void get_region_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness, int *map) { int i; float *const predictions = l.output; #pragma omp parallel for for (i = 0; i < l.w*l.h; ++i){ int j, n; int row = i / l.w; int col = i % l.w; for(n = 0; n < l.n; ++n){ int index = i*l.n + n; int p_index = index * (l.classes + 5) + 4; float scale = predictions[p_index]; if(l.classfix == -1 && scale < .5) scale = 0; int box_index = index * (l.classes + 5); boxes[index] = get_region_box(predictions, l.biases, n, box_index, col, row, l.w, l.h); boxes[index].x *= w; boxes[index].y *= h; boxes[index].w *= w; boxes[index].h *= h; int class_index = index * (l.classes + 5) + 5; if(l.softmax_tree){ hierarchy_predictions(predictions + class_index, l.classes, l.softmax_tree, 0); int found = 0; if(map){ for(j = 0; j < 200; ++j){ float prob = scale*predictions[class_index+map[j]]; probs[index][j] = (prob > thresh) ? prob : 0; } } else { for(j = l.classes - 1; j >= 0; --j){ if(!found && predictions[class_index + j] > .5){ found = 1; } else { predictions[class_index + j] = 0; } float prob = predictions[class_index+j]; probs[index][j] = (scale > thresh) ? prob : 0; } } } else { for(j = 0; j < l.classes; ++j){ float prob = scale*predictions[class_index+j]; probs[index][j] = (prob > thresh) ? prob : 0; } } if(only_objectness){ probs[index][0] = scale; } } } }
float delta_region_box(box truth, float *x, float *biases, int n, int index, int i, int j, int w, int h, float *delta, float scale, int stride) { box pred = get_region_box(x, biases, n, index, i, j, w, h, stride); float iou = box_iou(pred, truth); float tx = (truth.x*w - i); float ty = (truth.y*h - j); float tw = log(truth.w*w / biases[2*n]); float th = log(truth.h*h / biases[2*n + 1]); delta[index + 0*stride] = scale * (tx - x[index + 0*stride]); delta[index + 1*stride] = scale * (ty - x[index + 1*stride]); delta[index + 2*stride] = scale * (tw - x[index + 2*stride]); delta[index + 3*stride] = scale * (th - x[index + 3*stride]); return iou; }
float delta_region_box(box truth, float *x, float *biases, int n, int index, int i, int j, int w, int h, float *delta, float scale) { box pred = get_region_box(x, biases, n, index, i, j, w, h); float iou = box_iou(pred, truth); float tx = (truth.x*w - i); float ty = (truth.y*h - j); float tw = log(truth.w / biases[2*n]); float th = log(truth.h / biases[2*n + 1]); if(DOABS){ tw = log(truth.w*w / biases[2*n]); th = log(truth.h*h / biases[2*n + 1]); } delta[index + 0] = scale * (tx - logistic_activate(x[index + 0])) * logistic_gradient(logistic_activate(x[index + 0])); delta[index + 1] = scale * (ty - logistic_activate(x[index + 1])) * logistic_gradient(logistic_activate(x[index + 1])); delta[index + 2] = scale * (tw - x[index + 2]); delta[index + 3] = scale * (th - x[index + 3]); return iou; }
void get_region_detections(layer l, int w, int h, int netw, int neth, float thresh, int *map, float tree_thresh, int relative, detection *dets) { int i, j, n, z; float *predictions = l.output; if (l.batch == 2) { float *flip = l.output + l.outputs; for (j = 0; j < l.h; ++j) { for (i = 0; i < l.w / 2; ++i) { for (n = 0; n < l.n; ++n) { for (z = 0; z < l.classes + l.coords + 1; ++z) { int i1 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + i; int i2 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + (l.w - i - 1); float swap = flip[i1]; flip[i1] = flip[i2]; flip[i2] = swap; if (z == 0) { flip[i1] = -flip[i1]; flip[i2] = -flip[i2]; } } } } } for (i = 0; i < l.outputs; ++i) { l.output[i] = (l.output[i] + flip[i]) / 2.; } } for (i = 0; i < l.w*l.h; ++i) { int row = i / l.w; int col = i % l.w; for (n = 0; n < l.n; ++n) { int index = n*l.w*l.h + i; for (j = 0; j < l.classes; ++j) { dets[index].prob[j] = 0; } int obj_index = entry_index(l, 0, n*l.w*l.h + i, l.coords); int box_index = entry_index(l, 0, n*l.w*l.h + i, 0); int mask_index = entry_index(l, 0, n*l.w*l.h + i, 4); float scale = l.background ? 