Example #1
0
double genScalData(graphSDG* SDGdata) {

    VERT_T *src, *dest;
    WEIGHT_T *wt;
    LONG_T n, m;
    VERT_T *permV;
#ifdef _OPENMP    
	omp_lock_t* vLock;
#endif
    
    double elapsed_time;
    int seed;
    
    n = N;
    m = M;
   
    /* allocate memory for edge tuples */
    src  = (VERT_T *) malloc(M*sizeof(VERT_T));
    dest = (VERT_T *) malloc(M*sizeof(VERT_T));
    assert(src  != NULL);
    assert(dest != NULL); 

    /* sprng seed */
    seed = 2387;

    elapsed_time = get_seconds();

#ifdef _OPENMP
#if PARALLEL_SDG
    omp_set_num_threads(omp_get_max_threads());
    // omp_set_num_threads(16);
#else
    omp_set_num_threads(1);
#endif
#endif
 

#ifdef _OPENMP
#pragma omp parallel
{
#endif
    int tid, nthreads;
#ifdef DIAGNOSTIC
    double elapsed_time_part;
#endif
    int *stream;

    LONG_T i, j, u, v, step;
    DOUBLE_T av, bv, cv, dv, p, S, var;
    LONG_T tmpVal;

#ifdef _OPENMP
    nthreads = omp_get_num_threads();
    tid = omp_get_thread_num();
#else
    nthreads = 1;
    tid  = 0;    
#endif
    
    /* Initialize RNG stream */ 
	stream = init_sprng(0, tid, nthreads, seed, SPRNG_DEFAULT);

#ifdef DIAGNOSTIC
    if (tid == 0) 
        elapsed_time_part = get_seconds();
#endif

    /* Start adding edges */
#ifdef _OPENMP
#pragma omp for
#endif    
    for (i=0; i<m; i++) {

        u = 1;
        v = 1;
        step = n/2;

        av = A;
        bv = B;
        cv = C;
        dv = D;

        p = sprng(stream);
        if (p < av) {
            /* Do nothing */
        } else if ((p >= av) && (p < av+bv)) {
            v += step;
        } else if ((p >= av+bv) && (p < av+bv+cv)) {
            u += step;
        } else {
            u += step;
            v += step;
        }
        
        for (j=1; j<SCALE; j++) {
            step = step/2;

            /* Vary a,b,c,d by up to 10% */
            var = 0.1;
            av *= 0.95 + var * sprng(stream);
            bv *= 0.95 + var * sprng(stream);
            cv *= 0.95 + var * sprng(stream);
            dv *= 0.95 + var * sprng(stream);

            S = av + bv + cv + dv;
            av = av/S;
            bv = bv/S;
            cv = cv/S;
            dv = dv/S;
            
            /* Choose partition */ 
            p = sprng(stream);
            if (p < av) {
                /* Do nothing */
            } else if ((p >= av) && (p < av+bv)) {
                v += step;
            } else if ((p >= av+bv) && (p < av+bv+cv)) {
                u += step;
            } else {
                u += step;
                v += step;
            }
        }           
        
        src[i] = u-1;
        dest[i] = v-1;
    }

#ifdef DIAGNOSTIC
    if (tid == 0) {
        elapsed_time_part = get_seconds() -elapsed_time_part;
        fprintf(stderr, "Tuple generation time: %lf seconds\n", elapsed_time_part);
        elapsed_time_part = get_seconds();
    }
#endif

    /* Generate vertex ID permutations */

    if (tid == 0) {
        permV = (VERT_T *) malloc(N*sizeof(VERT_T));
        assert(permV != NULL);
    }

#ifdef _OPENMP
#pragma omp barrier

#pragma omp for
#endif    
    for (i=0; i<n; i++) {
        permV[i] = i;
    }

#ifdef _OPENMP
    if (tid == 0) {
        vLock = (omp_lock_t *) malloc(n*sizeof(omp_lock_t));
        assert(vLock != NULL);
    }

#pragma omp barrier

#pragma omp for
    for (i=0; i<n; i++) {
        omp_init_lock(&vLock[i]);
    }

#endif
    
#ifdef _OPENMP
#pragma omp for
#endif    
    for (i=0; i<n; i++) {
        j = n*sprng(stream);
        if (i != j) {
#ifdef _OPENMP
            int l1 = omp_test_lock(&vLock[i]);
            if (l1) {
                int l2 = omp_test_lock(&vLock[j]);
                if (l2) {
#endif
                    tmpVal = permV[i];
                    permV[i] = permV[j];
                    permV[j] = tmpVal;
#ifdef _OPENMP
                    omp_unset_lock(&vLock[j]);
                }
                omp_unset_lock(&vLock[i]);
            }
#endif
        }
    }

#ifdef _OPENMP
#pragma omp for
    for (i=0; i<n; i++) {
        omp_destroy_lock(&vLock[i]);
    }
    
#pragma omp barrier

    if (tid == 0) {
        free(vLock);
    }
#endif

#ifdef _OPENMP
#pragma omp for
#endif    
    for (i=0; i<m; i++) {
        src[i] = permV[src[i]];
        dest[i] = permV[dest[i]];
    } 

#ifdef DIAGNOSTIC
    if (tid == 0) {
        elapsed_time_part = get_seconds() - elapsed_time_part;
        fprintf(stderr, "Permuting vertex IDs: %lf seconds\n", elapsed_time_part);
        elapsed_time_part = get_seconds();
    }
#endif

    if (tid == 0) {
        free(permV);
    }
    
    /* Generate edge weights */
    if (tid == 0) {
        wt = (WEIGHT_T *) malloc(M*sizeof(WEIGHT_T));
        assert(wt != NULL);
    }

#ifdef _OPENMP
#pragma omp barrier

#pragma omp for
#endif    
    for (i=0; i<m; i++) {
        wt[i] = 1 + MaxIntWeight * sprng(stream); 
    }
 
#ifdef DIAGNOSTIC
    if (tid == 0) {
        elapsed_time_part = get_seconds() - elapsed_time_part;
        fprintf(stderr, "Generating edge weights: %lf seconds\n", elapsed_time_part);
        elapsed_time_part = get_seconds();
    }
#endif

   
    SDGdata->n = n;
    SDGdata->m = m;
    SDGdata->startVertex = src;
    SDGdata->endVertex = dest;
    SDGdata->weight = wt;

    free_sprng(stream);
#ifdef _OPENMP
}
#endif
    
    elapsed_time = get_seconds() - elapsed_time;
    return elapsed_time;
}
Example #2
0
static int ufs_remount (struct super_block *sb, int *mount_flags, char *data)
{
	struct ufs_sb_private_info * uspi;
	struct ufs_super_block_first * usb1;
	struct ufs_super_block_third * usb3;
	unsigned new_mount_opt, ufstype;
	unsigned flags;

	lock_kernel();
	lock_super(sb);
	uspi = UFS_SB(sb)->s_uspi;
	flags = UFS_SB(sb)->s_flags;
	usb1 = ubh_get_usb_first(uspi);
	usb3 = ubh_get_usb_third(uspi);
	
	/*
	 * Allow the "check" option to be passed as a remount option.
	 * It is not possible to change ufstype option during remount
	 */
	ufstype = UFS_SB(sb)->s_mount_opt & UFS_MOUNT_UFSTYPE;
	new_mount_opt = 0;
	ufs_set_opt (new_mount_opt, ONERROR_LOCK);
	if (!ufs_parse_options (data, &new_mount_opt)) {
		unlock_super(sb);
		unlock_kernel();
		return -EINVAL;
	}
	if (!(new_mount_opt & UFS_MOUNT_UFSTYPE)) {
		new_mount_opt |= ufstype;
	} else if ((new_mount_opt & UFS_MOUNT_UFSTYPE) != ufstype) {
		printk("ufstype can't be changed during remount\n");
		unlock_super(sb);
		unlock_kernel();
		return -EINVAL;
	}

	if ((*mount_flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) {
		UFS_SB(sb)->s_mount_opt = new_mount_opt;
		unlock_super(sb);
		unlock_kernel();
		return 0;
	}
	
	/*
	 * fs was mouted as rw, remounting ro
	 */
	if (*mount_flags & MS_RDONLY) {
		ufs_put_super_internal(sb);
		usb1->fs_time = cpu_to_fs32(sb, get_seconds());
		if ((flags & UFS_ST_MASK) == UFS_ST_SUN
		  || (flags & UFS_ST_MASK) == UFS_ST_SUNOS
		  || (flags & UFS_ST_MASK) == UFS_ST_SUNx86) 
			ufs_set_fs_state(sb, usb1, usb3,
				UFS_FSOK - fs32_to_cpu(sb, usb1->fs_time));
		ubh_mark_buffer_dirty (USPI_UBH(uspi));
		sb->s_dirt = 0;
		sb->s_flags |= MS_RDONLY;
	} else {
	/*
	 * fs was mounted as ro, remounting rw
	 */
#ifndef CONFIG_UFS_FS_WRITE
		printk("ufs was compiled with read-only support, "
		"can't be mounted as read-write\n");
		unlock_super(sb);
		unlock_kernel();
		return -EINVAL;
#else
		if (ufstype != UFS_MOUNT_UFSTYPE_SUN && 
		    ufstype != UFS_MOUNT_UFSTYPE_SUNOS &&
		    ufstype != UFS_MOUNT_UFSTYPE_44BSD &&
		    ufstype != UFS_MOUNT_UFSTYPE_SUNx86 &&
		    ufstype != UFS_MOUNT_UFSTYPE_UFS2) {
			printk("this ufstype is read-only supported\n");
			unlock_super(sb);
			unlock_kernel();
			return -EINVAL;
		}
		if (!ufs_read_cylinder_structures(sb)) {
			printk("failed during remounting\n");
			unlock_super(sb);
			unlock_kernel();
			return -EPERM;
		}
		sb->s_flags &= ~MS_RDONLY;
#endif
	}
	UFS_SB(sb)->s_mount_opt = new_mount_opt;
	unlock_super(sb);
	unlock_kernel();
	return 0;
}
Example #3
0
static u64 ufs_add_fragments(struct inode *inode, u64 fragment,
			     unsigned oldcount, unsigned newcount, int *err)
{
	struct super_block * sb;
	struct ufs_sb_private_info * uspi;
	struct ufs_super_block_first * usb1;
	struct ufs_cg_private_info * ucpi;
	struct ufs_cylinder_group * ucg;
	unsigned cgno, fragno, fragoff, count, fragsize, i;
	
