/******************************************************************************* * This function invokes the PSCI library interface to initialize the * non secure cpu context and copies the relevant cpu context register values * to smc context. These registers will get programmed during `smc_exit`. ******************************************************************************/ static void sp_min_prepare_next_image_entry(void) { entry_point_info_t *next_image_info; cpu_context_t *ctx = cm_get_context(NON_SECURE); u_register_t ns_sctlr; /* Program system registers to proceed to non-secure */ next_image_info = sp_min_plat_get_bl33_ep_info(); assert(next_image_info); assert(NON_SECURE == GET_SECURITY_STATE(next_image_info->h.attr)); INFO("SP_MIN: Preparing exit to normal world\n"); psci_prepare_next_non_secure_ctx(next_image_info); smc_set_next_ctx(NON_SECURE); /* Copy r0, lr and spsr from cpu context to SMC context */ copy_cpu_ctx_to_smc_stx(get_regs_ctx(cm_get_context(NON_SECURE)), smc_get_next_ctx()); /* Temporarily set the NS bit to access NS SCTLR */ write_scr(read_scr() | SCR_NS_BIT); isb(); ns_sctlr = read_ctx_reg(get_regs_ctx(ctx), CTX_NS_SCTLR); write_sctlr(ns_sctlr); isb(); write_scr(read_scr() & ~SCR_NS_BIT); isb(); }
/****************************************************************************** * This function is invoked during warm boot. Invoke the PSCI library * warm boot entry point which takes care of Architectural and platform setup/ * restore. Copy the relevant cpu_context register values to smc context which * will get programmed during `smc_exit`. *****************************************************************************/ void sp_min_warm_boot(void) { smc_ctx_t *next_smc_ctx; cpu_context_t *ctx = cm_get_context(NON_SECURE); u_register_t ns_sctlr; psci_warmboot_entrypoint(); smc_set_next_ctx(NON_SECURE); next_smc_ctx = smc_get_next_ctx(); zeromem(next_smc_ctx, sizeof(smc_ctx_t)); copy_cpu_ctx_to_smc_stx(get_regs_ctx(cm_get_context(NON_SECURE)), next_smc_ctx); /* Temporarily set the NS bit to access NS SCTLR */ write_scr(read_scr() | SCR_NS_BIT); isb(); ns_sctlr = read_ctx_reg(get_regs_ctx(ctx), CTX_NS_SCTLR); write_sctlr(ns_sctlr); isb(); write_scr(read_scr() & ~SCR_NS_BIT); isb(); }
/******************************************************************************* * The following function initializes the cpu_context 'ctx' for * first use, and sets the initial entrypoint state as specified by the * entry_point_info structure. * * The security state to initialize is determined by the SECURE attribute * of the entry_point_info. The function returns a pointer to the initialized * context and sets this as the next context to return to. * * The EE and ST attributes are used to configure the endianness and secure * timer availability for the new execution context. * * To prepare the register state for entry call cm_prepare_el3_exit() and * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to * cm_e1_sysreg_context_restore(). ******************************************************************************/ static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep) { unsigned int security_state; uint32_t scr, sctlr; regs_t *reg_ctx; assert(ctx); security_state = GET_SECURITY_STATE(ep->h.attr); /* Clear any residual register values from the context */ memset(ctx, 0, sizeof(*ctx)); reg_ctx = get_regs_ctx(ctx); /* * Base the context SCR on the current value, adjust for entry point * specific requirements */ scr = read_scr(); scr &= ~(SCR_NS_BIT | SCR_HCE_BIT); if (security_state != SECURE) scr |= SCR_NS_BIT; /* * Set