static HANDLE_FUNC (handle_upstream) { char *ip; int port; char *domain; ip = get_string_arg (line, &match[2]); if (!ip) return -1; port = (int) get_long_arg (line, &match[7]); if (match[10].rm_so != -1) { domain = get_string_arg (line, &match[10]); if (domain) { upstream_add (ip, port, domain, &conf->upstream_list); safefree (domain); } } else { upstream_add (ip, port, NULL, &conf->upstream_list); } safefree (ip); return 0; }
static int set_int_arg (unsigned int *var, const char *line, regmatch_t * match) { assert (var); assert (line); assert (match); *var = (unsigned int) get_long_arg (line, match); return 0; }
static HANDLE_FUNC (handle_errorfile) { /* * Because an integer is defined as ((0x)?[[:digit:]]+) _two_ * match places are used. match[2] matches the full digit * string, while match[3] matches only the "0x" part if * present. This is why the "string" is located at * match[4] (rather than the more intuitive match[3]. */ unsigned long int err = get_long_arg (line, &match[2]); char *page = get_string_arg (line, &match[4]); add_new_errorpage (page, err); safefree (page); return 0; }
static HANDLE_FUNC (handle_connectport) { add_connect_port_allowed (get_long_arg (line, &match[2]), &conf->connect_ports); return 0; }
static HANDLE_FUNC (handle_maxrequestsperchild) { child_configure (CHILD_MAXREQUESTSPERCHILD, get_long_arg (line, &match[2])); return 0; }
static HANDLE_FUNC (handle_startservers) { child_configure (CHILD_STARTSERVERS, get_long_arg (line, &match[2])); return 0; }
static HANDLE_FUNC (handle_minspareservers) { child_configure (CHILD_MINSPARESERVERS, get_long_arg (line, &match[2])); return 0; }
static HANDLE_FUNC (handle_maxclients) { child_configure (CHILD_MAXCLIENTS, get_long_arg (line, &match[2])); return 0; }
/////////////////////////////// // reads in the time controls (a hassle), stores the information // into the search info structure, then calls the search. /////////////////////////////// static bool cmd_go(const char *args) { int mtg = 0, depthmax = 0; int wtime = 0, btime = 0, winc = 0, binc = 0; long nodemax = 0, movetime = 0; int time, inc; if (rootPosition == NULL) { cout << "Invalid position: can't go." << endl; return false; } if (args == NULL || strstr(args, "infinite") != NULL) searchInfo->inf = true; else { searchInfo->inf = false; if (get_long_arg(args, "movetime", movetime)) searchInfo->endTime = clock() + movetime; else { get_int_arg(args, "wtime", wtime); get_int_arg(args, "btime", btime); get_int_arg(args, "winc", winc); get_int_arg(args, "binc", binc); get_int_arg(args, "movestogo", mtg); get_int_arg(args, "depth", depthmax); get_long_arg(args, "nodes", nodemax); if (depthmax != 0) searchInfo->depthLimit = depthmax; if (nodemax != 0) searchInfo->nodeLimit = nodemax; // found this time calculation in scatha. // much better than what i came up with. if (Stm(0) == WHITE) { time = wtime; inc = winc; } else { time = btime; inc = binc; } if (mtg == 0) { if (inc != 0) time = time / 30 + inc; else time = time / 40; } else { if (mtg == 1) time = time / 2; else time = time / Min(mtg, 20); } searchInfo->endTime = clock() + time; } } move_t move = search(rootPosition); if (!move) { cout << "Error: Search failed to find a move..." << endl; return false; } make_history_move(rootPosition, move); cout << "bestmove " << move2str(move) << endl; cout.flush(); return true; }