	UFSD("ENTER, fragment %llu, oldcount %u, newcount %u\n",
	     (unsigned long long)fragment, oldcount, newcount);
	
	sb = inode->i_sb;
	uspi = UFS_SB(sb)->s_uspi;
	usb1 = ubh_get_usb_first (uspi);
	count = newcount - oldcount;
	
	cgno = ufs_dtog(uspi, fragment);
	if (fs32_to_cpu(sb, UFS_SB(sb)->fs_cs(cgno).cs_nffree) < count)
		return 0;
	if ((ufs_fragnum (fragment) + newcount) > uspi->s_fpb)
		return 0;
	ucpi = ufs_load_cylinder (sb, cgno);
	if (!ucpi)
		return 0;
	ucg = ubh_get_ucg (UCPI_UBH(ucpi));
	if (!ufs_cg_chkmagic(sb, ucg)) {
		ufs_panic (sb, "ufs_add_fragments",
			"internal error, bad magic number on cg %u", cgno);
		return 0;
	}

	fragno = ufs_dtogd(uspi, fragment);
	fragoff = ufs_fragnum (fragno);
	for (i = oldcount; i < newcount; i++)
		if (ubh_isclr (UCPI_UBH(ucpi), ucpi->c_freeoff, fragno + i))
			return 0;
	/*
	 * Block can be extended
	 */
	ucg->cg_time = cpu_to_fs32(sb, get_seconds());
	for (i = newcount; i < (uspi->s_fpb - fragoff); i++)
		if (ubh_isclr (UCPI_UBH(ucpi), ucpi->c_freeoff, fragno + i))
			break;
	fragsize = i - oldcount;
	if (!fs32_to_cpu(sb, ucg->cg_frsum[fragsize]))
		ufs_panic (sb, "ufs_add_fragments",
			"internal error or corrupted bitmap on cg %u", cgno);
	fs32_sub(sb, &ucg->cg_frsum[fragsize], 1);
	if (fragsize != count)
		fs32_add(sb, &ucg->cg_frsum[fragsize - count], 1);
	for (i = oldcount; i < newcount; i++)
		ubh_clrbit (UCPI_UBH(ucpi), ucpi->c_freeoff, fragno + i);

	fs32_sub(sb, &ucg->cg_cs.cs_nffree, count);
	fs32_sub(sb, &UFS_SB(sb)->fs_cs(cgno).cs_nffree, count);
	uspi->cs_total.cs_nffree -= count;
	
	ubh_mark_buffer_dirty (USPI_UBH(uspi));
	ubh_mark_buffer_dirty (UCPI_UBH(ucpi));
	if (sb->s_flags & MS_SYNCHRONOUS)
		ubh_sync_block(UCPI_UBH(ucpi));
	sb->s_dirt = 1;

	UFSD("EXIT, fragment %llu\n", (unsigned long long)fragment);
	
	return fragment;
}
static int nilfs_remount(struct super_block *sb, int *flags, char *data)
{
	struct nilfs_sb_info *sbi = NILFS_SB(sb);
	struct nilfs_super_block *sbp;
	struct the_nilfs *nilfs = sbi->s_nilfs;
	unsigned long old_sb_flags;
	struct nilfs_mount_options old_opts;
	int err;

	nilfs_debug(1, "start\n");
	old_sb_flags = sb->s_flags;
	old_opts.mount_opt = sbi->s_mount_opt;
	old_opts.snapshot_cno = sbi->s_snapshot_cno;

	if (!parse_options(data, sb)) {
		err = -EINVAL;
		goto restore_opts;
	}
	sb->s_flags = (sb->s_flags & ~MS_POSIXACL);

	if ((*flags & MS_RDONLY) &&
	    sbi->s_snapshot_cno != old_opts.snapshot_cno) {
		printk(KERN_WARNING "NILFS (device %s): couldn't "
		       "remount to a different snapshot. \n",
		       sb->s_id);
		err = -EINVAL;
		goto restore_opts;
	}

	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
		goto out;
	if (*flags & MS_RDONLY) {
		/* Shutting down the segment constructor */
		nilfs_detach_segment_constructor(sbi);
		sb->s_flags |= MS_RDONLY;

		sbi->s_snapshot_cno = nilfs_last_cno(nilfs);
		/* nilfs_set_opt(sbi, SNAPSHOT); */

		/*
		 * Remounting a valid RW partition RDONLY, so set
		 * the RDONLY flag and then mark the partition as valid again.
		 */
		down_write(&nilfs->ns_sem);
		sbp = nilfs->ns_sbp[0];
		if (!(sbp->s_state & le16_to_cpu(NILFS_VALID_FS)) &&
		    (nilfs->ns_mount_state & NILFS_VALID_FS))
			sbp->s_state = cpu_to_le16(nilfs->ns_mount_state);
		sbp->s_mtime = cpu_to_le64(get_seconds());
		nilfs_commit_super(sbi, 1);
		up_write(&nilfs->ns_sem);
	} else {
		/*
		 * Mounting a RDONLY partition read-write, so reread and
		 * store the current valid flag.  (It may have been changed
		 * by fsck since we originally mounted the partition.)
		 */
		nilfs_lock_bdev(sb->s_bdev);
		/* Check existing RW-mount */
		if (test_exclusive_mount(sb->s_type, sb->s_bdev, 0)) {
			printk(KERN_WARNING "NILFS (device %s): couldn't "
			       "remount because a RW-mount exists.\n",
			       sb->s_id);
			err = -EBUSY;
			goto rw_remount_failed;
		}
		if (sbi->s_snapshot_cno != nilfs_last_cno(nilfs)) {
			printk(KERN_WARNING "NILFS (device %s): couldn't "
			       "remount because the current RO-mount is not "
			       "the latest one.\n",
			       sb->s_id);
			err = -EINVAL;
			goto rw_remount_failed;
		}
		sb->s_flags &= ~MS_RDONLY;
		nilfs_clear_opt(sbi, SNAPSHOT);
		sbi->s_snapshot_cno = 0;

		err = nilfs_attach_segment_constructor(sbi);
		if (err)
			goto rw_remount_failed;

		down_write(&nilfs->ns_sem);
		nilfs_setup_super(sbi);
		up_write(&nilfs->ns_sem);

		nilfs_unlock_bdev(sb->s_bdev);
	}
 out:
	nilfs_debug(1, "remounted filesystem\n");
	return 0;

 rw_remount_failed:
	nilfs_unlock_bdev(sb->s_bdev);
 restore_opts:
	sb->s_flags = old_sb_flags;
	sbi->s_mount_opt = old_opts.mount_opt;
	sbi->s_snapshot_cno = old_opts.snapshot_cno;
	return err;
}
/*
 * NOTE! When we get the inode, we're the only people
 * that have access to it, and as such there are no
 * race conditions we have to worry about. The inode
 * is not on the hash-lists, and it cannot be reached
 * through the filesystem because the directory entry
 * has been deleted earlier.
 *
 * HOWEVER: we must make sure that we get no aliases,
 * which means that we have to call "clear_inode()"
 * _before_ we mark the inode not in use in the inode
 * bitmaps. Otherwise a newly created file might use
 * the same inode number (not actually the same pointer
 * though), and then we'd have two inodes sharing the
 * same inode number and space on the harddisk.
 */
void ufs_free_inode (struct inode * inode)
{
	struct super_block * sb;
	struct ufs_sb_private_info * uspi;
	struct ufs_super_block_first * usb1;
	struct ufs_cg_private_info * ucpi;
	struct ufs_cylinder_group * ucg;
	int is_directory;
	unsigned ino, cg, bit;
	
	UFSD("ENTER, ino %lu\n", inode->i_ino);

	sb = inode->i_sb;
	uspi = UFS_SB(sb)->s_uspi;
	usb1 = ubh_get_usb_first(uspi);
	
	ino = inode->i_ino;

	lock_super (sb);

	if (!((ino > 1) && (ino < (uspi->s_ncg * uspi->s_ipg )))) {
		ufs_warning(sb, "ufs_free_inode", "reserved inode or nonexistent inode %u\n", ino);
		unlock_super (sb);
		return;
	}
	
	cg = ufs_inotocg (ino);
	bit = ufs_inotocgoff (ino);
	ucpi = ufs_load_cylinder (sb, cg);
	if (!ucpi) {
		unlock_super (sb);
		return;
	}
	ucg = ubh_get_ucg(UCPI_UBH(ucpi));
	if (!ufs_cg_chkmagic(sb, ucg))
		ufs_panic (sb, "ufs_free_fragments", "internal error, bad cg magic number");

	ucg->cg_time = cpu_to_fs32(sb, get_seconds());

	is_directory = S_ISDIR(inode->i_mode);

	dquot_free_inode(inode);
	dquot_drop(inode);

	clear_inode (inode);

	if (ubh_isclr (UCPI_UBH(ucpi), ucpi->c_iusedoff, bit))
		ufs_error(sb, "ufs_free_inode", "bit already cleared for inode %u", ino);
	else {
		ubh_clrbit (UCPI_UBH(ucpi), ucpi->c_iusedoff, bit);
		if (ino < ucpi->c_irotor)
			ucpi->c_irotor = ino;
		fs32_add(sb, &ucg->cg_cs.cs_nifree, 1);
		uspi->cs_total.cs_nifree++;
		fs32_add(sb, &UFS_SB(sb)->fs_cs(cg).cs_nifree, 1);

		if (is_directory) {
			fs32_sub(sb, &ucg->cg_cs.cs_ndir, 1);
			uspi->cs_total.cs_ndir--;
			fs32_sub(sb, &UFS_SB(sb)->fs_cs(cg).cs_ndir, 1);
		}
	}

	ubh_mark_buffer_dirty (USPI_UBH(uspi));
	ubh_mark_buffer_dirty (UCPI_UBH(ucpi));
	if (sb->s_flags & MS_SYNCHRONOUS) {
		ubh_ll_rw_block(SWRITE, UCPI_UBH(ucpi));
		ubh_wait_on_buffer (UCPI_UBH(ucpi));
	}
	
	sb->s_dirt = 1;
	unlock_super (sb);
	UFSD("EXIT\n");
}
Example #6
0
/*
 * This reserves disk blocks and inodes against a dquot.
 * Flags indicate if the dquot is to be locked here and also
 * if the blk reservation is for RT or regular blocks.
 * Sending in XFS_QMOPT_FORCE_RES flag skips the quota check.
 */
STATIC int
xfs_trans_dqresv(
	xfs_trans_t	*tp,
	xfs_mount_t	*mp,
	xfs_dquot_t	*dqp,
	long		nblks,
	long		ninos,
	uint		flags)
{
	xfs_qcnt_t	hardlimit;
	xfs_qcnt_t	softlimit;
	time_t		timer;
	xfs_qwarncnt_t	warns;
	xfs_qwarncnt_t	warnlimit;
	xfs_qcnt_t	total_count;
	xfs_qcnt_t	*resbcountp;
	xfs_quotainfo_t	*q = mp->m_quotainfo;


	xfs_dqlock(dqp);

