Example #1
0
int read_mesh_params(const std::string &exo_file,
                     Problem_Description* problem,
                     Mesh_Description<INT>* mesh,
                     Sphere_Info* sphere
  )
{
  int    exoid, cpu_ws=0, io_ws=0;
  float  version;
  char   elem_type[MAX_STR_LENGTH+1];
/*---------------------------Execution Begins--------------------------------*/

  /* Open the ExodusII geometry file */
  int mode = EX_READ | problem->int64api;
  if((exoid=ex_open(exo_file.c_str(), mode, &cpu_ws, &io_ws, &version)) < 0)
  {
    Gen_Error(0, "fatal: unable to open ExodusII file for mesh params");
    return 0;
  }

  /* Get the init info */
  ex_init_params exo;
  if(ex_get_init_ext(exoid, &exo))
  {
    Gen_Error(0, "fatal: unable to get init info from ExodusII file");
    ex_close(exoid);
    return 0;
  }
  strcpy(mesh->title, exo.title);
  mesh->num_dims      = exo.num_dim;
  mesh->num_nodes     = exo.num_nodes;
  mesh->num_elems     = exo.num_elem;
  mesh->num_el_blks   = exo.num_elem_blk;
  mesh->num_node_sets = exo.num_node_sets;
  mesh->num_side_sets = exo.num_side_sets;

  /* Get the length of the concatenated node set node list */
  if(mesh->num_node_sets > 0)
  {
    mesh->ns_list_len = ex_inquire_int(exoid, EX_INQ_NS_NODE_LEN);
  }
  else
    mesh->ns_list_len = 0;

  /* Allocate and initialize memory for the sphere adjustment */
  sphere->adjust = (int*)malloc(sizeof(int)*3*(mesh->num_el_blks));
  if(!(sphere->adjust)) {
    Gen_Error(0, "fatal: insufficient memory");
    ex_close(exoid);
    return 0;
  }
  else {
    sphere->begin = sphere->adjust + mesh->num_el_blks;
    sphere->end   = sphere->begin  + mesh->num_el_blks;
    for(size_t cnt=0; cnt < mesh->num_el_blks; cnt++) {
      sphere->adjust[cnt] = 0;
      sphere->begin[cnt]  = 0;
      sphere->end[cnt]    = 0;
    }
  }

  std::vector<INT> el_blk_ids(mesh->num_el_blks);

  /* Read the element block IDs */
  if(ex_get_elem_blk_ids(exoid, &el_blk_ids[0]) < 0) {
    Gen_Error(0, "fatal: unable to get element block IDs");
    ex_close(exoid);
    return 0;
  }

  /* Determine the maximum number of nodes per element */
  mesh->max_np_elem = 0;
  for(size_t cnt=0; cnt < mesh->num_el_blks; cnt++) {
    INT num_elems, idum;
    INT nodes_in_elem;
    
    if(ex_get_elem_block(exoid, el_blk_ids[cnt], elem_type,
                         &num_elems, &nodes_in_elem, &idum) < 0)
    {
      Gen_Error(0, "fatal: unable to get element block");
      ex_close(exoid);
      return 0;
    }

    if(cnt == 0)
      sphere->end[0] = num_elems;

    if(get_elem_type(elem_type, nodes_in_elem, mesh->num_dims) == SPHERE && problem->no_sph != 1) {
      sphere->num  += num_elems;
      sphere->adjust[cnt] = 0;
    }
    else
      sphere->adjust[cnt] = sphere->num;

    if(cnt != 0) {
      sphere->begin[cnt] = sphere->end[cnt-1];
      sphere->end[cnt]   = sphere->begin[cnt] + num_elems;
    }

    mesh->max_np_elem = MAX(mesh->max_np_elem, (size_t)nodes_in_elem);
  }

  /* Close the ExodusII file */
  if(ex_close(exoid) < 0)
    Gen_Error(1, "warning: unable to close ExodusII file");

  printf("ExodusII mesh information\n");
  if(strlen(mesh->title) > 0)
    printf("\ttitle: %s\n", mesh->title);
  printf("\tgeometry dimension: "ST_ZU"\n", mesh->num_dims);
  printf("\tnumber of nodes: "ST_ZU"\tnumber of elements: "ST_ZU"\n", mesh->num_nodes,
         mesh->num_elems);
  printf("\tnumber of element blocks: "ST_ZU"\n", mesh->num_el_blks);
  printf("\tnumber of node sets: "ST_ZU"\tnumber of side sets: "ST_ZU"\n",
         mesh->num_node_sets, mesh->num_side_sets);

  return 1;

