (offset > maxsize) return -EINVAL; if (offset != file->f_pos) { file->f_pos = offset; file->f_version = 0; } return offset; } static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence) { struct inode *inode = file->f_mapping->host; loff_t maxbytes = inode->i_sb->s_maxbytes; struct dnode_of_data dn; pgoff_t pgofs, end_offset, dirty; loff_t data_ofs = offset; loff_t isize; int err = 0; mutex_lock(&inode->i_mutex); isize = i_size_read(inode); if (offset >= isize) goto fail; /* handle inline data case */ if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) { if (whence == SEEK_HOLE) data_ofs = isize; goto found; } pgofs = (pgoff_t)(offset >> PAGE_CACHE_SHIFT); dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence); for (; data_ofs < isize; data_ofs = pgofs << PAGE_CACHE_SHIFT) { set_new_dnode(&dn, inode, NULL, NULL, 0); err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA); if (err && err != -ENOENT) { goto fail; } else if (err == -ENOENT) { /* direct node does not exists */ if (whence == SEEK_DATA) { pgofs = PGOFS_OF_NEXT_DNODE(pgofs, F2FS_I(inode)); continue; } else { goto found; } } end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode)); /* find data/hole in dnode block */ for (; dn.ofs_in_node < end_offset; dn.ofs_in_node++, pgofs++, data_ofs = (loff_t)pgofs << PAGE_CACHE_SHIFT) { block_t blkaddr; blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node); if (__found_offset(blkaddr, dirty, pgofs, whence)) { f2fs_put_dnode(&dn); goto found; } } f2fs_put_dnode(&dn); } if (whence == SEEK_DATA) goto fail; found: if (whence == SEEK_HOLE && data_ofs > isize) data_ofs = isize; mutex_unlock(&inode->i_mutex); return vfs_setpos(file, data_ofs, maxbytes); fail: mutex_unlock(&inode->i_mutex); return -ENXIO; } static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence) { struct inode *inode = file->f_mapping->host; loff_t maxbytes = inode->i_sb->s_maxbytes; switch (whence) { case SEEK_SET: case SEEK_CUR: case SEEK_END: return generic_file_llseek_size(file, offset, whence, maxbytes); case SEEK_DATA: case SEEK_HOLE: if (offset < 0) return -ENXIO; return f2fs_seek_block(file, offset, whence); } return -EINVAL; } static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma) { struct inode *inode = file_inode(file); if (f2fs_encrypted_inode(inode)) { int err = f2fs_get_encryption_info(inode); if (err) return 0; } /* we don't need to use inline_data strictly */ if (f2fs_has_inline_data(inode)) { int err = f2fs_convert_inline_inode(inode); if (err) return err; } file_accessed(file); vma->vm_ops = &f2fs_file_vm_ops; return 0; } static int f2fs_file_open(struct inode *inode, struct file *filp) { int ret = generic_file_open(inode, filp); if (!ret && f2fs_encrypted_inode(inode)) { ret = f2fs_get_encryption_info(inode); if (ret) ret = -EACCES; } return ret; }