	if (flags & XFS_TRANS_DQ_RES_BLKS) {
		hardlimit = be64_to_cpu(dqp->q_core.d_blk_hardlimit);
		if (!hardlimit)
			hardlimit = q->qi_bhardlimit;
		softlimit = be64_to_cpu(dqp->q_core.d_blk_softlimit);
		if (!softlimit)
			softlimit = q->qi_bsoftlimit;
		timer = be32_to_cpu(dqp->q_core.d_btimer);
		warns = be16_to_cpu(dqp->q_core.d_bwarns);
		warnlimit = dqp->q_mount->m_quotainfo->qi_bwarnlimit;
		resbcountp = &dqp->q_res_bcount;
	} else {
		ASSERT(flags & XFS_TRANS_DQ_RES_RTBLKS);
		hardlimit = be64_to_cpu(dqp->q_core.d_rtb_hardlimit);
		if (!hardlimit)
			hardlimit = q->qi_rtbhardlimit;
		softlimit = be64_to_cpu(dqp->q_core.d_rtb_softlimit);
		if (!softlimit)
			softlimit = q->qi_rtbsoftlimit;
		timer = be32_to_cpu(dqp->q_core.d_rtbtimer);
		warns = be16_to_cpu(dqp->q_core.d_rtbwarns);
		warnlimit = dqp->q_mount->m_quotainfo->qi_rtbwarnlimit;
		resbcountp = &dqp->q_res_rtbcount;
	}

	if ((flags & XFS_QMOPT_FORCE_RES) == 0 &&
	    dqp->q_core.d_id &&
	    ((XFS_IS_UQUOTA_ENFORCED(dqp->q_mount) && XFS_QM_ISUDQ(dqp)) ||
	     (XFS_IS_OQUOTA_ENFORCED(dqp->q_mount) &&
	      (XFS_QM_ISPDQ(dqp) || XFS_QM_ISGDQ(dqp))))) {
		if (nblks > 0) {
			/*
			 * dquot is locked already. See if we'd go over the
			 * hardlimit or exceed the timelimit if we allocate
			 * nblks.
			 */
			total_count = *resbcountp + nblks;
			if (hardlimit && total_count > hardlimit) {
				xfs_quota_warn(mp, dqp, QUOTA_NL_BHARDWARN);
				goto error_return;
			}
			if (softlimit && total_count > softlimit) {
				if ((timer != 0 && get_seconds() > timer) ||
				    (warns != 0 && warns >= warnlimit)) {
					xfs_quota_warn(mp, dqp,
						       QUOTA_NL_BSOFTLONGWARN);
					goto error_return;
				}

				xfs_quota_warn(mp, dqp, QUOTA_NL_BSOFTWARN);
			}
		}
		if (ninos > 0) {
			total_count = be64_to_cpu(dqp->q_core.d_icount) + ninos;
			timer = be32_to_cpu(dqp->q_core.d_itimer);
			warns = be16_to_cpu(dqp->q_core.d_iwarns);
			warnlimit = dqp->q_mount->m_quotainfo->qi_iwarnlimit;
			hardlimit = be64_to_cpu(dqp->q_core.d_ino_hardlimit);
			if (!hardlimit)
				hardlimit = q->qi_ihardlimit;
			softlimit = be64_to_cpu(dqp->q_core.d_ino_softlimit);
			if (!softlimit)
				softlimit = q->qi_isoftlimit;

			if (hardlimit && total_count > hardlimit) {
				xfs_quota_warn(mp, dqp, QUOTA_NL_IHARDWARN);
				goto error_return;
			}
			if (softlimit && total_count > softlimit) {
				if  ((timer != 0 && get_seconds() > timer) ||
				     (warns != 0 && warns >= warnlimit)) {
					xfs_quota_warn(mp, dqp,
						       QUOTA_NL_ISOFTLONGWARN);
					goto error_return;
				}
				xfs_quota_warn(mp, dqp, QUOTA_NL_ISOFTWARN);
			}
		}
	}

	/*
	 * Change the reservation, but not the actual usage.
	 * Note that q_res_bcount = q_core.d_bcount + resv
	 */
	(*resbcountp) += (xfs_qcnt_t)nblks;
	if (ninos != 0)
		dqp->q_res_icount += (xfs_qcnt_t)ninos;

	/*
	 * note the reservation amt in the trans struct too,
	 * so that the transaction knows how much was reserved by
	 * it against this particular dquot.
	 * We don't do this when we are reserving for a delayed allocation,
	 * because we don't have the luxury of a transaction envelope then.
	 */
	if (tp) {
		ASSERT(tp->t_dqinfo);
		ASSERT(flags & XFS_QMOPT_RESBLK_MASK);
		if (nblks != 0)
			xfs_trans_mod_dquot(tp, dqp,
					    flags & XFS_QMOPT_RESBLK_MASK,
					    nblks);
		if (ninos != 0)
			xfs_trans_mod_dquot(tp, dqp,
					    XFS_TRANS_DQ_RES_INOS,
					    ninos);
	}
	ASSERT(dqp->q_res_bcount >= be64_to_cpu(dqp->q_core.d_bcount));
	ASSERT(dqp->q_res_rtbcount >= be64_to_cpu(dqp->q_core.d_rtbcount));
	ASSERT(dqp->q_res_icount >= be64_to_cpu(dqp->q_core.d_icount));

	xfs_dqunlock(dqp);
	return 0;

error_return:
	xfs_dqunlock(dqp);
	if (flags & XFS_QMOPT_ENOSPC)
		return ENOSPC;
	return EDQUOT;
}
Example #7
0
static int jffs2_mknod (struct inode *dir_i, struct dentry *dentry, int mode, dev_t rdev, void* label)
{
	struct jffs2_inode_info *f, *dir_f;
	struct jffs2_sb_info *c;
	struct inode *inode;
	struct jffs2_raw_inode *ri;
	struct jffs2_raw_dirent *rd;
	struct jffs2_full_dnode *fn;
	struct jffs2_full_dirent *fd;
	int namelen;
	union jffs2_device_node dev;
	int devlen = 0;
	uint32_t alloclen;
	int ret;

	if (!new_valid_dev(rdev))
		return -EINVAL;

	ri = jffs2_alloc_raw_inode();
	if (!ri)
		return -ENOMEM;

	c = JFFS2_SB_INFO(dir_i->i_sb);

	if (S_ISBLK(mode) || S_ISCHR(mode))
		devlen = jffs2_encode_dev(&dev, rdev);

	/* Try to reserve enough space for both node and dirent.
	 * Just the node will do for now, though
	 */
	namelen = dentry->d_name.len;
	ret = jffs2_reserve_space(c, sizeof(*ri) + devlen, &alloclen,
				  ALLOC_NORMAL, JFFS2_SUMMARY_INODE_SIZE);

	if (ret) {
		jffs2_free_raw_inode(ri);
		return ret;
	}

	inode = jffs2_new_inode(dir_i, mode, ri);

	if (IS_ERR(inode)) {
		jffs2_free_raw_inode(ri);
		jffs2_complete_reservation(c);
		return PTR_ERR(inode);
	}
	inode->i_op = &jffs2_file_inode_operations;
	init_special_inode(inode, inode->i_mode, rdev);

	f = JFFS2_INODE_INFO(inode);

	ri->dsize = ri->csize = cpu_to_je32(devlen);
	ri->totlen = cpu_to_je32(sizeof(*ri) + devlen);
	ri->hdr_crc = cpu_to_je32(crc32(0, ri, sizeof(struct jffs2_unknown_node)-4));

	ri->compr = JFFS2_COMPR_NONE;
	ri->data_crc = cpu_to_je32(crc32(0, &dev, devlen));
	ri->node_crc = cpu_to_je32(crc32(0, ri, sizeof(*ri)-8));

	fn = jffs2_write_dnode(c, f, ri, (char *)&dev, devlen, ALLOC_NORMAL);

	jffs2_free_raw_inode(ri);

	if (IS_ERR(fn)) {
		/* Eeek. Wave bye bye */
		up(&f->sem);
		jffs2_complete_reservation(c);
		jffs2_clear_inode(inode);
		return PTR_ERR(fn);
	}
	/* No data here. Only a metadata node, which will be
	   obsoleted by the first data write
	*/
	f->metadata = fn;
	up(&f->sem);

	jffs2_complete_reservation(c);

	ret = jffs2_init_security(inode, dir_i);
	if (ret) {
		jffs2_clear_inode(inode);
		return ret;
	}
	ret = jffs2_init_acl(inode, dir_i);
	if (ret) {
		jffs2_clear_inode(inode);
		return ret;
	}

	ret = jffs2_reserve_space(c, sizeof(*rd)+namelen, &alloclen,
				  ALLOC_NORMAL, JFFS2_SUMMARY_DIRENT_SIZE(namelen));
	if (ret) {
		/* Eep. */
		jffs2_clear_inode(inode);
		return ret;
	}

	rd = jffs2_alloc_raw_dirent();
	if (!rd) {
		/* Argh. Now we treat it like a normal delete */
		jffs2_complete_reservation(c);
		jffs2_clear_inode(inode);
		return -ENOMEM;
	}

	dir_f = JFFS2_INODE_INFO(dir_i);
	down(&dir_f->sem);

	rd->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
	rd->nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT);
	rd->totlen = cpu_to_je32(sizeof(*rd) + namelen);
	rd->hdr_crc = cpu_to_je32(crc32(0, rd, sizeof(struct jffs2_unknown_node)-4));

	rd->pino = cpu_to_je32(dir_i->i_ino);
	rd->version = cpu_to_je32(++dir_f->highest_version);
	rd->ino = cpu_to_je32(inode->i_ino);
	rd->mctime = cpu_to_je32(get_seconds());
	rd->nsize = namelen;

	/* XXX: This is ugly. */
	rd->type = (mode & S_IFMT) >> 12;

	rd->node_crc = cpu_to_je32(crc32(0, rd, sizeof(*rd)-8));
	rd->name_crc = cpu_to_je32(crc32(0, dentry->d_name.name, namelen));

	fd = jffs2_write_dirent(c, dir_f, rd, dentry->d_name.name, namelen, ALLOC_NORMAL);

	if (IS_ERR(fd)) {
		/* dirent failed to write. Delete the inode normally
		   as if it were the final unlink() */
		jffs2_complete_reservation(c);
		jffs2_free_raw_dirent(rd);
		up(&dir_f->sem);
		jffs2_clear_inode(inode);
		return PTR_ERR(fd);
	}

	dir_i->i_mtime = dir_i->i_ctime = ITIME(je32_to_cpu(rd->mctime));

	jffs2_free_raw_dirent(rd);