} /*--------------------------End read_mesh_params()-------------------------*/
Example #2
0
int read_mesh(const std::string &exo_file,
              Problem_Description* problem,
              Mesh_Description<INT>* mesh,
              Weight_Description<INT>* weight
	      )
{
  float  version, *xptr, *yptr, *zptr;
  char   elem_type[MAX_STR_LENGTH+1];
  E_Type blk_elem_type;
  
  /*---------------------------Execution Begins--------------------------------*/

  /* Open the ExodusII file */
  int exoid, cpu_ws=0, io_ws=0;
  int mode = EX_READ | problem->int64api;
  if((exoid=ex_open(exo_file.c_str(), mode, &cpu_ws, &io_ws, &version)) < 0)
    {
      Gen_Error(0, "fatal: unable to open ExodusII mesh file");
      return 0;
    }

  /* Read the coordinates, if desired */
  xptr = yptr = zptr = NULL;
  if(problem->read_coords == ELB_TRUE)
    {
      switch(mesh->num_dims)
	{
	case 3:
	  zptr = (mesh->coords)+2*(mesh->num_nodes);
	  /* FALLTHRU */
	case 2:
	  yptr = (mesh->coords)+(mesh->num_nodes);
	  /* FALLTHRU */
	case 1:
	  xptr = mesh->coords;
	}

      if(ex_get_coord(exoid, xptr, yptr, zptr) < 0)
	{
	  Gen_Error(0, "fatal: unable to read coordinate values for mesh");
	  return 0;
	}

    } /* End "if(problem->read_coords == ELB_TRUE)" */

  /* Read the element block IDs */
  std::vector<INT> el_blk_ids(mesh->num_el_blks);
  std::vector<INT> el_blk_cnts(mesh->num_el_blks);

  if(ex_get_elem_blk_ids(exoid, &el_blk_ids[0]) < 0)
    {
      Gen_Error(0, "fatal: unable to read element block IDs");
      return 0;
    }

  /* Read the element connectivity */
  size_t gelem_cnt=0;
  for(size_t cnt=0; cnt < mesh->num_el_blks; cnt++) {
    INT nodes_per_elem, num_attr;
    if(ex_get_elem_block(exoid, el_blk_ids[cnt], elem_type,
                         &(el_blk_cnts[cnt]), &nodes_per_elem,
                         &num_attr) < 0)
      {
	Gen_Error(0, "fatal: unable to read element block");
	return 0;
      }

    blk_elem_type = get_elem_type(elem_type, nodes_per_elem, mesh->num_dims);

    INT *blk_connect = (INT*)malloc(sizeof(INT)*el_blk_cnts[cnt]*nodes_per_elem);
    if(!blk_connect)
      {
	Gen_Error(0, "fatal: insufficient memory");
	return 0;
      }

    /* Get the connectivity for this element block */
    if(ex_get_elem_conn(exoid, el_blk_ids[cnt], blk_connect) < 0)
      {
	Gen_Error(0, "fatal: failed to get element connectivity");
	return 0;
      }

    /* find out if this element block is weighted */
    int wgt = -1;
    if (weight->type & EL_BLK)
      wgt = in_list(el_blk_ids[cnt], weight->elemblk);
    
    /* Fill the 2D global connectivity array */
    if (((problem->type == ELEMENTAL) && (weight->type & EL_BLK)) ||
        ((problem->type == NODAL) && (weight->type & EL_BLK))) {
      
      for(int64_t cnt2=0; cnt2 < el_blk_cnts[cnt]; cnt2++) {
	mesh->elem_type[gelem_cnt] = blk_elem_type;
      
	/* while going through the blocks, take care of the weighting */
	if ((problem->type == ELEMENTAL) && (weight->type & EL_BLK)) {
	  /* is this block weighted */
	  if (wgt >= 0) {
	    /* check if there is a read value */
	    if (weight->vertices[gelem_cnt] >= 1) {
	      /* and if it should be overwritten */
	      if (weight->ow_read)
		weight->vertices[gelem_cnt] = weight->elemblk_wgt[wgt];
	    }
	    else
	      weight->vertices[gelem_cnt] = weight->elemblk_wgt[wgt];
	  }
	  else {
	    /* now check if this weight has been initialized */
	    if (weight->vertices[gelem_cnt] < 1)
	      weight->vertices[gelem_cnt] = 1;
	  }
	}

	for(int64_t cnt3=0; cnt3 < nodes_per_elem; cnt3++) {
	  INT node = blk_connect[cnt3 + cnt2*nodes_per_elem] - 1;
	  assert(node >= 0);
	  mesh->connect[gelem_cnt][cnt3] = node;

