Example #1
0
static void print_ix_block_entry(FILE *list, struct fcb *f, struct ix_block *b, int i)
{int lc,temp; struct key k; level0_pntr p0; struct leveln_pntr pn;

  get_nth_key(b,&k,i);
  lc = k.lc;
  fprintf(list,"%4d %4d ",b->keys[i],lc);
  print_key(list,b->index_type,&k,"");
  if ( b->level>0 ) {
    temp = unpackn_ptr(b,i,&pn);
    print_leveln_pntr(list," - ",&pn);
    fprintf(list,"(lc=%d)\n",temp);
  }
  else {
    temp = unpack0_ptr(f,b,i,&p0);
    print_level0_pntr(list,f," - ",&p0);
    fprintf(list,"(ptr_lc=%d)\n",temp);
  }
}
Example #2
0
NeuralNetwork* Phenotype::get_network(Individual* individual) {
    NeuralNetwork* network = new NeuralNetwork();

    // Locate markers
    vector< pair<int, int> > raw_markers = get_markers(individual);
    vector< pair<int, int> > markers;
    for (int i = 0; i < raw_markers.size(); i++) {
        if (get_slice_size(individual, raw_markers[i]) >= 7) {
            markers.push_back(raw_markers[i]);
        }
    }
    
    // Create input neurons
    for (int i = 0; i < individual->input_units_; i++) {
        Neuron neuron;
            
        neuron.label_ = i;
            
        network->input_neurons_.push_back(neuron);
    }
    
    // Create hidden neurons
    for (int i = 0; i < markers.size(); i++) {
        Neuron neuron;
            
        neuron.label_ = get_label(individual, markers[i]);
        
        neuron.bias_ = get_bias(individual, markers[i]);
        
        neuron.output_ = neuron.bias_;
            
        network->hidden_neurons_.push_back(neuron);
    }
    
    // Create output neurons
    for (int i = 0; i < individual->output_units_; i++) {
        Neuron neuron;
            
        neuron.label_ = i;
        
        neuron.bias_ = individual->genes_[(individual->genes_.size()-individual->output_units_) + i];
            
        network->output_neurons_.push_back(neuron);
    }
    
    // Create links
    for (int i = 0; i < markers.size(); i++) {
        Neuron& neuron = network->hidden_neurons_[i];

        int connections = (get_slice_size(individual, markers[i]) - 2) / 3;
        
        for (int j = 0; j < connections; j++) {
            signed char key = get_nth_key(individual, markers[i], j);
            int label = get_nth_label(individual, markers[i], j);
            signed char weight = get_nth_weight(individual, markers[i], j);
            
            // Link to input/output layer
            if (key > 0) {
                // Input
                if (label > 0) {
                    Neuron& input = network->input_neurons_[label % network->input_neurons_.size()];
                    
                    input.outputs_.push_back(&neuron);
                    neuron.inputs_.push_back(pair<signed char, Neuron*>(weight, &input));
                }
                // Output
                else {
                    Neuron& output = network->output_neurons_[abs(label) % network->output_neurons_.size()];
                    
                    neuron.outputs_.push_back(&output);
                    output.inputs_.push_back(pair<signed char, Neuron*>(weight, &neuron));
                }

            }
            // Link to hidden layer
            else {
                int hidden_label = get_hidden_label(individual, label);
                Neuron* hidden = get_closest_neuron(hidden_label, network->hidden_neurons_);
                
                hidden->outputs_.push_back(&neuron);
                neuron.inputs_.push_back(pair<signed char, Neuron*>(weight, hidden));
            }
        }
    }
    
    return network;
}