	/* Link the fd into the inode's list, obsoleting an old
	   one if necessary. */
	jffs2_add_fd_to_list(c, fd, &dir_f->dents);

	up(&dir_f->sem);
	jffs2_complete_reservation(c);

	d_instantiate(dentry, inode);

	return 0;
}
Example #8
0
static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
			     int nsops, struct sem_undo *un, int pid)
{
	int result, sem_op;
	struct sembuf *sop;
	struct sem * curr;

	for (sop = sops; sop < sops + nsops; sop++) {
		curr = sma->sem_base + sop->sem_num;
		sem_op = sop->sem_op;
		result = curr->semval;
  
		if (!sem_op && result)
			goto would_block;

		result += sem_op;
		if (result < 0)
			goto would_block;
		if (result > SEMVMX)
			goto out_of_range;
		if (sop->sem_flg & SEM_UNDO) {
			int undo = un->semadj[sop->sem_num] - sem_op;
			/*
	 		 *	Exceeding the undo range is an error.
			 */
			if (undo < (-SEMAEM - 1) || undo > SEMAEM)
				goto out_of_range;
		}
		curr->semval = result;
	}

	sop--;
	while (sop >= sops) {
		sma->sem_base[sop->sem_num].sempid = pid;
		if (sop->sem_flg & SEM_UNDO)
			un->semadj[sop->sem_num] -= sop->sem_op;
		sop--;
	}
	
	sma->sem_otime = get_seconds();
	return 0;

out_of_range:
	result = -ERANGE;
	goto undo;

would_block:
	if (sop->sem_flg & IPC_NOWAIT)
		result = -EAGAIN;
	else
		result = 1;

undo:
	sop--;
	while (sop >= sops) {
		sma->sem_base[sop->sem_num].semval -= sop->sem_op;
		sop--;
	}

	return result;
}
oldgaa_error_code PRIVATE
oldgaa_evaluate_time_cond(oldgaa_conditions_ptr condition,
                          UNUSED(oldgaa_options_ptr    options))

{
    int   j = 0;

    int   hr, min, sec;
    int   cond_hr, cond_min, cond_sec;
    char  cond[MAX_COND_LENGTH] = {NUL};

    strcpy(cond, condition->value);

    if(oldgaa_strings_match(condition->authority, HOUR_SCALE_24)) {
        char *hr_str;
        char *min_str;
        char *sec_str;
        char *value;

        /* current hour    */
        hr_str = get_hr_24();
        hr  = atoi(hr_str);
        free(hr_str);

        /* current minutes */
        min_str = get_minutes();
        min = atoi(min_str);
        free(min_str);

        /* current seconds */
        sec_str = get_seconds();
        sec = atoi(sec_str);
        free(sec_str);

        /* get hours from condition value */
        value = get_value(&j, cond, ':');
        cond_hr = atoi(value);
        free(value);

        if (hr < cond_hr) return OLDGAA_NO;

        /* get minutes from condition value */
        value = get_value(&j, cond, ':');
        cond_min = atoi(value);
        free(value);

        /* get seconds from condition value */
        value = get_value(&j, cond, '-');
        cond_sec = atoi(value);
        free(value);


        if (cond_hr == hr) {
            /* if hours are equal, check minutes */
            if (min < cond_min) return OLDGAA_NO;

            if (cond_min == min) {
                /* if minutes are equal, check seconds */

                if (sec < cond_sec) return OLDGAA_NO;
                else goto success;
            }
        }

        /* hours are greater, check second time value */

        /* get hours from condition value */
        value = get_value(&j, cond, ':');
        cond_hr = atoi(value);
        free(value);

        if  (cond_hr < hr) return OLDGAA_NO;

        /* get minutes from condition value */
        value = get_value(&j, cond, ':');
        cond_min = atoi(value);
        free(value);

        /* get seconds from condition value */
        value = get_value(&j, cond, ':');
        cond_sec = atoi(value);
        free(value);


        if (cond_hr == hr) {/* if hours are equal, check minutes */
            if (cond_min < min) return OLDGAA_NO;

            if (cond_min == min) { /* if minutes are equal, check seconds */
                if (cond_sec <  sec) return OLDGAA_NO;
                else  goto success;
            }
        }


success:

        return OLDGAA_YES;
    }

    return OLDGAA_MAYBE; /* unsupported time format */
}
Example #10
0
File: log.c Project: ddn-lixi/mtfs
int mlog_init_handle(struct mlog_handle *handle, int flags,
		     struct mlog_uuid *uuid)
{
	int ret = 0;
	struct mlog_log_hdr *mlh = NULL;
	MENTRY();

	MASSERT(handle->mgh_hdr == NULL);

	MTFS_ALLOC(mlh, sizeof(*mlh));
	if (mlh == NULL) {
		MERROR("not enough memory\n");
		ret = -ENOMEM;
		goto out;
	}

	handle->mgh_hdr = mlh;
	/* first assign flags to use mlog_client_ops */
	mlh->mlh_flags = flags;
	ret = mlog_read_header(handle);
	if (ret == 0) {
		flags = mlh->mlh_flags;
		if (uuid && !mlog_uuid_equals(uuid, &mlh->mlh_tgtuuid)) {
			MERROR("uuid mismatch: %s/%s\n", (char *)uuid->uuid,
			       (char *)mlh->mlh_tgtuuid.uuid);
			ret = -EEXIST;
		}
		goto out;
	} else if (ret != MLOG_EEMPTY || !flags) {
		/* set a pesudo flag for initialization */
		flags = MLOG_F_IS_CAT;
		goto out;
	}
	ret = 0;

	handle->mgh_last_idx = 0; /* header is record with index 0 */
	mlh->mlh_count = 1;	 /* for the header record */
	mlh->mlh_hdr.mrh_type = MLOG_HDR_MAGIC;
	mlh->mlh_hdr.mrh_len = mlh->mlh_tail.mrt_len = MLOG_CHUNK_SIZE;
	mlh->mlh_hdr.mrh_index = mlh->mlh_tail.mrt_index = 0;
	mlh->mlh_timestamp = get_seconds();
	if (uuid)
		memcpy(&mlh->mlh_tgtuuid, uuid, sizeof(mlh->mlh_tgtuuid));
	mlh->mlh_bitmap_offset = offsetof(typeof(*mlh), mlh_bitmap);
	ext2_set_bit(0, mlh->mlh_bitmap);

out:
	if (flags & MLOG_F_IS_CAT) {
		MTFS_INIT_LIST_HEAD(&handle->u.chd.chd_head);
		mlh->mlh_size = sizeof(struct mlog_logid_rec);
	} else if (flags & MLOG_F_IS_PLAIN) {
		MTFS_INIT_LIST_HEAD(&handle->u.phd.phd_entry);
	} else {
		MERROR("Unknown flags: %#x (Expected %#x or %#x\n",
		       flags, MLOG_F_IS_CAT, MLOG_F_IS_PLAIN);
		MBUG();
	}

	if (ret) {
		MTFS_FREE(mlh, sizeof(*mlh));
		handle->mgh_hdr = NULL;
	}

	MRETURN(ret);
}
Example #11
0
/*
 * Check the limits and timers of a dquot and start or reset timers
 * if necessary.
 * This gets called even when quota enforcement is OFF, which makes our
 * life a little less complicated. (We just don't reject any quota
 * reservations in that case, when enforcement is off).
 * We also return 0 as the values of the timers in Q_GETQUOTA calls, when
 * enforcement's off.
 * In contrast, warnings are a little different in that they don't
 * 'automatically' get started when limits get exceeded.  They do
 * get reset to zero, however, when we find the count to be under
 * the soft limit (they are only ever set non-zero via userspace).
 */
void
xfs_qm_adjust_dqtimers(
	xfs_mount_t		*mp,
	xfs_disk_dquot_t	*d)
{
	ASSERT(d->d_id);

#ifdef DEBUG
	if (d->d_blk_hardlimit)
		ASSERT(be64_to_cpu(d->d_blk_softlimit) <=
		       be64_to_cpu(d->d_blk_hardlimit));
	if (d->d_ino_hardlimit)
		ASSERT(be64_to_cpu(d->d_ino_softlimit) <=
		       be64_to_cpu(d->d_ino_hardlimit));
	if (d->d_rtb_hardlimit)
		ASSERT(be64_to_cpu(d->d_rtb_softlimit) <=
		       be64_to_cpu(d->d_rtb_hardlimit));
#endif

	if (!d->d_btimer) {
		if ((d->d_blk_softlimit &&
		     (be64_to_cpu(d->d_bcount) >
		      be64_to_cpu(d->d_blk_softlimit))) ||
		    (d->d_blk_hardlimit &&
		     (be64_to_cpu(d->d_bcount) >
		      be64_to_cpu(d->d_blk_hardlimit)))) {
			d->d_btimer = cpu_to_be32(get_seconds() +
					mp->m_quotainfo->qi_btimelimit);
		} else {
			d->d_bwarns = 0;
		}
	} else {
		if ((!d->d_blk_softlimit ||
		     (be64_to_cpu(d->d_bcount) <=
		      be64_to_cpu(d->d_blk_softlimit))) &&
		    (!d->d_blk_hardlimit ||
		    (be64_to_cpu(d->d_bcount) <=
		     be64_to_cpu(d->d_blk_hardlimit)))) {
			d->d_btimer = 0;
		}
	}

	if (!d->d_itimer) {
		if ((d->d_ino_softlimit &&
		     (be64_to_cpu(d->d_icount) >
		      be64_to_cpu(d->d_ino_softlimit))) ||
		    (d->d_ino_hardlimit &&
		     (be64_to_cpu(d->d_icount) >
		      be64_to_cpu(d->d_ino_hardlimit)))) {
			d->d_itimer = cpu_to_be32(get_seconds() +
					mp->m_quotainfo->qi_itimelimit);
		} else {
			d->d_iwarns = 0;
		}
	} else {
		if ((!d->d_ino_softlimit ||
		     (be64_to_cpu(d->d_icount) <=
		      be64_to_cpu(d->d_ino_softlimit)))  &&
		    (!d->d_ino_hardlimit ||
		     (be64_to_cpu(d->d_icount) <=
		      be64_to_cpu(d->d_ino_hardlimit)))) {
			d->d_itimer = 0;
		}
	}

	if (!d->d_rtbtimer) {
		if ((d->d_rtb_softlimit &&
		     (be64_to_cpu(d->d_rtbcount) >
		      be64_to_cpu(d->d_rtb_softlimit))) ||
		    (d->d_rtb_hardlimit &&
		     (be64_to_cpu(d->d_rtbcount) >
		      be64_to_cpu(d->d_rtb_hardlimit)))) {
			d->d_rtbtimer = cpu_to_be32(get_seconds() +
					mp->m_quotainfo->qi_rtbtimelimit);
		} else {
			d->d_rtbwarns = 0;
		}
	} else {
		if ((!d->d_rtb_softlimit ||
		     (be64_to_cpu(d->d_rtbcount) <=
		      be64_to_cpu(d->d_rtb_softlimit))) &&
		    (!d->d_rtb_hardlimit ||
		     (be64_to_cpu(d->d_rtbcount) <=
		      be64_to_cpu(d->d_rtb_hardlimit)))) {
			d->d_rtbtimer = 0;
		}
	}
}
Example #12
0
int main(int argc, char *argv[])
{
	// Need to change to 3. need to remove the logging.
	if (argc != 5)
	{
		printf("Usage: ./maxcut <input data path> <output data path> <log file> <mutation rate>\n");
		exit(-1);
	}
	