/*** *int _output(stream, format, argptr), static int output(format, argptr) * *Purpose: * Output performs printf style output onto a stream. It is called by * printf/fprintf/sprintf/vprintf/vfprintf/vsprintf to so the dirty * work. In multi-thread situations, _output assumes that the given * stream is already locked. * * Algorithm: * The format string is parsed by using a finite state automaton * based on the current state and the current character read from * the format string. Thus, looping is on a per-character basis, * not a per conversion specifier basis. Once the format specififying * character is read, output is performed. * *Entry: * FILE *stream - stream for output * char *format - printf style format string * va_list argptr - pointer to list of subsidiary arguments * *Exit: * Returns the number of characters written, or -1 if an output error * occurs. *ifdef _UNICODE * The wide-character flavour returns the number of wide-characters written. *endif * *Exceptions: * *******************************************************************************/ #ifdef CPRFLAG #ifndef FORMAT_VALIDATIONS _CRTIMP int __cdecl _vtcprintf ( const _TCHAR *format, va_list argptr ) { return _vtcprintf_l(format, NULL, argptr); } #else /* FORMAT_VALIDATIONS */ _CRTIMP int __cdecl _vtcprintf_s ( const _TCHAR *format, va_list argptr ) { return _vtcprintf_s_l(format, NULL, argptr); } #endif /* FORMAT_VALIDATIONS */ #endif /* CPRFLAG */ #ifdef CPRFLAG #ifndef FORMAT_VALIDATIONS _CRTIMP int __cdecl _vtcprintf_l ( #else /* FORMAT_VALIDATIONS */ _CRTIMP int __cdecl _vtcprintf_s_l ( #endif /* FORMAT_VALIDATIONS */ #else /* CPRFLAG */ #ifdef _UNICODE #ifndef FORMAT_VALIDATIONS int __cdecl _woutput ( miniFILE *stream, #else /* FORMAT_VALIDATIONS */ int __cdecl _woutput_s ( miniFILE *stream, #endif /* FORMAT_VALIDATIONS */ #else /* _UNICODE */ #ifndef FORMAT_VALIDATIONS int __cdecl _output ( miniFILE *stream, #else /* FORMAT_VALIDATIONS */ int __cdecl _output_s ( miniFILE *stream, #endif /* FORMAT_VALIDATIONS */ #endif /* _UNICODE */ #endif /* CPRFLAG */ const _TCHAR *format, va_list argptr ) { int hexadd=0; /* offset to add to number to get 'a'..'f' */ TCHAR ch; /* character just read */ int flags=0; /* flag word -- see #defines above for flag values */ enum STATE state; /* current state */ enum CHARTYPE chclass; /* class of current character */ int radix; /* current conversion radix */ int charsout; /* characters currently written so far, -1 = IO error */ int fldwidth = 0; /* selected field width -- 0 means default */ int precision = 0; /* selected precision -- -1 means default */ TCHAR prefix[2]; /* numeric prefix -- up to two characters */ int prefixlen=0; /* length of prefix -- 0 means no prefix */ int capexp = 0; /* non-zero = 'E' exponent signifient, zero = 'e' */ int no_output=0; /* non-zero = prodcue no output for this specifier */ union { const char *sz; /* pointer text to be printed, not zero terminated */ const wchar_t *wz; } text; int textlen; /* length of the text in bytes/wchars to be printed. textlen is in multibyte or wide chars if _UNICODE */ union { char sz[BUFFERSIZE]; #ifdef _UNICODE wchar_t wz[BUFFERSIZE]; #endif /* _UNICODE */ } buffer; wchar_t wchar; /* temp wchar_t */ int buffersize; /* size of text.sz (used only for the call to _cfltcvt) */ int bufferiswide=0; /* non-zero = buffer contains wide chars already */ #ifndef CPRFLAG _VALIDATE_RETURN( (stream != NULL), EINVAL, -1); #endif /* CPRFLAG */ _VALIDATE_RETURN( (format != NULL), EINVAL, -1); charsout = 0; /* no characters written yet */ textlen = 0; /* no text yet */ state = ST_NORMAL; /* starting state */ buffersize = 0; /* main loop -- loop while format character exist and no I/O errors */ while ((ch = *format++) != _T('\0') && charsout >= 0) { #ifndef FORMAT_VALIDATIONS chclass = FIND_CHAR_CLASS(__lookuptable, ch); /* find character class */ state = FIND_NEXT_STATE(__lookuptable, chclass, state); /* find next state */ #else /* FORMAT_VALIDATIONS */ chclass = FIND_CHAR_CLASS(__lookuptable_s, ch); /* find character class */ state = FIND_NEXT_STATE(__lookuptable_s, chclass, state); /* find next state */ _VALIDATE_RETURN((state != ST_INVALID), EINVAL, -1); #endif /* FORMAT_VALIDATIONS */ /* execute code for each state */ switch (state) { case ST_NORMAL: NORMAL_STATE: /* normal state -- just write character */ #ifdef _UNICODE bufferiswide = 1; #else /* _UNICODE */ bufferiswide = 0; #endif /* _UNICODE */ WRITE_CHAR(ch, &charsout); break; case ST_PERCENT: /* set default value of conversion parameters */ prefixlen = fldwidth = no_output = capexp = 0; flags = 0; precision = -1; bufferiswide = 0; /* default */ break; case ST_FLAG: /* set flag based on which flag character */ switch (ch) { case _T('-'): flags |= FL_LEFT; /* '-' => left justify */ break; case _T('+'): flags |= FL_SIGN; /* '+' => force sign indicator */ break; case _T(' '): flags |= FL_SIGNSP; /* ' ' => force sign or space */ break; case _T('#'): flags |= FL_ALTERNATE; /* '#' => alternate form */ break; case _T('0'): flags |= FL_LEADZERO; /* '0' => pad with leading zeros */ break; } break; case ST_WIDTH: /* update width value */ if (ch == _T('*')) { /* get width from arg list */ fldwidth = get_int_arg(&argptr); if (fldwidth < 0) { /* ANSI says neg fld width means '-' flag and pos width */ flags |= FL_LEFT; fldwidth = -fldwidth; } } else { /* add digit to current field width */ fldwidth = fldwidth * 10 + (ch - _T('0')); } break; case ST_DOT: /* zero the precision, since dot with no number means 0 not default, according to ANSI */ precision = 0; break; case ST_PRECIS: /* update precison value */ if (ch == _T('*')) { /* get precision from arg list */ precision = get_int_arg(&argptr); if (precision < 0) precision = -1; /* neg precision means default */ } else { /* add digit to current precision */ precision = precision * 10 + (ch - _T('0')); } break; case ST_SIZE: /* just read a size specifier, set the flags based on it */ switch (ch) { case _T('l'): /* * In order to handle the ll case, we depart from the * simple deterministic state machine. */ if (*format == _T('l')) { ++format; flags |= FL_LONGLONG; /* 'll' => long long */ } else { flags |= FL_LONG; /* 'l' => long int or wchar_t */ } break; case _T('I'): /* * In order to handle the I, I32, and I64 size modifiers, we * depart from the simple deterministic state machine. The * code below scans for characters following the 'I', * and defaults to 64 bit on WIN64 and 32 bit on WIN32 */ #if PTR_IS_INT64 flags |= FL_I64; /* 'I' => __int64 on WIN64 systems */ #endif /* PTR_IS_INT64 */ if ( (*format == _T('6')) && (*(format + 1) == _T('4')) ) { format += 2; flags |= FL_I64; /* I64 => __int64 */ } else if ( (*format == _T('3')) && (*(format + 1) == _T('2')) ) { format += 2; flags &= ~FL_I64; /* I32 => __int32 */ } else if ( (*format == _T('d')) || (*format == _T('i')) || (*format == _T('o')) || (*format == _T('u')) || (*format == _T('x')) || (*format == _T('X')) ) { /* * Nothing further needed. %Id (et al) is * handled just like %d, except that it defaults to 64 bits * on WIN64. Fall through to the next iteration. */ } else { state = ST_NORMAL; goto NORMAL_STATE; } break; case _T('h'): flags |= FL_SHORT; /* 'h' => short int or char */ break; case _T('w'): flags |= FL_WIDECHAR; /* 'w' => wide character */ break; } break; case ST_TYPE: /* we have finally read the actual type character, so we */ /* now format and "print" the output. We use a big switch */ /* statement that sets 'text' to point to the text that should */ /* be printed, and 'textlen' to the length of this text. */ /* Common code later on takes care of justifying it and */ /* other miscellaneous chores. Note that cases share code, */ /* in particular, all integer formatting is done in one place. */ /* Look at those funky goto statements! */ switch (ch) { case _T('C'): /* ISO wide character */ if (!