static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); pgoff_t pg_start, pg_end, delta, nrpages, idx; loff_t new_size; int ret; if (!S_ISREG(inode->i_mode)) return -EINVAL; new_size = i_size_read(inode) + len; if (new_size > inode->i_sb->s_maxbytes) return -EFBIG; if (offset >= i_size_read(inode)) return -EINVAL; /* insert range should be aligned to block size of f2fs. */ if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1)) return -EINVAL; f2fs_balance_fs(sbi); if (f2fs_has_inline_data(inode)) { ret = f2fs_convert_inline_inode(inode); if (ret) return ret; } ret = truncate_blocks(inode, i_size_read(inode), true); if (ret) return ret; /* write out all dirty pages from offset */ ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX); if (ret) return ret; truncate_pagecache(inode, 0, offset); pg_start = offset >> PAGE_CACHE_SHIFT; pg_end = (offset + len) >> PAGE_CACHE_SHIFT; delta = pg_end - pg_start; nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE; for (idx = nrpages - 1; idx >= pg_start && idx != -1; idx--) { struct dnode_of_data dn; struct page *ipage; block_t new_addr, old_addr; f2fs_lock_op(sbi); set_new_dnode(&dn, inode, NULL, NULL, 0); ret = get_dnode_of_data(&dn, idx, LOOKUP_NODE_RA); if (ret && ret != -ENOENT) { goto out; } else if (ret == -ENOENT) { goto next; } else if (dn.data_blkaddr == NULL_ADDR) { f2fs_put_dnode(&dn); goto next; } else { new_addr = dn.data_blkaddr; truncate_data_blocks_range(&dn, 1); f2fs_put_dnode(&dn); } ipage = get_node_page(sbi, inode->i_ino); if (IS_ERR(ipage)) { ret = PTR_ERR(ipage); goto out; } set_new_dnode(&dn, inode, ipage, NULL, 0); ret = f2fs_reserve_block(&dn, idx + delta); if (ret) goto out; old_addr = dn.data_blkaddr; f2fs_bug_on(sbi, old_addr != NEW_ADDR); if (new_addr != NEW_ADDR) { struct node_info ni; get_node_info(sbi, dn.nid, &ni); f2fs_replace_block(sbi, &dn, old_addr, new_addr, ni.version, true); } f2fs_put_dnode(&dn); next: f2fs_unlock_op(sbi); } i_size_write(inode, new_size); return 0; out: f2fs_unlock_op(sbi); return ret; }
int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page) { void *src_addr, *dst_addr; struct f2fs_io_info fio = { .sbi = F2FS_I_SB(dn->inode), .type = DATA, .rw = WRITE_SYNC | REQ_PRIO, .page = page, .encrypted_page = NULL, }; int dirty, err; f2fs_bug_on(F2FS_I_SB(dn->inode), page->index); if (!f2fs_exist_data(dn->inode)) goto clear_out; err = f2fs_reserve_block(dn, 0); if (err) return err; f2fs_wait_on_page_writeback(page, DATA); if (PageUptodate(page)) goto no_update; zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE); /* Copy the whole inline data block */ src_addr = inline_data_addr(dn->inode_page); dst_addr = kmap_atomic(page); memcpy(dst_addr, src_addr, MAX_INLINE_DATA); flush_dcache_page(page); kunmap_atomic(dst_addr); SetPageUptodate(page); no_update: set_page_dirty(page); /* clear dirty state */ dirty = clear_page_dirty_for_io(page); /* write data page to try to make data consistent */ set_page_writeback(page); fio.blk_addr = dn->data_blkaddr; write_data_page(dn, &fio); set_data_blkaddr(dn); f2fs_update_extent_cache(dn); f2fs_wait_on_page_writeback(page, DATA); if (dirty) inode_dec_dirty_pages(dn->inode); /* this converted inline_data should be recovered. */ set_inode_flag(F2FS_I(dn->inode), FI_APPEND_WRITE); /* clear inline data and flag after data writeback */ truncate_inline_inode(dn->inode_page, 0); clear_out: stat_dec_inline_inode(dn->inode); f2fs_clear_inline_inode(dn->inode); sync_inode_page(dn); f2fs_put_dnode(dn); return 0; } int f2fs_convert_inline_inode(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct dnode_of_data dn; struct page *ipage, *page; int err = 0; page = grab_cache_page(inode->i_mapping, 0); if (!page) return -ENOMEM; f2fs_lock_op(sbi); ipage = get_node_page(sbi, inode->i_ino); if (IS_ERR(ipage)) { err = PTR_ERR(ipage); goto out; } set_new_dnode(&dn, inode, ipage, ipage, 0); if (f2fs_has_inline_data(inode)) err = f2fs_convert_inline_page(&dn, page); f2fs_put_dnode(&dn); out: f2fs_unlock_op(sbi); f2fs_put_page(page, 1); return err; } int f2fs_write_inline_data(struct inode *inode, struct page *page) { void *src_addr, *dst_addr; struct dnode_of_data dn; int err; set_new_dnode(&dn, inode, NULL, NULL, 0); err = get_dnode_of_data(&dn, 0, LOOKUP_NODE); if (err) return err; if (!f2fs_has_inline_data(inode)) { f2fs_put_dnode(&dn); return -EAGAIN; } f2fs_bug_on(F2FS_I_SB(inode), page->index); f2fs_wait_on_page_writeback(dn.inode_page, NODE); src_addr = kmap_atomic(page); dst_addr = inline_data_addr(dn.inode_page); memcpy(dst_addr, src_addr, MAX_INLINE_DATA); kunmap_atomic(src_addr); set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE); set_inode_flag(F2FS_I(inode), FI_DATA_EXIST); sync_inode_page(&dn); f2fs_put_dnode(&dn); return 0; }
struct page *get_read_data_page(struct inode *inode, pgoff_t index, int rw) { struct address_space *mapping = inode->i_mapping; struct dnode_of_data dn; struct page *page; struct extent_info ei; int err; struct f2fs_io_info fio = { .sbi = F2FS_I_SB(inode), .type = DATA, .rw = rw, .encrypted_page = NULL, }; if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) return read_mapping_page(mapping, index, NULL); page = grab_cache_page(mapping, index); if (!page) return ERR_PTR(-ENOMEM); if (f2fs_lookup_extent_cache(inode, index, &ei)) { dn.data_blkaddr = ei.blk + index - ei.fofs; goto got_it; } set_new_dnode(&dn, inode, NULL, NULL, 0); err = get_dnode_of_data(&dn, index, LOOKUP_NODE); if (err) goto put_err; f2fs_put_dnode(&dn); if (unlikely(dn.data_blkaddr == NULL_ADDR)) { err = -ENOENT; goto put_err; } got_it: if (PageUptodate(page)) { unlock_page(page); return page; } /* * A new dentry page is allocated but not able to be written, since its * new inode page couldn't be allocated due to -ENOSPC. * In such the case, its blkaddr can be remained as NEW_ADDR. * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata. */ if (dn.data_blkaddr == NEW_ADDR) { zero_user_segment(page, 0, PAGE_CACHE_SIZE); SetPageUptodate(page); unlock_page(page); return page; } fio.blk_addr = dn.data_blkaddr; fio.page = page; err = f2fs_submit_page_bio(&fio); if (err) goto put_err; return page; put_err: f2fs_put_page(page, 1); return ERR_PTR(err); }
static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) { struct page *page = vmf->page; struct inode *inode = file_inode(vma->vm_file); struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); block_t old_blk_addr; struct dnode_of_data dn; int err, ilock; f2fs_balance_fs(sbi); /* F2FS backport: We replace in old kernels sb_start_pagefault(inode->i_sb) with vfs_check_frozen() * and remove the original sb_end_pagefault(inode->i_sb) after the out label * * The introduction of sb_{start,end}_pagefault() was made post-3.2 kernels by Jan Kara * and merged in commit a0e881b7c189fa2bd76c024dbff91e79511c971d. * Discussed at https://lkml.org/lkml/2012/3/5/278 * * - Alex */ vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); /* block allocation */ ilock = mutex_lock_op(sbi); set_new_dnode(&dn, inode, NULL, NULL, 0); err = get_dnode_of_data(&dn, page->index, ALLOC_NODE); if (err) { mutex_unlock_op(sbi, ilock); goto out; } old_blk_addr = dn.data_blkaddr; if (old_blk_addr == NULL_ADDR) { err = reserve_new_block(&dn); if (err) { f2fs_put_dnode(&dn); mutex_unlock_op(sbi, ilock); goto out; } } f2fs_put_dnode(&dn); mutex_unlock_op(sbi, ilock); file_update_time(vma->vm_file); lock_page(page); if (page->mapping != inode->i_mapping || page_offset(page) > i_size_read(inode) || !PageUptodate(page)) { unlock_page(page); err = -EFAULT; goto out; } /* * check to see if the page is mapped already (no holes) */ if (PageMappedToDisk(page)) goto mapped; /* page is wholly or partially inside EOF */ if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) { unsigned offset; offset = i_size_read(inode) & ~PAGE_CACHE_MASK; zero_user_segment(page, offset, PAGE_CACHE_SIZE); } set_page_dirty(page); SetPageUptodate(page); mapped: /* fill the page */ wait_on_page_writeback(page); out: return block_page_mkwrite_return(err); }
int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page) { struct f2fs_io_info fio = { .sbi = F2FS_I_SB(dn->inode), .type = DATA, .op = REQ_OP_WRITE, .op_flags = REQ_SYNC | REQ_PRIO, .page = page, .encrypted_page = NULL, }; int dirty, err; if (!f2fs_exist_data(dn->inode)) goto clear_out; err = f2fs_reserve_block(dn, 0); if (err) return err; f2fs_bug_on(F2FS_P_SB(page), PageWriteback(page)); read_inline_data(page, dn->inode_page); set_page_dirty(page); /* clear dirty state */ dirty = clear_page_dirty_for_io(page); /* write data page to try to make data consistent */ set_page_writeback(page); fio.old_blkaddr = dn->data_blkaddr; set_inode_flag(dn->inode, FI_HOT_DATA); write_data_page(dn, &fio); f2fs_wait_on_page_writeback(page, DATA, true); if (dirty) { inode_dec_dirty_pages(dn->inode); remove_dirty_inode(dn->inode); } /* this converted inline_data should be recovered. */ set_inode_flag(dn->inode, FI_APPEND_WRITE); /* clear inline data and flag after data writeback */ truncate_inline_inode(dn->inode, dn->inode_page, 0); clear_inline_node(dn->inode_page); clear_out: stat_dec_inline_inode(dn->inode); clear_inode_flag(dn->inode, FI_INLINE_DATA); f2fs_put_dnode(dn); return 0; } int f2fs_convert_inline_inode(struct inode *inode) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct dnode_of_data dn; struct page *ipage, *page; int err = 0; if (!f2fs_has_inline_data(inode)) return 0; page = f2fs_grab_cache_page(inode->i_mapping, 0, false); if (!page) return -ENOMEM; f2fs_lock_op(sbi); ipage = get_node_page(sbi, inode->i_ino); if (IS_ERR(ipage)) { err = PTR_ERR(ipage); goto out; } set_new_dnode(&dn, inode, ipage, ipage, 0); if (f2fs_has_inline_data(inode)) err = f2fs_convert_inline_page(&dn, page); f2fs_put_dnode(&dn); out: f2fs_unlock_op(sbi); f2fs_put_page(page, 1); f2fs_balance_fs(sbi, dn.node_changed); return err; } int f2fs_write_inline_data(struct inode *inode, struct page *page) { void *src_addr, *dst_addr; struct dnode_of_data dn; int err; set_new_dnode(&dn, inode, NULL, NULL, 0); err = get_dnode_of_data(&dn, 0, LOOKUP_NODE); if (err) return err; if (!f2fs_has_inline_data(inode)) { f2fs_put_dnode(&dn); return -EAGAIN; } f2fs_bug_on(F2FS_I_SB(inode), page->index); f2fs_wait_on_page_writeback(dn.inode_page, NODE, true); src_addr = kmap_atomic(page); dst_addr = inline_data_addr(dn.inode_page); memcpy(dst_addr, src_addr, MAX_INLINE_DATA); kunmap_atomic(src_addr); set_page_dirty(dn.inode_page); set_inode_flag(inode, FI_APPEND_WRITE); set_inode_flag(inode, FI_DATA_EXIST); clear_inline_node(dn.inode_page); f2fs_put_dnode(&dn); return 0; }