	// Need to remove when submitting.
	log_file = fopen(argv[3], "w");
	fprintf(log_file, "rate, elasped time (s), max val, avg val\n");

	m_rate = atof(argv[4]);

	start_time = get_seconds();

	in 		= fopen(argv[1], "r");
	out 	= fopen(argv[2], "w");
	int i, j, v1, v2, w;	// (v1, v2) is the vertex and w is the weight

	fscanf(in, "%d %d\n", &num_of_vertex, &num_of_edge);
	
	int edge[num_of_vertex+1][num_of_vertex+1];
	
	for (i=0; i<=SIZE; i++)
		for (j=0; j<=SIZE; j++)
			edge[i][j] = 0;

	while (fscanf(in, "%d %d %d\n", &v1, &v2, &w) != EOF)
	{
		edge[v1][v2] = w;
		edge[v2][v1] = w;
	}
	
	init_population();
	init_offsprings();
	init_cost(edge);
	sort_population();
	init_crossover();

	int p1, p2;

	while (!(stop_condition()))
	{
		for (i=1; i<=K; i++)
		{
			selection(&p1, &p2);
			crossover(i, p1, p2);
			mutation(i);
		}

		replacement(edge);

		sort_population();
	}

	for (i=1; i<=SIZE; i++)
	{
		if (population[N]->ch[i] == 1)
			fprintf(out, "%d ", i);
	}

	free_population();

	fclose(in);
	fclose(out);

 	printf("N: %d, K: %d, S_RATE: %lf, M_THRE: %lf, P0: %lf, POINTS: %d, K_FIT: %d, T: %lf\n", N,     K, S_RATE, M_THRE, P0, POINTS, K_FIT, T);


	return 0;
}
Example #13
0
int jffs2_commit_write (struct file *filp, struct page *pg, unsigned start, unsigned end)
{
	/* Actually commit the write from the page cache page we're looking at.
	 * For now, we write the full page out each time. It sucks, but it's simple
	 */
	struct inode *inode = pg->mapping->host;
	struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
	struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
	struct jffs2_raw_inode *ri;
	unsigned aligned_start = start & ~3;
	int ret = 0;
	uint32_t writtenlen = 0;

	D1(printk(KERN_DEBUG "jffs2_commit_write(): ino #%lu, page at 0x%lx, range %d-%d, flags %lx\n",
		  inode->i_ino, pg->index << PAGE_CACHE_SHIFT, start, end, pg->flags));

	if (!start && end == PAGE_CACHE_SIZE) {
		/* We need to avoid deadlock with page_cache_read() in
		   jffs2_garbage_collect_pass(). So we have to mark the
		   page up to date, to prevent page_cache_read() from 
		   trying to re-lock it. */
		SetPageUptodate(pg);
	}

	ri = jffs2_alloc_raw_inode();

	if (!ri) {
		D1(printk(KERN_DEBUG "jffs2_commit_write(): Allocation of raw inode failed\n"));
		return -ENOMEM;
	}

	/* Set the fields that the generic jffs2_write_inode_range() code can't find */
	ri->ino = cpu_to_je32(inode->i_ino);
	ri->mode = cpu_to_jemode(inode->i_mode);
	ri->uid = cpu_to_je16(inode->i_uid);
	ri->gid = cpu_to_je16(inode->i_gid);
	ri->isize = cpu_to_je32((uint32_t)inode->i_size);
	ri->atime = ri->ctime = ri->mtime = cpu_to_je32(get_seconds());

	/* In 2.4, it was already kmapped by generic_file_write(). Doesn't
	   hurt to do it again. The alternative is ifdefs, which are ugly. */
	kmap(pg);

	ret = jffs2_write_inode_range(c, f, ri, page_address(pg) + aligned_start,
				      (pg->index << PAGE_CACHE_SHIFT) + aligned_start,
				      end - aligned_start, &writtenlen);

	kunmap(pg);

	if (ret) {
		/* There was an error writing. */
		SetPageError(pg);
	}
	
	/* Adjust writtenlen for the padding we did, so we don't confuse our caller */
	if (writtenlen < (start&3))
		writtenlen = 0;
	else
		writtenlen -= (start&3);

	if (writtenlen) {
		if (inode->i_size < (pg->index << PAGE_CACHE_SHIFT) + start + writtenlen) {
			inode->i_size = (pg->index << PAGE_CACHE_SHIFT) + start + writtenlen;
			inode->i_blocks = (inode->i_size + 511) >> 9;
			
			inode->i_ctime = inode->i_mtime = ITIME(je32_to_cpu(ri->ctime));
		}
	}
Example #14
0
int jffs2_prepare_write (struct file *filp, struct page *pg, unsigned start, unsigned end)
{
	struct inode *inode = pg->mapping->host;
	struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
	uint32_t pageofs = pg->index << PAGE_CACHE_SHIFT;
	int ret = 0;

	D1(printk(KERN_DEBUG "jffs2_prepare_write()\n"));

	if (pageofs > inode->i_size) {
		/* Make new hole frag from old EOF to new page */
		struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
		struct jffs2_raw_inode ri;
		struct jffs2_full_dnode *fn;
		uint32_t phys_ofs, alloc_len;
		
		D1(printk(KERN_DEBUG "Writing new hole frag 0x%x-0x%x between current EOF and new page\n",
			  (unsigned int)inode->i_size, pageofs));

		ret = jffs2_reserve_space(c, sizeof(ri), &phys_ofs, &alloc_len, ALLOC_NORMAL);
		if (ret)
			return ret;

		down(&f->sem);
		memset(&ri, 0, sizeof(ri));

		ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
		ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
		ri.totlen = cpu_to_je32(sizeof(ri));
		ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));

		ri.ino = cpu_to_je32(f->inocache->ino);
		ri.version = cpu_to_je32(++f->highest_version);
		ri.mode = cpu_to_jemode(inode->i_mode);
		ri.uid = cpu_to_je16(inode->i_uid);
		ri.gid = cpu_to_je16(inode->i_gid);
		ri.isize = cpu_to_je32(max((uint32_t)inode->i_size, pageofs));
		ri.atime = ri.ctime = ri.mtime = cpu_to_je32(get_seconds());
		ri.offset = cpu_to_je32(inode->i_size);
		ri.dsize = cpu_to_je32(pageofs - inode->i_size);
		ri.csize = cpu_to_je32(0);
		ri.compr = JFFS2_COMPR_ZERO;
		ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
		ri.data_crc = cpu_to_je32(0);
		
		fn = jffs2_write_dnode(c, f, &ri, NULL, 0, phys_ofs, ALLOC_NORMAL);

		if (IS_ERR(fn)) {
			ret = PTR_ERR(fn);
			jffs2_complete_reservation(c);
			up(&f->sem);
			return ret;
		}
		ret = jffs2_add_full_dnode_to_inode(c, f, fn);
		if (f->metadata) {
			jffs2_mark_node_obsolete(c, f->metadata->raw);
			jffs2_free_full_dnode(f->metadata);
			f->metadata = NULL;
		}
		if (ret) {
			D1(printk(KERN_DEBUG "Eep. add_full_dnode_to_inode() failed in prepare_write, returned %d\n", ret));
			jffs2_mark_node_obsolete(c, fn->raw);
			jffs2_free_full_dnode(fn);
			jffs2_complete_reservation(c);
			up(&f->sem);
			return ret;
		}
		jffs2_complete_reservation(c);
		inode->i_size = pageofs;
		up(&f->sem);
	}
	
	/* Read in the page if it wasn't already present, unless it's a whole page */
	if (!PageUptodate(pg) && (start || end < PAGE_CACHE_SIZE)) {
		down(&f->sem);
		ret = jffs2_do_readpage_nolock(inode, pg);
		up(&f->sem);
	}
	D1(printk(KERN_DEBUG "end prepare_write(). pg->flags %lx\n", pg->flags));
	return ret;
}
Example #15
0
long do_msgsnd(int msqid, long mtype, void __user *mtext,
		size_t msgsz, int msgflg)
{
	struct msg_queue *msq;
	struct msg_msg *msg;
	int err;
	struct ipc_namespace *ns;

	ns = current->nsproxy->ipc_ns;

	if (msgsz > ns->msg_ctlmax || (long) msgsz < 0 || msqid < 0)
		return -EINVAL;
	if (mtype < 1)
		return -EINVAL;

	msg = load_msg(mtext, msgsz);
	if (IS_ERR(msg))
		return PTR_ERR(msg);

	msg->m_type = mtype;
	msg->m_ts = msgsz;

	msq = msg_lock_check(ns, msqid);
	if (IS_ERR(msq)) {
		err = PTR_ERR(msq);
		goto out_free;
	}

	for (;;) {
		struct msg_sender s;

		err = -EACCES;
		if (ipcperms(&msq->q_perm, S_IWUGO))
			goto out_unlock_free;

		err = security_msg_queue_msgsnd(msq, msg, msgflg);
		if (err)
			goto out_unlock_free;

		if (msgsz + msq->q_cbytes <= msq->q_qbytes &&
				1 + msq->q_qnum <= msq->q_qbytes) {
			break;
		}

		/* queue full, wait: */
		if (msgflg & IPC_NOWAIT) {
			err = -EAGAIN;
			goto out_unlock_free;
		}
		ss_add(msq, &s);
		ipc_rcu_getref(msq);
		msg_unlock(msq);
		schedule();

		ipc_lock_by_ptr(&msq->q_perm);
		ipc_rcu_putref(msq);
		if (msq->q_perm.deleted) {
			err = -EIDRM;
			goto out_unlock_free;
		}
		ss_del(&s);

		if (signal_pending(current)) {
			err = -ERESTARTNOHAND;
			goto out_unlock_free;
		}
	}

	msq->q_lspid = current->tgid;
	msq->q_stime = get_seconds();

	if (!pipelined_send(msq, msg)) {
		/* noone is waiting for this message, enqueue it */
		list_add_tail(&msg->m_list, &msq->q_messages);
		msq->q_cbytes += msgsz;
		msq->q_qnum++;
		atomic_add(msgsz, &msg_bytes);
		atomic_inc(&msg_hdrs);
	}

	err = 0;
	msg = NULL;

out_unlock_free:
	msg_unlock(msq);
out_free:
	if (msg != NULL)
		free_msg(msg);
	return err;
}
Example #16
0
/**
 * i915_reset - reset chip after a hang
 * @dev: drm device to reset
 *
 * Reset the chip.  Useful if a hang is detected. Returns zero on successful
 * reset or otherwise an error code.
 *
 * Procedure is fairly simple:
 *   - reset the chip using the reset reg
 *   - re-init context state
 *   - re-init hardware status page
 *   - re-init ring buffer
 *   - re-init interrupt state
 *   - re-init display
 */
int i915_reset(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;

	if (!i915_try_reset)
		return 0;

	mutex_lock(&dev->struct_mutex);

	i915_gem_reset(dev);

	ret = -ENODEV;
	if (get_seconds() - dev_priv->last_gpu_reset < 5)
		DRM_ERROR("GPU hanging too fast, declaring wedged!\n");
	else
		ret = intel_gpu_reset(dev);

	dev_priv->last_gpu_reset = get_seconds();
	if (ret) {
		DRM_ERROR("Failed to reset chip.\n");
		mutex_unlock(&dev->struct_mutex);
		return ret;
	}