(flags & (FL_SHORT|FL_LONG|FL_WIDECHAR))) #ifdef _UNICODE flags |= FL_SHORT; #else /* _UNICODE */ flags |= FL_WIDECHAR; /* ISO std. */ #endif /* _UNICODE */ /* fall into 'c' case */ case _T('c'): { /* print a single character specified by int argument */ #ifdef _UNICODE bufferiswide = 1; wchar = (wchar_t) get_int_arg(&argptr); if (flags & FL_SHORT) { /* format multibyte character */ /* this is an extension of ANSI */ char tempchar[2]; { tempchar[0] = (char)(wchar & 0x00ff); tempchar[1] = '\0'; } if (_MBTOWC(buffer.wz,tempchar, MB_CUR_MAX) < 0) { /* ignore if conversion was unsuccessful */ no_output = 1; } } else { buffer.wz[0] = wchar; } text.wz = buffer.wz; textlen = 1; /* print just a single character */ #else /* _UNICODE */ if (flags & (FL_LONG|FL_WIDECHAR)) { wchar = (wchar_t) get_short_arg(&argptr); no_output = 1; } else { /* format multibyte character */ /* this is an extension of ANSI */ unsigned short temp; wchar = (wchar_t)get_int_arg(&argptr); temp = (unsigned short)wchar; { buffer.sz[0] = (char) temp; textlen = 1; } } text.sz = buffer.sz; #endif /* _UNICODE */ } break; case _T('Z'): { /* print a Counted String */ struct _count_string { short Length; short MaximumLength; char *Buffer; } *pstr; pstr = (struct _count_string *)get_ptr_arg(&argptr); if (pstr == NULL || pstr->Buffer == NULL) { /* null ptr passed, use special string */ text.sz = __nullstring; textlen = (int)strlen(text.sz); } else { if (flags & FL_WIDECHAR) { text.wz = (wchar_t *)pstr->Buffer; textlen = pstr->Length / (int)sizeof(wchar_t); bufferiswide = 1; } else { bufferiswide = 0; text.sz = pstr->Buffer; textlen = pstr->Length; } } } break; case _T('S'): /* ISO wide character string */ #ifndef _UNICODE if (!(flags & (FL_SHORT|FL_LONG|FL_WIDECHAR))) flags |= FL_WIDECHAR; #else /* _UNICODE */ if (!(flags & (FL_SHORT|FL_LONG|FL_WIDECHAR))) flags |= FL_SHORT; #endif /* _UNICODE */ case _T('s'): { /* print a string -- */ /* ANSI rules on how much of string to print: */ /* all if precision is default, */ /* min(precision, length) if precision given. */ /* prints '(null)' if a null string is passed */ int i; const char *p; /* temps */ const wchar_t *pwch; /* At this point it is tempting to use strlen(), but */ /* if a precision is specified, we're not allowed to */ /* scan past there, because there might be no null */ /* at all. Thus, we must do our own scan. */ i = (precision == -1) ? INT_MAX : precision; text.sz = (char *)get_ptr_arg(&argptr); /* scan for null upto i characters */ #ifdef _UNICODE if (flags & FL_SHORT) { if (text.sz == NULL) /* NULL passed, use special string */ text.sz = __nullstring; p = text.sz; for (textlen=0; textlen<i && *p; textlen++) { ++p; } /* textlen now contains length in multibyte chars */ } else { if (text.wz == NULL) /* NULL passed, use special string */ text.wz = __wnullstring; bufferiswide = 1; pwch = text.wz; while (i-- && *pwch) ++pwch; textlen = (int)(pwch - text.wz); /* in wchar_ts */ /* textlen now contains length in wide chars */ } #else /* _UNICODE */ if (flags & (FL_LONG|FL_WIDECHAR)) { if (text.wz == NULL) /* NULL passed, use special string */ text.wz = __wnullstring; bufferiswide = 1; pwch = text.wz; while ( i-- && *pwch ) ++pwch; textlen = (int)(pwch - text.wz); /* textlen now contains length in wide chars */ } else { if (text.sz == NULL) /* NULL passed, use special string */ text.sz = __nullstring; p = text.sz; while (i-- && *p) ++p; textlen = (int)(p - text.sz); /* length of the string */ } #endif /* _UNICODE */ } break; case _T('n'): { /* write count of characters seen so far into */ /* short/int/long thru ptr read from args */ void *p; /* temp */ p = get_ptr_arg(&argptr); /* %n is disabled */ _VALIDATE_RETURN(("'n' format specifier disabled" && 0), EINVAL, -1); break; /* store chars out into short/long/int depending on