	  /* deal with the weighting if necessary */
	  if ((problem->type == NODAL) && (weight->type & EL_BLK)) {
	    /* is this block weighted */
	    if (wgt >= 0) {
	      /* check if I read an exodus file */
	      if (weight->type & READ_EXO) {
		/* check if it can be overwritten */
		if (weight->ow_read) {
		  /* check if it has been overwritten already */
		  if (weight->ow[node]) {
		    weight->vertices[node] =
		      MAX(weight->vertices[node], weight->elemblk_wgt[wgt]);
		  }
		  else {
		    weight->vertices[node] = weight->elemblk_wgt[wgt];
		    weight->ow[node] = 1;   /* read value has been overwritten */
		  }
		}
	      }
	      else {
		weight->vertices[node] =
		  MAX(weight->vertices[node], weight->elemblk_wgt[wgt]);
	      }
	    }
	    else {
	      /* now check if this weight has been initialized */
	      if (weight->vertices[node] < 1)
		weight->vertices[node] = 1;
	    }
	  }
	}
	gelem_cnt++;
      }
    } else {
      // No weights...
      for (int64_t cnt2=0; cnt2 < el_blk_cnts[cnt]; cnt2++) {
	mesh->elem_type[gelem_cnt] = blk_elem_type;

	for (int64_t cnt3=0; cnt3 < nodes_per_elem; cnt3++) {
	  INT node = blk_connect[cnt2*nodes_per_elem + cnt3] - 1;
	  assert(node >= 0);
	  mesh->connect[gelem_cnt][cnt3] = node;
	}

	gelem_cnt++;
      }
    }
    /* Free up memory */
    free(blk_connect);

  } /* End "for(cnt=0; cnt < mesh->num_el_blks; cnt++)" */

  /* if there is a group designator, then parse it here */
  if (problem->groups != NULL) {
    if (!parse_groups(&el_blk_ids[0], &el_blk_cnts[0], mesh, problem)) {
      Gen_Error(0, "fatal: unable to parse group designator");
      ex_close(exoid);
      return 0;
    }
  }
  else problem->num_groups = 1; /* there is always one group */

  /* Close the ExodusII file */
  if(ex_close(exoid) < 0)
    Gen_Error(0, "warning: failed to close ExodusII mesh file");

  return 1;

} /*---------------------------End read_mesh()-------------------------------*/
Example #3
0
int read_exoII_file(int Proc,
                    int Num_Proc,
                    PROB_INFO_PTR prob,
                    PARIO_INFO_PTR pio_info,
                    MESH_INFO_PTR mesh)
{
#ifndef ZOLTAN_NEMESIS
  Gen_Error(0, "Fatal:  Nemesis requested but not linked with driver.");
  return 0;

#else /* ZOLTAN_NEMESIS */
  /* Local declarations. */
  char  *yo = "read_exoII_mesh";
  char   par_nem_fname[FILENAME_MAX+1], title[MAX_LINE_LENGTH+1];
  char   cmesg[256];

  float  ver;

  int    i, pexoid, cpu_ws = 0, io_ws = 0;
  int   *nnodes = NULL, *etypes = NULL;
#ifdef DEBUG_EXO
  int    j, k, elem;
#endif
  FILE  *fdtmp;

/***************************** BEGIN EXECUTION ******************************/

  DEBUG_TRACE_START(Proc, yo);

  /* since this is a test driver, set error reporting in exodus */
  ex_opts(EX_VERBOSE | EX_DEBUG);

  /* generate the parallel filename for this processor */
  gen_par_filename(pio_info->pexo_fname, par_nem_fname, pio_info, Proc,
                   Num_Proc);

  /* 
   * check whether parallel file exists.  do the check with fopen 
   * as ex_open coredumps on the paragon when files do not exist.
   */

  if ((fdtmp = fopen(par_nem_fname, "r")) == NULL) {
    sprintf(cmesg,"fatal: parallel Exodus II file %s does not exist",
            par_nem_fname);
    Gen_Error(0, cmesg);
    return 0;
  }
  else
    fclose(fdtmp);

  /*
   * now open the existing parallel file using Exodus calls.
   */

  if ((pexoid = ex_open(par_nem_fname, EX_READ, &cpu_ws, &io_ws,
                        &ver)) < 0) {
    sprintf(cmesg,"fatal: could not open parallel Exodus II file %s",
            par_nem_fname);
    Gen_Error(0, cmesg);
    return 0;
  }

  /* and get initial information */
  if (ex_get_init(pexoid, title, &(mesh->num_dims),
                  &(mesh->num_nodes), &(mesh->num_elems),
                  &(mesh->num_el_blks), &(mesh->num_node_sets),
                  &(mesh->num_side_sets)) < 0) {
    Gen_Error(0, "fatal: Error returned from ex_get_init");
    return 0;
  }