	/* Ok, now get things going again... */

	/*
	 * Everything depends on having the GTT running, so we need to start
	 * there.  Fortunately we don't need to do this unless we reset the
	 * chip at a PCI level.
	 *
	 * Next we need to restore the context, but we don't use those
	 * yet either...
	 *
	 * Ring buffer needs to be re-initialized in the KMS case, or if X
	 * was running at the time of the reset (i.e. we weren't VT
	 * switched away).
	 */
	if (drm_core_check_feature(dev, DRIVER_MODESET) ||
			!dev_priv->mm.suspended) {
		struct intel_ring_buffer *ring;
		int i;

		dev_priv->mm.suspended = 0;

		i915_gem_init_swizzling(dev);

		for_each_ring(ring, dev_priv, i)
			ring->init(ring);

		i915_gem_context_init(dev);
		i915_gem_init_ppgtt(dev);

		/*
		 * It would make sense to re-init all the other hw state, at
		 * least the rps/rc6/emon init done within modeset_init_hw. For
		 * some unknown reason, this blows up my ilk, so don't.
		 */

		mutex_unlock(&dev->struct_mutex);

		drm_irq_uninstall(dev);
		drm_irq_install(dev);
	} else {
		mutex_unlock(&dev->struct_mutex);
	}

	return 0;
}
Example #17
0
long do_msgrcv(int msqid, long *pmtype, void __user *mtext,
		size_t msgsz, long msgtyp, int msgflg)
{
	struct msg_queue *msq;
	struct msg_msg *msg;
	int mode;
	struct ipc_namespace *ns;

	if (msqid < 0 || (long) msgsz < 0)
		return -EINVAL;
	mode = convert_mode(&msgtyp, msgflg);
	ns = current->nsproxy->ipc_ns;

	msq = msg_lock_check(ns, msqid);
	if (IS_ERR(msq))
		return PTR_ERR(msq);

	for (;;) {
		struct msg_receiver msr_d;
		struct list_head *tmp;

		msg = ERR_PTR(-EACCES);
		if (ipcperms(&msq->q_perm, S_IRUGO))
			goto out_unlock;

		msg = ERR_PTR(-EAGAIN);
		tmp = msq->q_messages.next;
		while (tmp != &msq->q_messages) {
			struct msg_msg *walk_msg;

			walk_msg = list_entry(tmp, struct msg_msg, m_list);
			if (testmsg(walk_msg, msgtyp, mode) &&
			    !security_msg_queue_msgrcv(msq, walk_msg, current,
						       msgtyp, mode)) {

				msg = walk_msg;
				if (mode == SEARCH_LESSEQUAL &&
						walk_msg->m_type != 1) {
					msg = walk_msg;
					msgtyp = walk_msg->m_type - 1;
				} else {
					msg = walk_msg;
					break;
				}
			}
			tmp = tmp->next;
		}
		if (!IS_ERR(msg)) {
			/*
			 * Found a suitable message.
			 * Unlink it from the queue.
			 */
			if ((msgsz < msg->m_ts) && !(msgflg & MSG_NOERROR)) {
				msg = ERR_PTR(-E2BIG);
				goto out_unlock;
			}
			list_del(&msg->m_list);
			msq->q_qnum--;
			msq->q_rtime = get_seconds();
			msq->q_lrpid = current->tgid;
			msq->q_cbytes -= msg->m_ts;
			atomic_sub(msg->m_ts, &msg_bytes);
			atomic_dec(&msg_hdrs);
			ss_wakeup(&msq->q_senders, 0);
			msg_unlock(msq);
			break;
		}
		/* No message waiting. Wait for a message */
		if (msgflg & IPC_NOWAIT) {
			msg = ERR_PTR(-ENOMSG);
			goto out_unlock;
		}
		list_add_tail(&msr_d.r_list, &msq->q_receivers);
		msr_d.r_tsk = current;
		msr_d.r_msgtype = msgtyp;
		msr_d.r_mode = mode;
		if (msgflg & MSG_NOERROR)
			msr_d.r_maxsize = INT_MAX;
		else
			msr_d.r_maxsize = msgsz;
		msr_d.r_msg = ERR_PTR(-EAGAIN);
		current->state = TASK_INTERRUPTIBLE;
		msg_unlock(msq);

		schedule();

		/* Lockless receive, part 1:
		 * Disable preemption.  We don't hold a reference to the queue
		 * and getting a reference would defeat the idea of a lockless
		 * operation, thus the code relies on rcu to guarantee the
		 * existance of msq:
		 * Prior to destruction, expunge_all(-EIRDM) changes r_msg.
		 * Thus if r_msg is -EAGAIN, then the queue not yet destroyed.
		 * rcu_read_lock() prevents preemption between reading r_msg
		 * and the spin_lock() inside ipc_lock_by_ptr().
		 */
		rcu_read_lock();

		/* Lockless receive, part 2:
		 * Wait until pipelined_send or expunge_all are outside of
		 * wake_up_process(). There is a race with exit(), see
		 * ipc/mqueue.c for the details.
		 */
		msg = (struct msg_msg*)msr_d.r_msg;
		while (msg == NULL) {
			cpu_relax();
			msg = (struct msg_msg *)msr_d.r_msg;
		}

		/* Lockless receive, part 3:
		 * If there is a message or an error then accept it without
		 * locking.
		 */
		if (msg != ERR_PTR(-EAGAIN)) {
			rcu_read_unlock();
			break;
		}

		/* Lockless receive, part 3:
		 * Acquire the queue spinlock.
		 */
		ipc_lock_by_ptr(&msq->q_perm);
		rcu_read_unlock();

		/* Lockless receive, part 4:
		 * Repeat test after acquiring the spinlock.
		 */
		msg = (struct msg_msg*)msr_d.r_msg;
		if (msg != ERR_PTR(-EAGAIN))
			goto out_unlock;

		list_del(&msr_d.r_list);
		if (signal_pending(current)) {
			msg = ERR_PTR(-ERESTARTNOHAND);
out_unlock:
			msg_unlock(msq);
			break;
		}
	}
	if (IS_ERR(msg))
		return PTR_ERR(msg);

	msgsz = (msgsz > msg->m_ts) ? msg->m_ts : msgsz;
	*pmtype = msg->m_type;
	if (store_msg(mtext, msg, msgsz))
		msgsz = -EFAULT;

	free_msg(msg);

	return msgsz;
}
Example #18
0
static int jffs2_write_begin(struct file *filp, struct address_space *mapping,
			loff_t pos, unsigned len, unsigned flags,
			struct page **pagep, void **fsdata)
{
	struct page *pg;
	struct inode *inode = mapping->host;
	struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
	struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
	struct jffs2_raw_inode ri;
	uint32_t alloc_len = 0;
	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
	uint32_t pageofs = index << PAGE_CACHE_SHIFT;
	int ret = 0;

	D1(printk(KERN_DEBUG "%s()\n", __func__));

	if (pageofs > inode->i_size) {
		ret = jffs2_reserve_space(c, sizeof(ri), &alloc_len,
					  ALLOC_NORMAL, JFFS2_SUMMARY_INODE_SIZE);
		if (ret)
			return ret;
	}

	mutex_lock(&f->sem);
	pg = grab_cache_page_write_begin(mapping, index, flags);
	if (!pg) {
		if (alloc_len)
			jffs2_complete_reservation(c);
		mutex_unlock(&f->sem);
		return -ENOMEM;
	}
	*pagep = pg;

	if (alloc_len) {
		/* Make new hole frag from old EOF to new page */
		struct jffs2_full_dnode *fn;

		D1(printk(KERN_DEBUG "Writing new hole frag 0x%x-0x%x between current EOF and new page\n",
			  (unsigned int)inode->i_size, pageofs));

		memset(&ri, 0, sizeof(ri));

		ri.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
		ri.nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
		ri.totlen = cpu_to_je32(sizeof(ri));
		ri.hdr_crc = cpu_to_je32(crc32(0, &ri, sizeof(struct jffs2_unknown_node)-4));

		ri.ino = cpu_to_je32(f->inocache->ino);
		ri.version = cpu_to_je32(++f->highest_version);
		ri.mode = cpu_to_jemode(inode->i_mode);
		ri.uid = cpu_to_je16(inode->i_uid);
		ri.gid = cpu_to_je16(inode->i_gid);
		ri.isize = cpu_to_je32(max((uint32_t)inode->i_size, pageofs));
		ri.atime = ri.ctime = ri.mtime = cpu_to_je32(get_seconds());
		ri.offset = cpu_to_je32(inode->i_size);
		ri.dsize = cpu_to_je32(pageofs - inode->i_size);
		ri.csize = cpu_to_je32(0);
		ri.compr = JFFS2_COMPR_ZERO;
		ri.node_crc = cpu_to_je32(crc32(0, &ri, sizeof(ri)-8));
		ri.data_crc = cpu_to_je32(0);

		fn = jffs2_write_dnode(c, f, &ri, NULL, 0, ALLOC_NORMAL);

		if (IS_ERR(fn)) {
			ret = PTR_ERR(fn);
			jffs2_complete_reservation(c);
			goto out_page;
		}
		ret = jffs2_add_full_dnode_to_inode(c, f, fn);
		if (f->metadata) {
			jffs2_mark_node_obsolete(c, f->metadata->raw);
			jffs2_free_full_dnode(f->metadata);
			f->metadata = NULL;
		}
		if (ret) {
			D1(printk(KERN_DEBUG "Eep. add_full_dnode_to_inode() failed in write_begin, returned %d\n", ret));
			jffs2_mark_node_obsolete(c, fn->raw);
			jffs2_free_full_dnode(fn);
			jffs2_complete_reservation(c);
			goto out_page;
		}
		jffs2_complete_reservation(c);
		inode->i_size = pageofs;
	}