up SCTLR for the Non Secure context. * EE bit is taken from the entrypoint attributes * M, C and I bits must be zero (as required by PSCI specification) * * The target exception level is based on the spsr mode requested. * If execution is requested to hyp mode, HVC is enabled * via SCR.HCE. * * Always compute the SCTLR_EL1 value and save in the cpu_context * - the HYP registers are set up by cm_preapre_ns_entry() as they * are not part of the stored cpu_context * * TODO: In debug builds the spsr should be validated and checked * against the CPU support, security state, endianness and pc */ if (security_state != SECURE) { sctlr = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0; sctlr |= SCTLR_RES1; write_ctx_reg(reg_ctx, CTX_NS_SCTLR, sctlr); } if (GET_M32(ep->spsr) == MODE32_hyp) scr |= SCR_HCE_BIT; write_ctx_reg(reg_ctx, CTX_SCR, scr); write_ctx_reg(reg_ctx, CTX_LR, ep->pc); write_ctx_reg(reg_ctx, CTX_SPSR, ep->spsr); /* * Store the r0-r3 value from the entrypoint into the context * Use memcpy as we are in control of the layout of the structures */ memcpy((void *)reg_ctx, (void *)&ep->args, sizeof(aapcs32_params_t)); }
/****************************************************************************** * This function is invoked during warm boot. Invoke the PSCI library * warm boot entry point which takes care of Architectural and platform setup/ * restore. Copy the relevant cpu_context register values to smc context which * will get programmed during `smc_exit`. *****************************************************************************/ void sp_min_warm_boot(void) { smc_ctx_t *next_smc_ctx; psci_warmboot_entrypoint(); smc_set_next_ctx(NON_SECURE); next_smc_ctx = smc_get_next_ctx(); memset(next_smc_ctx, 0, sizeof(smc_ctx_t)); copy_cpu_ctx_to_smc_stx(get_regs_ctx(cm_get_context(NON_SECURE)), next_smc_ctx); }
/******************************************************************************* * This function invokes the PSCI library interface to initialize the * non secure cpu context and copies the relevant cpu context register values * to smc context. These registers will get programmed during `smc_exit`. ******************************************************************************/ static void sp_min_prepare_next_image_entry(void) { entry_point_info_t *next_image_info; /* Program system registers to proceed to non-secure */ next_image_info = sp_min_plat_get_bl33_ep_info(); assert(next_image_info); assert(NON_SECURE == GET_SECURITY_STATE(next_image_info->h.attr)); INFO("SP_MIN: Preparing exit to normal world\n"); psci_prepare_next_non_secure_ctx(next_image_info); smc_set_next_ctx(NON_SECURE); /* Copy r0, lr and spsr from cpu context to SMC context */ copy_cpu_ctx_to_smc_stx(get_regs_ctx(cm_get_context(NON_SECURE)), smc_get_next_ctx()); }
/******************************************************************************* * Prepare the CPU system registers for first entry into secure or normal world * * If execution is requested to hyp mode, HSCTLR is initialized * If execution is requested to non-secure PL1, and the CPU supports * HYP mode then HYP mode is disabled by configuring all necessary HYP mode * registers. ******************************************************************************/ void cm_prepare_el3_exit(uint32_t security_state) { uint32_t sctlr, scr, hcptr; cpu_context_t *ctx = cm_get_context(security_state); assert(ctx); if (security_state == NON_SECURE) { scr = read_ctx_reg(get_regs_ctx(ctx), CTX_SCR); if (scr & SCR_HCE_BIT) { /* Use SCTLR value to initialize HSCTLR */ sctlr = read_ctx_reg(get_regs_ctx(ctx), CTX_NS_SCTLR); sctlr |= HSCTLR_RES1; /* Temporarily set the NS bit to access HSCTLR */ write_scr(read_scr() | SCR_NS_BIT); /* * Make sure the write to SCR is complete so that * we can access HSCTLR */ isb(); write_hsctlr(sctlr); isb(); write_scr(read_scr() & ~SCR_NS_BIT); isb(); } else if (read_id_pfr1() & (ID_PFR1_VIRTEXT_MASK << ID_PFR1_VIRTEXT_SHIFT)) { /* * Set the NS bit to access NS copies of certain banked * registers */ write_scr(read_scr() | SCR_NS_BIT); isb(); /* PL2 present but unused, need to disable safely */ write_hcr(0); /* HSCTLR : can be ignored when bypassing */ /* HCPTR : disable all traps TCPAC, TTA, TCP */ hcptr = read_hcptr(); hcptr &= ~(TCPAC_BIT | TTA_BIT | TCP11_BIT | TCP10_BIT); write_hcptr(hcptr); /* Enable EL1 access to timer */ write_cnthctl(PL1PCEN_BIT | PL1PCTEN_BIT); /* Reset CNTVOFF_EL2 */ write64_cntvoff(0); /* Set VPIDR, VMPIDR to match MIDR, MPIDR */ write_vpidr(read_midr()); write_vmpidr(read_mpidr()); /* * Reset VTTBR. * Needed because cache maintenance operations depend on * the VMID even when non-secure EL1&0 stage 2 address * translation are disabled. */ write64_vttbr(0); /* * Avoid unexpected debug traps in case where HDCR * is not completely reset by the hardware - set * HDCR.HPMN to PMCR.N and zero the remaining bits. * The HDCR.HPMN and PMCR.N fields are the same size * (5 bits) and HPMN is at offset zero within HDCR. */ write_hdcr((read_pmcr() & PMCR_N_BITS) >> PMCR_N_SHIFT); /* * Reset CNTHP_CTL to disable the EL2 physical timer and * therefore prevent timer interrupts. */ write_cnthp_ctl(0); isb(); write_scr(read_scr() & ~SCR_NS_BIT); isb(); }
/******************************************************************************* * Prepare the CPU system registers for first entry into secure or normal world * * If execution is requested to hyp mode, HSCTLR is initialized * If execution is requested to non-secure PL1, and the CPU supports * HYP mode then HYP mode is disabled by configuring all necessary HYP mode * registers. ******************************************************************************/ void cm_prepare_el3_exit(uint32_t security_state) { uint32_t sctlr, scr, hcptr; cpu_context_t *ctx = cm_get_context(security_state); assert(ctx); if (security_state == NON_SECURE) { scr = read_ctx_reg(get_regs_ctx(ctx), CTX_SCR); if (scr & SCR_HCE_BIT) { /* Use SCTLR value to initialize HSCTLR */ sctlr = read_ctx_reg(get_regs_ctx(ctx), CTX_NS_SCTLR); sctlr |= HSCTLR_RES1; /* Temporarily set the NS bit to access HSCTLR */ write_scr(read_scr() | SCR_NS_BIT); /* * Make sure the write to SCR is complete so that * we can access HSCTLR */ isb(); write_hsctlr(sctlr); isb(); write_scr(read_scr() & ~SCR_NS_BIT); isb(); } else if (read_id_pfr1() & (ID_PFR1_VIRTEXT_MASK << ID_PFR1_VIRTEXT_SHIFT)) { /* Set the NS bit to access HCR, HCPTR, CNTHCTL, VPIDR, VMPIDR */ write_scr(read_scr() | SCR_NS_BIT); isb(); /* PL2 present but unused, need to disable safely */ write_hcr(0); /* HSCTLR : can be ignored when bypassing */ /* HCPTR : disable all traps TCPAC, TTA, TCP */ hcptr = read_hcptr(); hcptr &= ~(TCPAC_BIT | TTA_BIT | TCP11_BIT | TCP10_BIT); write_hcptr(hcptr); /* Enable EL1 access to timer */ write_cnthctl(PL1PCEN_BIT | PL1PCTEN_BIT); /* Reset CNTVOFF_EL2 */ write64_cntvoff(0); /* Set VPIDR, VMPIDR to match MIDR, MPIDR */ write_vpidr(read_midr()); write_vmpidr(read_mpidr()); /* * Reset VTTBR. * Needed because cache maintenance operations depend on * the VMID even when non-secure EL1&0 stage 2 address * translation are disabled. */ write64_vttbr(0); isb(); write_scr(read_scr() & ~SCR_NS_BIT); isb(); } } }