  /* alocate some memory for the element blocks */
  mesh->data_type = MESH;
  mesh->vwgt_dim = 1;  /* One weight for now. */
  mesh->ewgt_dim = 1;  /* One weight for now. */
  mesh->eb_etypes = (int *) malloc (5 * mesh->num_el_blks * sizeof(int));
  if (!mesh->eb_etypes) {
    Gen_Error(0, "fatal: insufficient memory");
    return 0;
  }
  mesh->eb_ids = mesh->eb_etypes + mesh->num_el_blks;
  mesh->eb_cnts = mesh->eb_ids + mesh->num_el_blks;
  mesh->eb_nnodes = mesh->eb_cnts + mesh->num_el_blks;
  mesh->eb_nattrs = mesh->eb_nnodes + mesh->num_el_blks;

  mesh->eb_names = (char **) malloc (mesh->num_el_blks * sizeof(char *));
  if (!mesh->eb_names) {
    Gen_Error(0, "fatal: insufficient memory");
    return 0;
  }

  mesh->hindex = (int *) malloc(sizeof(int));
  mesh->hindex[0] = 0;

  if (ex_get_elem_blk_ids(pexoid, mesh->eb_ids) < 0) {
    Gen_Error(0, "fatal: Error returned from ex_get_elem_blk_ids");
    return 0;
  }

  /* allocate temporary storage for items needing global reduction.   */
  /* nemesis does not store most element block info about blocks for  */
  /* which the processor owns no elements.                            */
  /* we, however, use this information in migration, so we need to    */
  /* accumulate it for all element blocks.    kdd 2/2001              */

  if (mesh->num_el_blks > 0) {
    nnodes = (int *) malloc(2 * mesh->num_el_blks * sizeof(int));
    if (!nnodes) {
      Gen_Error(0, "fatal: insufficient memory");
      return 0;
    }
    etypes = nnodes + mesh->num_el_blks;
  }

  /* get the element block information */
  for (i = 0; i < mesh->num_el_blks; i++) {

    /* allocate space for name */
    mesh->eb_names[i] = (char *) malloc((MAX_STR_LENGTH+1) * sizeof(char));
    if (!mesh->eb_names[i]) {
      Gen_Error(0, "fatal: insufficient memory");
      return 0;
    }

    if (ex_get_elem_block(pexoid, mesh->eb_ids[i], mesh->eb_names[i],
                          &(mesh->eb_cnts[i]), &(nnodes[i]),
                          &(mesh->eb_nattrs[i])) < 0) {
      Gen_Error(0, "fatal: Error returned from ex_get_elem_block");
      return 0;
    }

    if (mesh->eb_cnts[i] > 0) {
      if ((etypes[i] =  (int) get_elem_type(mesh->eb_names[i],
                                            nnodes[i],
                                            mesh->num_dims)) == E_TYPE_ERROR) {
        Gen_Error(0, "fatal: could not get element type");
        return 0;
      }
    }
    else etypes[i] = (int) NULL_EL;
  }

  /* Perform reduction on necessary fields of element blocks.  kdd 2/2001 */
  MPI_Allreduce(nnodes, mesh->eb_nnodes, mesh->num_el_blks, MPI_INT, MPI_MAX, 
                MPI_COMM_WORLD);
  MPI_Allreduce(etypes, mesh->eb_etypes, mesh->num_el_blks, MPI_INT, MPI_MIN, 
                MPI_COMM_WORLD);
  for (i = 0; i < mesh->num_el_blks; i++) {
    strcpy(mesh->eb_names[i], get_elem_name(mesh->eb_etypes[i]));
  }
  free(nnodes);

  /*
   * allocate memory for the elements
   * allocate a little extra for element migration latter
   */
  mesh->elem_array_len = mesh->num_elems + 5;
  mesh->elements = (ELEM_INFO_PTR) malloc (mesh->elem_array_len 
                                         * sizeof(ELEM_INFO));
  if (!(mesh->elements)) {
    Gen_Error(0, "fatal: insufficient memory");
    return 0;
  }

  /*
   * intialize all of the element structs as unused by
   * setting the globalID to -1
   */
  for (i = 0; i < mesh->elem_array_len; i++) 
    initialize_element(&(mesh->elements[i]));

  /* read the information for the individual elements */
  if (!read_elem_info(pexoid, Proc, prob, mesh)) {
    Gen_Error(0, "fatal: Error returned from read_elem_info");
    return 0;
  }

  /* read the communication information */
  if (!read_comm_map_info(pexoid, Proc, prob, mesh)) {
    Gen_Error(0, "fatal: Error returned from read_comm_map_info");
    return 0;
  }

  /* Close the parallel file */
  if(ex_close (pexoid) < 0) {
    Gen_Error(0, "fatal: Error returned from ex_close");
    return 0;
  }

  /* print out the distributed mesh */
  if (Debug_Driver > 3)
    print_distributed_mesh(Proc, Num_Proc, mesh);

  DEBUG_TRACE_END(Proc, yo);
  return 1;

#endif /* ZOLTAN_NEMESIS */
}