	/*
	 * Read in the page if it wasn't already present. Cannot optimize away
	 * the whole page write case until jffs2_write_end can handle the
	 * case of a short-copy.
	 */
	if (!PageUptodate(pg)) {
		ret = jffs2_do_readpage_nolock(inode, pg);
		if (ret)
			goto out_page;
	}
	mutex_unlock(&f->sem);
	D1(printk(KERN_DEBUG "end write_begin(). pg->flags %lx\n", pg->flags));
	return ret;

out_page:
	unlock_page(pg);
	page_cache_release(pg);
	mutex_unlock(&f->sem);
	return ret;
}
Example #19
0
static int jffs2_symlink (struct inode *dir_i, struct dentry *dentry, const char *target)
{
	struct jffs2_inode_info *f, *dir_f;
	struct jffs2_sb_info *c;
	struct inode *inode;
	struct jffs2_raw_inode *ri;
	struct jffs2_raw_dirent *rd;
	struct jffs2_full_dnode *fn;
	struct jffs2_full_dirent *fd;
	int namelen;
	uint32_t alloclen;
	int ret, targetlen = strlen(target);

	/* FIXME: If you care. We'd need to use frags for the target
	   if it grows much more than this */
	if (targetlen > 254)
		return -EINVAL;

	ri = jffs2_alloc_raw_inode();

	if (!ri)
		return -ENOMEM;

	c = JFFS2_SB_INFO(dir_i->i_sb);

	/* Try to reserve enough space for both node and dirent.
	 * Just the node will do for now, though
	 */
	namelen = dentry->d_name.len;
	ret = jffs2_reserve_space(c, sizeof(*ri) + targetlen, &alloclen,
				  ALLOC_NORMAL, JFFS2_SUMMARY_INODE_SIZE);

	if (ret) {
		jffs2_free_raw_inode(ri);
		return ret;
	}

	inode = jffs2_new_inode(dir_i, S_IFLNK | S_IRWXUGO, ri);

	if (IS_ERR(inode)) {
		jffs2_free_raw_inode(ri);
		jffs2_complete_reservation(c);
		return PTR_ERR(inode);
	}

	inode->i_op = &jffs2_symlink_inode_operations;

	f = JFFS2_INODE_INFO(inode);

	inode->i_size = targetlen;
	ri->isize = ri->dsize = ri->csize = cpu_to_je32(inode->i_size);
	ri->totlen = cpu_to_je32(sizeof(*ri) + inode->i_size);
	ri->hdr_crc = cpu_to_je32(crc32(0, ri, sizeof(struct jffs2_unknown_node)-4));

	ri->compr = JFFS2_COMPR_NONE;
	ri->data_crc = cpu_to_je32(crc32(0, target, targetlen));
	ri->node_crc = cpu_to_je32(crc32(0, ri, sizeof(*ri)-8));

	fn = jffs2_write_dnode(c, f, ri, target, targetlen, ALLOC_NORMAL);

	jffs2_free_raw_inode(ri);

	if (IS_ERR(fn)) {
		/* Eeek. Wave bye bye */
		up(&f->sem);
		jffs2_complete_reservation(c);
		jffs2_clear_inode(inode);
		return PTR_ERR(fn);
	}

	/* We use f->target field to store the target path. */
	f->target = kmalloc(targetlen + 1, GFP_KERNEL);
	if (!f->target) {
		printk(KERN_WARNING "Can't allocate %d bytes of memory\n", targetlen + 1);
		up(&f->sem);
		jffs2_complete_reservation(c);
		jffs2_clear_inode(inode);
		return -ENOMEM;
	}

	memcpy(f->target, target, targetlen + 1);
	D1(printk(KERN_DEBUG "jffs2_symlink: symlink's target '%s' cached\n", (char *)f->target));

	/* No data here. Only a metadata node, which will be
	   obsoleted by the first data write
	*/
	f->metadata = fn;
	up(&f->sem);

	jffs2_complete_reservation(c);

	ret = jffs2_init_security(inode, dir_i);
	if (ret) {
		jffs2_clear_inode(inode);
		return ret;
	}
	ret = jffs2_init_acl(inode, dir_i);
	if (ret) {
		jffs2_clear_inode(inode);
		return ret;
	}

	ret = jffs2_reserve_space(c, sizeof(*rd)+namelen, &alloclen,
				  ALLOC_NORMAL, JFFS2_SUMMARY_DIRENT_SIZE(namelen));
	if (ret) {
		/* Eep. */
		jffs2_clear_inode(inode);
		return ret;
	}

	rd = jffs2_alloc_raw_dirent();
	if (!rd) {
		/* Argh. Now we treat it like a normal delete */
		jffs2_complete_reservation(c);
		jffs2_clear_inode(inode);
		return -ENOMEM;
	}

	dir_f = JFFS2_INODE_INFO(dir_i);
	down(&dir_f->sem);

	rd->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
	rd->nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT);
	rd->totlen = cpu_to_je32(sizeof(*rd) + namelen);
	rd->hdr_crc = cpu_to_je32(crc32(0, rd, sizeof(struct jffs2_unknown_node)-4));

	rd->pino = cpu_to_je32(dir_i->i_ino);
	rd->version = cpu_to_je32(++dir_f->highest_version);
	rd->ino = cpu_to_je32(inode->i_ino);
	rd->mctime = cpu_to_je32(get_seconds());
	rd->nsize = namelen;
	rd->type = DT_LNK;
	rd->node_crc = cpu_to_je32(crc32(0, rd, sizeof(*rd)-8));
	rd->name_crc = cpu_to_je32(crc32(0, dentry->d_name.name, namelen));

	fd = jffs2_write_dirent(c, dir_f, rd, dentry->d_name.name, namelen, ALLOC_NORMAL);

	if (IS_ERR(fd)) {
		/* dirent failed to write. Delete the inode normally
		   as if it were the final unlink() */
		jffs2_complete_reservation(c);
		jffs2_free_raw_dirent(rd);
		up(&dir_f->sem);
		jffs2_clear_inode(inode);
		return PTR_ERR(fd);
	}

	dir_i->i_mtime = dir_i->i_ctime = ITIME(je32_to_cpu(rd->mctime));

	jffs2_free_raw_dirent(rd);

	/* Link the fd into the inode's list, obsoleting an old
	   one if necessary. */
	jffs2_add_fd_to_list(c, fd, &dir_f->dents);

	up(&dir_f->sem);
	jffs2_complete_reservation(c);

	d_instantiate(dentry, inode);
	return 0;
}
Example #20
0
static int jffs2_write_end(struct file *filp, struct address_space *mapping,
			loff_t pos, unsigned len, unsigned copied,
			struct page *pg, void *fsdata)
{
	/* Actually commit the write from the page cache page we're looking at.
	 * For now, we write the full page out each time. It sucks, but it's simple
	 */
	struct inode *inode = mapping->host;
	struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
	struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
	struct jffs2_raw_inode *ri;
	unsigned start = pos & (PAGE_CACHE_SIZE - 1);
	unsigned end = start + copied;
	unsigned aligned_start = start & ~3;
	int ret = 0;
	uint32_t writtenlen = 0;

	D1(printk(KERN_DEBUG "jffs2_write_end(): ino #%lu, page at 0x%lx, range %d-%d, flags %lx\n",
		  inode->i_ino, pg->index << PAGE_CACHE_SHIFT, start, end, pg->flags));

	/* We need to avoid deadlock with page_cache_read() in
	   jffs2_garbage_collect_pass(). So the page must be
	   up to date to prevent page_cache_read() from trying
	   to re-lock it. */
	BUG_ON(!PageUptodate(pg));

	if (end == PAGE_CACHE_SIZE) {
		/* When writing out the end of a page, write out the
		   _whole_ page. This helps to reduce the number of
		   nodes in files which have many short writes, like
		   syslog files. */
		aligned_start = 0;
	}

	ri = jffs2_alloc_raw_inode();

	if (!ri) {
		D1(printk(KERN_DEBUG "jffs2_write_end(): Allocation of raw inode failed\n"));
		unlock_page(pg);
		page_cache_release(pg);
		return -ENOMEM;
	}

	/* Set the fields that the generic jffs2_write_inode_range() code can't find */
	ri->ino = cpu_to_je32(inode->i_ino);
	ri->mode = cpu_to_jemode(inode->i_mode);
	ri->uid = cpu_to_je16(inode->i_uid);
	ri->gid = cpu_to_je16(inode->i_gid);
	ri->isize = cpu_to_je32((uint32_t)inode->i_size);
	ri->atime = ri->ctime = ri->mtime = cpu_to_je32(get_seconds());

	/* In 2.4, it was already kmapped by generic_file_write(). Doesn't
	   hurt to do it again. The alternative is ifdefs, which are ugly. */
	kmap(pg);

	ret = jffs2_write_inode_range(c, f, ri, page_address(pg) + aligned_start,
				      (pg->index << PAGE_CACHE_SHIFT) + aligned_start,
				      end - aligned_start, &writtenlen);

	kunmap(pg);

	if (ret) {
		/* There was an error writing. */
		SetPageError(pg);
	}

	/* Adjust writtenlen for the padding we did, so we don't confuse our caller */
	writtenlen -= min(writtenlen, (start - aligned_start));

	if (writtenlen) {
		if (inode->i_size < pos + writtenlen) {
			inode->i_size = pos + writtenlen;
			inode->i_blocks = (inode->i_size + 511) >> 9;

			inode->i_ctime = inode->i_mtime = ITIME(je32_to_cpu(ri->ctime));
		}
	}
Example #21
0
static int jffs2_rename (struct inode *old_dir_i, struct dentry *old_dentry,
                        struct inode *new_dir_i, struct dentry *new_dentry)
{
	int ret;
	struct jffs2_sb_info *c = JFFS2_SB_INFO(old_dir_i->i_sb);
	struct jffs2_inode_info *victim_f = NULL;
	uint8_t type;
	uint32_t now;

	/* The VFS will check for us and prevent trying to rename a
	 * file over a directory and vice versa, but if it's a directory,
	 * the VFS can't check whether the victim is empty. The filesystem
	 * needs to do that for itself.
	 */
	if (new_dentry->d_inode) {
		victim_f = JFFS2_INODE_INFO(new_dentry->d_inode);
		if (S_ISDIR(new_dentry->d_inode->i_mode)) {
			struct jffs2_full_dirent *fd;

			down(&victim_f->sem);
			for (fd = victim_f->dents; fd; fd = fd->next) {
				if (fd->ino) {
					up(&victim_f->sem);
					return -ENOTEMPTY;
				}
			}
			up(&victim_f->sem);
		}
	}

	/* XXX: We probably ought to alloc enough space for
	   both nodes at the same time. Writing the new link,
	   then getting -ENOSPC, is quite bad :)
	*/

	/* Make a hard link */

	/* XXX: This is ugly */
	type = (old_dentry->d_inode->i_mode & S_IFMT) >> 12;
	if (!type) type = DT_REG;

	now = get_seconds();
	ret = jffs2_do_link(c, JFFS2_INODE_INFO(new_dir_i),
			    old_dentry->d_inode->i_ino, type,
			    new_dentry->d_name.name, new_dentry->d_name.len, now);

	if (ret)
		return ret;

	if (victim_f) {
		/* There was a victim. Kill it off nicely */
		drop_nlink(new_dentry->d_inode);
		/* Don't oops if the victim was a dirent pointing to an
		   inode which didn't exist. */
		if (victim_f->inocache) {
			down(&victim_f->sem);
			victim_f->inocache->nlink--;
			up(&victim_f->sem);
		}
	}