flags */ #if !LONG_IS_INT if (flags & FL_LONG) *(long *)p = charsout; else #endif /* !LONG_IS_INT */ #if !SHORT_IS_INT if (flags & FL_SHORT) *(short *)p = (short) charsout; else #endif /* !SHORT_IS_INT */ *(int *)p = charsout; no_output = 1; /* force no output */ } break; case _T('E'): case _T('G'): case _T('A'): capexp = 1; /* capitalize exponent */ ch += _T('a') - _T('A'); /* convert format char to lower */ /* DROP THROUGH */ case _T('e'): case _T('f'): case _T('g'): case _T('a'): { /* floating point conversion -- we call cfltcvt routines */ /* to do the work for us. */ flags |= FL_SIGNED; /* floating point is signed conversion */ text.sz = buffer.sz; /* put result in buffer */ buffersize = BUFFERSIZE; /* compute the precision value */ if (precision < 0) precision = 6; /* default precision: 6 */ else if (precision == 0 && ch == _T('g')) precision = 1; /* ANSI specified */ else if (precision > MAXPRECISION) precision = MAXPRECISION; if (precision > BUFFERSIZE - _CVTBUFSIZE) { precision = BUFFERSIZE - _CVTBUFSIZE; } /* for safecrt, we pass along the FL_ALTERNATE flag to _safecrt_cfltcvt */ if (flags & FL_ALTERNATE) { capexp |= FL_ALTERNATE; } _CRT_DOUBLE tmp; tmp=va_arg(argptr, _CRT_DOUBLE); /* Note: assumes ch is in ASCII range */ /* In safecrt, we provide a special version of _cfltcvt which internally calls printf (see safecrt_output_s.c) */ _CFLTCVT(&tmp, buffer.sz, buffersize, (char)ch, precision, capexp); /* check if result was negative, save '-' for later */ /* and point to positive part (this is for '0' padding) */ if (*text.sz == '-') { flags |= FL_NEGATIVE; ++text.sz; } textlen = (int)strlen(text.sz); /* compute length of text */ } break; case _T('d'): case _T('i'): /* signed decimal output */ flags |= FL_SIGNED; radix = 10; goto COMMON_INT; case _T('u'): radix = 10; goto COMMON_INT; case _T('p'): /* write a pointer -- this is like an integer or long */ /* except we force precision to pad with zeros and */ /* output in big hex. */ precision = 2 * sizeof(void *); /* number of hex digits needed */ #if PTR_IS_INT64 flags |= FL_I64; /* assume we're converting an int64 */ #elif !PTR_IS_INT flags |= FL_LONG; /* assume we're converting a long */ #endif /* !PTR_IS_INT */ /* DROP THROUGH to hex formatting */ case _T('X'): /* unsigned upper hex output */ hexadd = _T('A') - _T('9') - 1; /* set hexadd for uppercase hex */ goto COMMON_HEX; case _T('x'): /* unsigned lower hex output */ hexadd = _T('a') - _T('9') - 1; /* set hexadd for lowercase hex */ /* DROP THROUGH TO COMMON_HEX */ COMMON_HEX: radix = 16; if (flags & FL_ALTERNATE) { /* alternate form means '0x' prefix */ prefix[0] = _T('0'); prefix[1] = (TCHAR)(_T('x') - _T('a') + _T('9') + 1 + hexadd); /* 'x' or 'X' */ prefixlen = 2; } goto COMMON_INT; case _T('o'): /* unsigned octal output */ radix = 8; if (flags & FL_ALTERNATE) { /* alternate form means force a leading 0 */ flags |= FL_FORCEOCTAL; } /* DROP THROUGH to COMMON_INT */ COMMON_INT: { /* This is the general integer formatting routine. */ /* Basically, we get an argument, make it positive */ /* if necessary, and convert it according to the */ /* correct radix, setting text and textlen */ /* appropriately. */ #if _INTEGRAL_MAX_BITS >= 64 // unsigned __int64 number; /* number to convert */ __uint64_t number; /* number to convert */ int digit; /* ascii value of digit */ __int64 l; /* temp long value */ #else /* _INTEGRAL_MAX_BITS >= 64 */ unsigned long number; /* number to convert */ int digit; /* ascii value of digit */ long l; /* temp long value */ #endif /* _INTEGRAL_MAX_BITS >= 64 */ /* 1. read argument into l, sign extend as needed */ #if _INTEGRAL_MAX_BITS >= 64 if (flags & FL_I64) l = get_int64_arg(&argptr); else #endif /* _INTEGRAL_MAX_BITS >= 64 */ if (flags & FL_LONGLONG) l = get_long_long_arg(&argptr); else #if !LONG_IS_INT if (flags & FL_LONG) l = get_long_arg(&argptr); else #endif /* !LONG_IS_INT */ #if !SHORT_IS_INT if (flags & FL_SHORT) { if (flags & FL_SIGNED) l = (short) get_int_arg(&argptr); /* sign extend */ else l = (unsigned short) get_int_arg(&argptr); /* zero-extend*/ } else #endif /* !SHORT_IS_INT */ { if (flags & FL_SIGNED) l = get_int_arg(&argptr); /* sign extend */ else l = (unsigned int) get_int_arg(&argptr); /* zero-extend*/ } /* 2. check for negative; copy into number */ if ( (flags & FL_SIGNED) && l < 0) { number = -l; flags |= FL_NEGATIVE; /* remember negative sign */ } else { number = l; } #if _INTEGRAL_MAX_BITS >= 64 if ( (flags & FL_I64) == 0 && (flags & FL_LONGLONG) == 0 ) { /* * Unless printing a full 64-bit value, insure values * here are not in cananical longword format to prevent * the sign extended upper 32-bits from being printed. */ number &= 0xffffffff; } #endif /* _INTEGRAL_MAX_BITS >= 64 */ /* 3. check precision value for default; non-default */ /* turns off 0 flag, according to ANSI. */ if (precision < 0) precision = 1; /* default precision */ else { flags &= ~FL_LEADZERO; if (precision > MAXPRECISION) precision = MAXPRECISION; } /* 4. Check if data is 0; if so, turn off hex prefix */ if (number == 0) prefixlen = 0; /* 5. Convert data to ASCII -- note if precision is zero */ /* and number is zero, we get no digits at all. */ char *sz; sz = &buffer.sz[BUFFERSIZE-1]; /* last digit at end of buffer */ while (precision-- > 0 || number != 0) { digit = (int)(number % radix) + '0'; number /= radix; /* reduce number */ if (digit > '9') { /* a hex digit, make it a letter */ digit += hexadd; } *sz-- = (char)digit; /* store the digit */ } textlen = (int)((char *)&buffer.sz[BUFFERSIZE-1] - sz); /* compute length of number */ ++sz; /* text points to first digit now */ /* 6. Force a leading zero if FORCEOCTAL flag set */ if ((flags & FL_FORCEOCTAL) && (textlen == 0 || sz[0] != '0')) { *--sz = '0'; ++textlen; /* add a zero */ } text.sz = sz; } break; } /* At this point, we have done the specific conversion, and */ /* 'text' points to text to print; 'textlen' is length. Now we */ /* justify it, put on prefixes, leading zeros, and then */ /* print it. */ if (!no_output) { int padding; /* amount of padding, negative means zero */ if (flags & FL_SIGNED) { if (flags & FL_NEGATIVE) { /* prefix is a '-' */ prefix[0] = _T('-'); prefixlen = 1; } else if (flags & FL_SIGN) { /* prefix is '+' */ prefix[0] = _T('+'); prefixlen = 1; } else if (flags & FL_SIGNSP) { /* prefix is ' ' */ prefix[0] = _T(' '); prefixlen = 1; } } /* calculate amount of padding -- might be negative, */ /* but this will just mean zero */ padding = fldwidth - textlen - prefixlen; /* put out the padding, prefix, and text, in the correct order */ if (!(flags & (FL_LEFT | FL_LEADZERO))) { /* pad on left with blanks */ WRITE_MULTI_CHAR(_T(' '), padding, &charsout); } /* write prefix */ WRITE_STRING(prefix, prefixlen, &charsout); if ((flags & FL_LEADZERO) && !(flags & FL_LEFT)) { /* write leading zeros */ WRITE_MULTI_CHAR(_T('0'), padding, &charsout); } /* write text */ #ifndef _UNICODE if (bufferiswide && (textlen > 0)) { charsout = -1; } else { WRITE_STRING(text.sz, textlen, &charsout); } #else /* _UNICODE */ if (!bufferiswide && textlen > 0) { char *p; int retval = 0 int count; p = text.sz; count = textlen; while (count-- > 0) { retval = _MBTOWC(&wchar, p, MB_CUR_MAX); if (retval <= 0) { charsout = -1; break; } WRITE_CHAR(wchar, &charsout); p += retval; } } else { WRITE_STRING(text.wz, textlen, &charsout); } #endif /* _UNICODE */ if (charsout >= 0 && (flags & FL_LEFT)) { /* pad on right with blanks */ WRITE_MULTI_CHAR(_T(' '), padding, &charsout); } /* we're done! */ }