static int __exchange_data_block(struct inode *inode, pgoff_t src, pgoff_t dst, bool full) { struct f2fs_sb_info *sbi = F2FS_I_SB(inode); struct dnode_of_data dn; block_t new_addr; bool do_replace = false; int ret; set_new_dnode(&dn, inode, NULL, NULL, 0); ret = get_dnode_of_data(&dn, src, LOOKUP_NODE_RA); if (ret && ret != -ENOENT) { return ret; } else if (ret == -ENOENT) { new_addr = NULL_ADDR; } else { new_addr = dn.data_blkaddr; if (!is_checkpointed_data(sbi, new_addr)) { dn.data_blkaddr = NULL_ADDR; /* do not invalidate this block address */ set_data_blkaddr(&dn); f2fs_update_extent_cache(&dn); do_replace = true; } f2fs_put_dnode(&dn); } if (new_addr == NULL_ADDR) return full ? truncate_hole(inode, dst, dst + 1) : 0; if (do_replace) { struct page *ipage = get_node_page(sbi, inode->i_ino); struct node_info ni; if (IS_ERR(ipage)) { ret = PTR_ERR(ipage); goto err_out; } set_new_dnode(&dn, inode, ipage, NULL, 0); ret = f2fs_reserve_block(&dn, dst); if (ret) goto err_out; truncate_data_blocks_range(&dn, 1); get_node_info(sbi, dn.nid, &ni); f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr, ni.version, true); f2fs_put_dnode(&dn); } else { struct page *psrc, *pdst; psrc = get_lock_data_page(inode, src, true); if (IS_ERR(psrc)) return PTR_ERR(psrc); pdst = get_new_data_page(inode, NULL, dst, false); if (IS_ERR(pdst)) { f2fs_put_page(psrc, 1); return PTR_ERR(pdst); } f2fs_copy_page(psrc, pdst); set_page_dirty(pdst); f2fs_put_page(pdst, 1); f2fs_put_page(psrc, 1); return truncate_hole(inode, src, src + 1); } return 0; err_out: if (!get_dnode_of_data(&dn, src, LOOKUP_NODE)) { dn.data_blkaddr = new_addr; set_data_blkaddr(&dn); f2fs_update_extent_cache(&dn); f2fs_put_dnode(&dn); } return ret; }
/* * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with * f2fs_map_blocks structure. * If original data blocks are allocated, then give them to blockdev. * Otherwise, * a. preallocate requested block addresses * b. do not use extent cache for better performance * c. give the block addresses to blockdev */ static int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int create, int flag) { unsigned int maxblocks = map->m_len; struct dnode_of_data dn; int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA; pgoff_t pgofs, end_offset; int err = 0, ofs = 1; struct extent_info ei; bool allocated = false; map->m_len = 0; map->m_flags = 0; /* it only supports block size == page size */ pgofs = (pgoff_t)map->m_lblk; if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) { map->m_pblk = ei.blk + pgofs - ei.fofs; map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs); map->m_flags = F2FS_MAP_MAPPED; goto out; } if (create) f2fs_lock_op(F2FS_I_SB(inode)); /* When reading holes, we need its node page */ set_new_dnode(&dn, inode, NULL, NULL, 0); err = get_dnode_of_data(&dn, pgofs, mode); if (err) { if (err == -ENOENT) err = 0; goto unlock_out; } if (dn.data_blkaddr == NEW_ADDR) { if (flag == F2FS_GET_BLOCK_BMAP) { err = -ENOENT; goto put_out; } else if (flag == F2FS_GET_BLOCK_READ || flag == F2FS_GET_BLOCK_DIO) { goto put_out; } /* * if it is in fiemap call path (flag = F2FS_GET_BLOCK_FIEMAP), * mark it as mapped and unwritten block. */ } if (dn.data_blkaddr != NULL_ADDR) { map->m_flags = F2FS_MAP_MAPPED; map->m_pblk = dn.data_blkaddr; if (dn.data_blkaddr == NEW_ADDR) map->m_flags |= F2FS_MAP_UNWRITTEN; } else if (create) { err = __allocate_data_block(&dn); if (err) goto put_out; allocated = true; map->m_flags = F2FS_MAP_NEW | F2FS_MAP_MAPPED; map->m_pblk = dn.data_blkaddr; } else { if (flag == F2FS_GET_BLOCK_BMAP) err = -ENOENT; goto put_out; } end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode)); map->m_len = 1; dn.ofs_in_node++; pgofs++; get_next: if (dn.ofs_in_node >= end_offset) { if (allocated) sync_inode_page(&dn); allocated = false; f2fs_put_dnode(&dn); set_new_dnode(&dn, inode, NULL, NULL, 0); err = get_dnode_of_data(&dn, pgofs, mode); if (err) { if (err == -ENOENT) err = 0; goto unlock_out; } if (dn.data_blkaddr == NEW_ADDR && flag != F2FS_GET_BLOCK_FIEMAP) goto put_out; end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode)); } if (maxblocks > map->m_len) { block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node); if (blkaddr == NULL_ADDR && create) { err = __allocate_data_block(&dn); if (err) goto sync_out; allocated = true; map->m_flags |= F2FS_MAP_NEW; blkaddr = dn.data_blkaddr; } /* Give more consecutive addresses for the readahead */ if ((map->m_pblk != NEW_ADDR && blkaddr == (map->m_pblk + ofs)) || (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR)) { ofs++; dn.ofs_in_node++; pgofs++; map->m_len++; goto get_next; } } sync_out: if (allocated) sync_inode_page(&dn); put_out: f2fs_put_dnode(&dn); unlock_out: if (create) f2fs_unlock_op(F2FS_I_SB(inode)); out: trace_f2fs_map_blocks(inode, map, err); return err; }
/* * f2fs_add_link - Add a new file(dir) to parent dir. */ int f2fs_add_link(struct f2fs_sb_info *sbi, struct f2fs_node *parent, const unsigned char *name, int name_len, nid_t ino, int file_type, block_t p_blkaddr, int inc_link) { int level = 0, current_depth, bit_pos; int nbucket, nblock, bidx, block; int slots = GET_DENTRY_SLOTS(name_len); f2fs_hash_t dentry_hash = f2fs_dentry_hash(name, name_len); struct f2fs_dentry_block *dentry_blk; struct f2fs_dentry_ptr d; struct dnode_of_data dn; nid_t pino = le32_to_cpu(parent->footer.ino); unsigned int dir_level = parent->i.i_dir_level; int ret; if (parent == NULL) return -EINVAL; if (!pino) { ERR_MSG("Wrong parent ino:%d \n", pino); return -EINVAL; } dentry_blk = calloc(BLOCK_SZ, 1); ASSERT(dentry_blk); current_depth = le32_to_cpu(parent->i.i_current_depth); start: if (current_depth == MAX_DIR_HASH_DEPTH) { free(dentry_blk); ERR_MSG("\tError: MAX_DIR_HASH\n"); return -ENOSPC; } /* Need a new dentry block */ if (level == current_depth) ++current_depth; nbucket = dir_buckets(level, dir_level); nblock = bucket_blocks(level); bidx = dir_block_index(level, dir_level, le32_to_cpu(dentry_hash) % nbucket); memset(&dn, 0, sizeof(dn)); for (block = bidx; block <= (bidx + nblock - 1); block++) { /* Firstly, we should know the direct node of target data blk */ if (dn.node_blk && dn.node_blk != dn.inode_blk) free(dn.node_blk); set_new_dnode(&dn, parent, NULL, pino); get_dnode_of_data(sbi, &dn, block, ALLOC_NODE); if (dn.data_blkaddr == NULL_ADDR) { new_data_block(sbi, dentry_blk, &dn, CURSEG_HOT_DATA); } else { ret = dev_read_block(dentry_blk, dn.data_blkaddr); ASSERT(ret >= 0); } bit_pos = room_for_filename(dentry_blk->dentry_bitmap, slots, NR_DENTRY_IN_BLOCK); if (bit_pos < NR_DENTRY_IN_BLOCK) goto add_dentry; } level ++; goto start; add_dentry: make_dentry_ptr(&d, NULL, (void *)dentry_blk, 1); f2fs_update_dentry(ino, file_type, &d, name, name_len, dentry_hash, bit_pos); ret = dev_write_block(dentry_blk, dn.data_blkaddr); ASSERT(ret >= 0); /* * Parent inode needs updating, because its inode info may be changed. * such as i_current_depth and i_blocks. */ if (parent->i.i_current_depth != cpu_to_le32(current_depth)) { parent->i.i_current_depth = cpu_to_le32(current_depth); dn.idirty = 1; } /* Update parent's i_links info*/ if (inc_link && (file_type == F2FS_FT_DIR)){ u32 links = le32_to_cpu(parent->i.i_links); parent->i.i_links = cpu_to_le32(links + 1); dn.idirty = 1; } if ((__u64)((block + 1) * F2FS_BLKSIZE) > le64_to_cpu(parent->i.i_size)) { parent->i.i_size = cpu_to_le64((block + 1) * F2FS_BLKSIZE); dn.idirty = 1; } if (dn.ndirty) { ret = dev_write_block(dn.node_blk, dn.node_blkaddr); ASSERT(ret >= 0); } if (dn.idirty) { ASSERT(parent == dn.inode_blk); ret = dev_write_block(dn.inode_blk, p_blkaddr); ASSERT(ret >= 0); } if (dn.node_blk != dn.inode_blk) free(dn.node_blk); free(dentry_blk); return 0; }
static int __f2fs_convert_inline_data(struct inode *inode, struct page *page) { int err; struct page *ipage; struct dnode_of_data dn; void *src_addr, *dst_addr; block_t new_blk_addr; struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); struct f2fs_io_info fio = { .type = DATA, .rw = WRITE_SYNC | REQ_PRIO, }; f2fs_lock_op(sbi); ipage = get_node_page(sbi, inode->i_ino); if (IS_ERR(ipage)) return PTR_ERR(ipage); /* * i_addr[0] is not used for inline data, * so reserving new block will not destroy inline data */ set_new_dnode(&dn, inode, ipage, NULL, 0); err = f2fs_reserve_block(&dn, 0); if (err) { f2fs_unlock_op(sbi); return err; } zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE); /* Copy the whole inline data block */ src_addr = inline_data_addr(ipage); dst_addr = kmap(page); memcpy(dst_addr, src_addr, MAX_INLINE_DATA); kunmap(page); SetPageUptodate(page); /* write data page to try to make data consistent */ set_page_writeback(page); write_data_page(page, &dn, &new_blk_addr, &fio); update_extent_cache(new_blk_addr, &dn); f2fs_wait_on_page_writeback(page, DATA); /* clear inline data and flag after data writeback */ zero_user_segment(ipage, INLINE_DATA_OFFSET, INLINE_DATA_OFFSET + MAX_INLINE_DATA); clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA); stat_dec_inline_inode(inode); sync_inode_page(&dn); f2fs_put_dnode(&dn); f2fs_unlock_op(sbi); return err; } int f2fs_convert_inline_data(struct inode *inode, pgoff_t to_size) { struct page *page; int err; if (!f2fs_has_inline_data(inode)) return 0; else if (to_size <= MAX_INLINE_DATA) return 0; page = grab_cache_page_write_begin(inode->i_mapping, 0, AOP_FLAG_NOFS); if (!page) return -ENOMEM; err = __f2fs_convert_inline_data(inode, page); f2fs_put_page(page, 1); return err; } int f2fs_write_inline_data(struct inode *inode, struct page *page, unsigned size) { void *src_addr, *dst_addr; struct page *ipage; struct dnode_of_data dn; int err; set_new_dnode(&dn, inode, NULL, NULL, 0); err = get_dnode_of_data(&dn, 0, LOOKUP_NODE); if (err) return err; ipage = dn.inode_page; zero_user_segment(ipage, INLINE_DATA_OFFSET, INLINE_DATA_OFFSET + MAX_INLINE_DATA); src_addr = kmap(page); dst_addr = inline_data_addr(ipage); memcpy(dst_addr, src_addr, size); kunmap(page); /* Release the first data block if it is allocated */ if (!f2fs_has_inline_data(inode)) { truncate_data_blocks_range(&dn, 1); set_inode_flag(F2FS_I(inode), FI_INLINE_DATA); stat_inc_inline_inode(inode); } sync_inode_page(&dn); f2fs_put_dnode(&dn); return 0; }
int convert_inline_dentry(struct f2fs_sb_info *sbi, struct f2fs_node *node, block_t p_blkaddr) { struct f2fs_inode *inode = &(node->i); unsigned int dir_level = node->i.i_dir_level; nid_t ino = le32_to_cpu(node->footer.ino); char inline_data[MAX_INLINE_DATA(node)]; struct dnode_of_data dn; struct f2fs_dentry_ptr d; unsigned long bit_pos = 0; int ret = 0; if (!(inode->i_inline & F2FS_INLINE_DENTRY)) return 0; memcpy(inline_data, inline_data_addr(node), MAX_INLINE_DATA(node)); memset(inline_data_addr(node), 0, MAX_INLINE_DATA(node)); inode->i_inline &= ~F2FS_INLINE_DENTRY; ret = dev_write_block(node, p_blkaddr); ASSERT(ret >= 0); memset(&dn, 0, sizeof(dn)); if (!dir_level) { struct f2fs_dentry_block *dentry_blk; struct f2fs_dentry_ptr src, dst; dentry_blk = calloc(BLOCK_SZ, 1); ASSERT(dentry_blk); set_new_dnode(&dn, node, NULL, ino); get_dnode_of_data(sbi, &dn, 0, ALLOC_NODE); if (dn.data_blkaddr == NULL_ADDR) new_data_block(sbi, dentry_blk, &dn, CURSEG_HOT_DATA); make_dentry_ptr(&src, node, (void *)inline_data, 2); make_dentry_ptr(&dst, NULL, (void *)dentry_blk, 1); /* copy data from inline dentry block to new dentry block */ memcpy(dst.bitmap, src.bitmap, src.nr_bitmap); memset(dst.bitmap + src.nr_bitmap, 0, dst.nr_bitmap - src.nr_bitmap); memcpy(dst.dentry, src.dentry, SIZE_OF_DIR_ENTRY * src.max); memcpy(dst.filename, src.filename, src.max * F2FS_SLOT_LEN); ret = dev_write_block(dentry_blk, dn.data_blkaddr); ASSERT(ret >= 0); MSG(1, "%s: copy inline entry to block\n", __func__); free(dentry_blk); return ret; } make_empty_dir(sbi, node); make_dentry_ptr(&d, node, (void *)inline_data, 2); while (bit_pos < (unsigned long)d.max) { struct f2fs_dir_entry *de; const unsigned char *filename; int namelen; if (!test_bit_le(bit_pos, d.bitmap)) { bit_pos++; continue; } de = &d.dentry[bit_pos]; if (!de->name_len) { bit_pos++; continue; } filename = d.filename[bit_pos]; namelen = le32_to_cpu(de->name_len); if (is_dot_dotdot(filename, namelen)) { bit_pos += GET_DENTRY_SLOTS(namelen); continue; } ret = f2fs_add_link(sbi, node, filename, namelen, le32_to_cpu(de->ino), de->file_type, p_blkaddr, 0); if (ret) MSG(0, "Convert file \"%s\" ERR=%d\n", filename, ret); else MSG(1, "%s: add inline entry to block\n", __func__); bit_pos += GET_DENTRY_SLOTS(namelen); } return 0; }