1 : predictions[obj_index]; dets[index].bbox = get_region_box(predictions, l.biases, n, box_index, col, row, l.w, l.h);// , l.w*l.h); dets[index].objectness = scale > thresh ? scale : 0; if (dets[index].mask) { for (j = 0; j < l.coords - 4; ++j) { dets[index].mask[j] = l.output[mask_index + j*l.w*l.h]; } } int class_index = entry_index(l, 0, n*l.w*l.h + i, l.coords + !l.background); if (l.softmax_tree) { hierarchy_predictions(predictions + class_index, l.classes, l.softmax_tree, 0);// , l.w*l.h); if (map) { for (j = 0; j < 200; ++j) { int class_index = entry_index(l, 0, n*l.w*l.h + i, l.coords + 1 + map[j]); float prob = scale*predictions[class_index]; dets[index].prob[j] = (prob > thresh) ? prob : 0; } } else { int j = hierarchy_top_prediction(predictions + class_index, l.softmax_tree, tree_thresh, l.w*l.h); dets[index].prob[j] = (scale > thresh) ? scale : 0; } } else { if (dets[index].objectness) { for (j = 0; j < l.classes; ++j) { int class_index = entry_index(l, 0, n*l.w*l.h + i, l.coords + 1 + j); float prob = scale*predictions[class_index]; dets[index].prob[j] = (prob > thresh) ? prob : 0; } } } } } correct_region_boxes(dets, l.w*l.h*l.n, w, h, netw, neth, relative); }
void forward_region_layer(const region_layer l, network_state state) { int i,j,b,t,n; int size = l.coords + l.classes + 1; memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float)); #ifndef GPU flatten(l.output, l.w*l.h, size*l.n, l.batch, 1); #endif for (b = 0; b < l.batch; ++b){ for(i = 0; i < l.h*l.w*l.n; ++i){ int index = size*i + b*l.outputs; l.output[index + 4] = logistic_activate(l.output[index + 4]); } } #ifndef GPU if (l.softmax_tree){ for (b = 0; b < l.batch; ++b){ for(i = 0; i < l.h*l.w*l.n; ++i){ int index = size*i + b*l.outputs; softmax_tree(l.output + index + 5, 1, 0, 1, l.softmax_tree, l.output + index + 5); } } } else if (l.softmax){ for (b = 0; b < l.batch; ++b){ for(i = 0; i < l.h*l.w*l.n; ++i){ int index = size*i + b*l.outputs; softmax(l.output + index + 5, l.classes, 1, l.output + index + 5, 1); } } } #endif if(!state.train) return; memset(l.delta, 0, l.outputs * l.batch * sizeof(float)); float avg_iou = 0; float recall = 0; float avg_cat = 0; float avg_obj = 0; float avg_anyobj = 0; int count = 0; int class_count = 0; *(l.cost) = 0; for (b = 0; b < l.batch; ++b) { if(l.softmax_tree){ int onlyclass_id = 0; for(t = 0; t < l.max_boxes; ++t){ box truth = float_to_box(state.truth + t*5 + b*l.truths); if(!truth.x) break; // continue; int class_id = state.truth[t*5 + b*l.truths + 4]; float maxp = 0; int maxi = 0; if(truth.x > 100000 && truth.y > 100000){ for(n = 0; n < l.n*l.w*l.h; ++n){ int index = size*n + b*l.outputs + 5; float scale = l.output[index-1]; float p = scale*get_hierarchy_probability(l.output + index, l.softmax_tree, class_id); if(p > maxp){ maxp = p; maxi = n; } } int index = size*maxi + b*l.outputs + 5; delta_region_class(l.output, l.delta, index, class_id, l.classes, l.softmax_tree, l.class_scale, &avg_cat, l.focal_loss); ++class_count; onlyclass_id = 1; break; } } if(onlyclass_id) continue; } for (j = 0; j < l.h; ++j) { for (i = 0; i < l.w; ++i) { for (n = 0; n < l.n; ++n) { int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs; box pred = get_region_box(l.output, l.biases, n, index, i, j, l.w, l.h); float best_iou = 0; int best_class_id = -1; for(t = 0; t < l.max_boxes; ++t){ box truth = float_to_box(state.truth + t*5 + b*l.truths); int class_id = state.truth[t * 5 + b*l.truths + 4]; if (class_id >= l.classes) continue; // if label contains class_id more than number of classes in the cfg-file if(!truth.x) break; // continue; float iou = box_iou(pred, truth); if (iou > best_iou) { best_class_id = state.truth[t*5 + b*l.truths + 4]; best_iou = iou; } } avg_anyobj += l.output[index + 4]; l.delta[index + 4] = l.noobject_scale * ((0 - l.output[index + 4]) * logistic_gradient(l.output[index + 4])); if(l.classfix == -1) l.delta[index + 4] = l.noobject_scale * ((best_iou - l.output[index + 4]) * logistic_gradient(l.output[index + 4])); else{ if (best_iou > l.thresh) { l.delta[index + 4] = 0; if(l.classfix > 0){ delta_region_class(l.output, l.delta, index + 5, best_class_id, l.classes, l.softmax_tree, l.class_scale*(l.classfix == 2 ? l.output[index + 4] : 1), &avg_cat, l.focal_loss); ++class_count; } } } if(*(state.net.seen) < 12800){ box truth = {0}; truth.x = (i + .5)/l.w; truth.y = (j + .5)/l.h; truth.w = l.biases[2*n]; truth.h = l.biases[2*n+1]; if(DOABS){ truth.w = l.biases[2*n]/l.w; truth.h = l.biases[2*n+1]/l.h; } delta_region_box(truth, l.output, l.biases, n, index, i, j, l.w, l.h, l.delta, .01); } } } } for(t = 0; t < l.max_boxes; ++t){ box truth = float_to_box(state.truth + t*5 + b*l.truths); int class_id = state.truth[t * 5 + b*l.truths + 4]; if (class_id >= l.classes) { printf(" Warning: in txt-labels class_id=%d >= classes=%d in cfg-file. In txt-labels class_id should be [from 0 to %d] \n", class_id, l.classes, l.classes-1); getchar(); continue; // if label contains class_id more than number of classes in the cfg-file } if(!truth.x) break; // continue; float best_iou = 0; int best_index = 0; int best_n = 0; i = (truth.x * l.w); j = (truth.y * l.h); //printf("%d %f %d %f\n", i, truth.x*l.w, j, truth.y*l.h); box truth_shift = truth; truth_shift.x = 0; truth_shift.y = 0; //printf("index %d %d\n",i, j); for(n = 0; n < l.n; ++n){ int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs; box pred = get_region_box(l.output, l.biases, n, index, i, j, l.w, l.h); if(l.bias_match){ pred.w = l.biases[2*n]; pred.h = l.biases[2*n+1]; if(DOABS){ pred.w = l.biases[2*n]/l.w; pred.h = l.biases[2*n+1]/l.h; } } //printf("pred: (%f, %f) %f x %f\n", pred.x, pred.y, pred.w, pred.h); pred.x = 0; pred.y = 0; float iou = box_iou(pred, truth_shift); if (iou > best_iou){ best_index = index; best_iou = iou; best_n = n; } } //printf("%d %f (%f, %f) %f x %f\n", best_n, best_iou, truth.x, truth.y, truth.w, truth.h); float iou = delta_region_box(truth, l.output, l.biases, best_n, best_index, i, j, l.w, l.h, l.delta, l.coord_scale); if(iou > .5) recall += 1; avg_iou += iou; //l.delta[best_index + 4] = iou - l.output[best_index + 4]; avg_obj += l.output[best_index + 4]; l.delta[best_index + 4] = l.object_scale * (1 - l.output[best_index + 4]) * logistic_gradient(l.output[best_index + 4]); if (l.rescore) { l.delta[best_index + 4] = l.object_scale * (iou - l.output[best_index + 4]) * logistic_gradient(l.output[best_index + 4]); } if (l.map) class_id = l.map[class_id]; delta_region_class(l.output, l.delta, best_index + 5, class_id, l.classes, l.softmax_tree, l.class_scale, &avg_cat, l.focal_loss); ++count; ++class_count; } } //printf("\n"); #ifndef GPU flatten(l.delta, l.w*l.h, size*l.n, l.batch, 0); #endif *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2); printf("Region Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, Avg Recall: %f, count: %d\n", avg_iou/count, avg_cat/class_count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, count); }