	/* If it was a directory we moved, and there was no victim,
	   increase i_nlink on its new parent */
	if (S_ISDIR(old_dentry->d_inode->i_mode) && !victim_f)
		inc_nlink(new_dir_i);

	/* Unlink the original */
	ret = jffs2_do_unlink(c, JFFS2_INODE_INFO(old_dir_i),
			      old_dentry->d_name.name, old_dentry->d_name.len, NULL, now);

	/* We don't touch inode->i_nlink */

	if (ret) {
		/* Oh shit. We really ought to make a single node which can do both atomically */
		struct jffs2_inode_info *f = JFFS2_INODE_INFO(old_dentry->d_inode);
		down(&f->sem);
		inc_nlink(old_dentry->d_inode);
		if (f->inocache)
			f->inocache->nlink++;
		up(&f->sem);

		printk(KERN_NOTICE "jffs2_rename(): Link succeeded, unlink failed (err %d). You now have a hard link\n", ret);
		/* Might as well let the VFS know */
		d_instantiate(new_dentry, old_dentry->d_inode);
		atomic_inc(&old_dentry->d_inode->i_count);
		new_dir_i->i_mtime = new_dir_i->i_ctime = ITIME(now);
		return ret;
	}

	if (S_ISDIR(old_dentry->d_inode->i_mode))
		drop_nlink(old_dir_i);

	new_dir_i->i_mtime = new_dir_i->i_ctime = old_dir_i->i_mtime = old_dir_i->i_ctime = ITIME(now);

	return 0;
}
Example #22
0
static int tcp_v6_connect(struct sock *sk, struct sockaddr *uaddr,
			  int addr_len)
{
	struct sockaddr_in6 *usin = (struct sockaddr_in6 *) uaddr;
	struct inet_sock *inet = inet_sk(sk);
	struct inet_connection_sock *icsk = inet_csk(sk);
	struct ipv6_pinfo *np = inet6_sk(sk);
	struct tcp_sock *tp = tcp_sk(sk);
	struct in6_addr *saddr = NULL, *final_p, final;
	struct rt6_info *rt;
	struct flowi6 fl6;
	struct dst_entry *dst;
	int addr_type;
	int err;

	if (addr_len < SIN6_LEN_RFC2133)
		return -EINVAL;

	if (usin->sin6_family != AF_INET6)
		return -EAFNOSUPPORT;

	memset(&fl6, 0, sizeof(fl6));

	if (np->sndflow) {
		fl6.flowlabel = usin->sin6_flowinfo&IPV6_FLOWINFO_MASK;
		IP6_ECN_flow_init(fl6.flowlabel);
		if (fl6.flowlabel&IPV6_FLOWLABEL_MASK) {
			struct ip6_flowlabel *flowlabel;
			flowlabel = fl6_sock_lookup(sk, fl6.flowlabel);
			if (flowlabel == NULL)
				return -EINVAL;
			usin->sin6_addr = flowlabel->dst;
			fl6_sock_release(flowlabel);
		}
	}


	if(ipv6_addr_any(&usin->sin6_addr))
		usin->sin6_addr.s6_addr[15] = 0x1;

	addr_type = ipv6_addr_type(&usin->sin6_addr);

	if(addr_type & IPV6_ADDR_MULTICAST)
		return -ENETUNREACH;

	if (addr_type&IPV6_ADDR_LINKLOCAL) {
		if (addr_len >= sizeof(struct sockaddr_in6) &&
		    usin->sin6_scope_id) {
			if (sk->sk_bound_dev_if &&
			    sk->sk_bound_dev_if != usin->sin6_scope_id)
				return -EINVAL;

			sk->sk_bound_dev_if = usin->sin6_scope_id;
		}

		
		if (!sk->sk_bound_dev_if)
			return -EINVAL;
	}

	if (tp->rx_opt.ts_recent_stamp &&
	    !ipv6_addr_equal(&np->daddr, &usin->sin6_addr)) {
		tp->rx_opt.ts_recent = 0;
		tp->rx_opt.ts_recent_stamp = 0;
		tp->write_seq = 0;
	}

	np->daddr = usin->sin6_addr;
	np->flow_label = fl6.flowlabel;


	if (addr_type == IPV6_ADDR_MAPPED) {
		u32 exthdrlen = icsk->icsk_ext_hdr_len;
		struct sockaddr_in sin;

		SOCK_DEBUG(sk, "connect: ipv4 mapped\n");

		if (__ipv6_only_sock(sk))
			return -ENETUNREACH;

		sin.sin_family = AF_INET;
		sin.sin_port = usin->sin6_port;
		sin.sin_addr.s_addr = usin->sin6_addr.s6_addr32[3];

		icsk->icsk_af_ops = &ipv6_mapped;
		sk->sk_backlog_rcv = tcp_v4_do_rcv;
#ifdef CONFIG_TCP_MD5SIG
		tp->af_specific = &tcp_sock_ipv6_mapped_specific;
#endif

		err = tcp_v4_connect(sk, (struct sockaddr *)&sin, sizeof(sin));

		if (err) {
			icsk->icsk_ext_hdr_len = exthdrlen;
			icsk->icsk_af_ops = &ipv6_specific;
			sk->sk_backlog_rcv = tcp_v6_do_rcv;
#ifdef CONFIG_TCP_MD5SIG
			tp->af_specific = &tcp_sock_ipv6_specific;
#endif
			goto failure;
		} else {
			ipv6_addr_set_v4mapped(inet->inet_saddr, &np->saddr);
			ipv6_addr_set_v4mapped(inet->inet_rcv_saddr,
					       &np->rcv_saddr);
		}

		return err;
	}

	if (!ipv6_addr_any(&np->rcv_saddr))
		saddr = &np->rcv_saddr;

	fl6.flowi6_proto = IPPROTO_TCP;
	fl6.daddr = np->daddr;
	fl6.saddr = saddr ? *saddr : np->saddr;
	fl6.flowi6_oif = sk->sk_bound_dev_if;
	fl6.flowi6_mark = sk->sk_mark;
	fl6.fl6_dport = usin->sin6_port;
	fl6.fl6_sport = inet->inet_sport;

	final_p = fl6_update_dst(&fl6, np->opt, &final);

	security_sk_classify_flow(sk, flowi6_to_flowi(&fl6));

	dst = ip6_dst_lookup_flow(sk, &fl6, final_p, true);
	if (IS_ERR(dst)) {
		err = PTR_ERR(dst);
		goto failure;
	}

	if (saddr == NULL) {
		saddr = &fl6.saddr;
		np->rcv_saddr = *saddr;
	}

	
	np->saddr = *saddr;
	inet->inet_rcv_saddr = LOOPBACK4_IPV6;

	sk->sk_gso_type = SKB_GSO_TCPV6;
	__ip6_dst_store(sk, dst, NULL, NULL);

	rt = (struct rt6_info *) dst;
	if (tcp_death_row.sysctl_tw_recycle &&
	    !tp->rx_opt.ts_recent_stamp &&
	    ipv6_addr_equal(&rt->rt6i_dst.addr, &np->daddr)) {
		struct inet_peer *peer = rt6_get_peer(rt);
		if (peer) {
			inet_peer_refcheck(peer);
			if ((u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
				tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
				tp->rx_opt.ts_recent = peer->tcp_ts;
			}
		}
	}

	icsk->icsk_ext_hdr_len = 0;
	if (np->opt)
		icsk->icsk_ext_hdr_len = (np->opt->opt_flen +
					  np->opt->opt_nflen);

	tp->rx_opt.mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) - sizeof(struct ipv6hdr);

	inet->inet_dport = usin->sin6_port;

	tcp_set_state(sk, TCP_SYN_SENT);
	err = inet6_hash_connect(&tcp_death_row, sk);
	if (err)
		goto late_failure;

	if (!tp->write_seq)
		tp->write_seq = secure_tcpv6_sequence_number(np->saddr.s6_addr32,
							     np->daddr.s6_addr32,
							     inet->inet_sport,
							     inet->inet_dport);

	err = tcp_connect(sk);
	if (err)
		goto late_failure;

	return 0;

late_failure:
	tcp_set_state(sk, TCP_CLOSE);
	__sk_dst_reset(sk);
failure:
	inet->inet_dport = 0;
	sk->sk_route_caps = 0;
	return err;
}
Example #23
0
// operator ()
f64 performance::operator () () const
{
	return get_seconds();
}
Example #24
0
File: conctl.c Project: 3null/linux
int
lstcon_ioctl_entry(unsigned int cmd, struct libcfs_ioctl_data *data)
{
	char   *buf;
	int     opc = data->ioc_u32[0];
	int     rc;

	if (cmd != IOC_LIBCFS_LNETST)
		return -EINVAL;

	if (data->ioc_plen1 > PAGE_CACHE_SIZE)
		return -EINVAL;

	LIBCFS_ALLOC(buf, data->ioc_plen1);
	if (buf == NULL)
		return -ENOMEM;

	/* copy in parameter */
	if (copy_from_user(buf, data->ioc_pbuf1, data->ioc_plen1)) {
		LIBCFS_FREE(buf, data->ioc_plen1);
		return -EFAULT;
	}

	mutex_lock(&console_session.ses_mutex);

	console_session.ses_laststamp = get_seconds();

	if (console_session.ses_shutdown) {
		rc = -ESHUTDOWN;
		goto out;
	}

	if (console_session.ses_expired)
		lstcon_session_end();

	if (opc != LSTIO_SESSION_NEW &&
	    console_session.ses_state == LST_SESSION_NONE) {
		CDEBUG(D_NET, "LST no active session\n");
		rc = -ESRCH;
		goto out;
	}

	memset(&console_session.ses_trans_stat, 0, sizeof(lstcon_trans_stat_t));

	switch (opc) {
		case LSTIO_SESSION_NEW:
			rc = lst_session_new_ioctl((lstio_session_new_args_t *)buf);
			break;
		case LSTIO_SESSION_END:
			rc = lst_session_end_ioctl((lstio_session_end_args_t *)buf);
			break;
		case LSTIO_SESSION_INFO:
			rc = lst_session_info_ioctl((lstio_session_info_args_t *)buf);
			break;
		case LSTIO_DEBUG:
			rc = lst_debug_ioctl((lstio_debug_args_t *)buf);
			break;
		case LSTIO_GROUP_ADD:
			rc = lst_group_add_ioctl((lstio_group_add_args_t *)buf);
			break;
		case LSTIO_GROUP_DEL:
			rc = lst_group_del_ioctl((lstio_group_del_args_t *)buf);
			break;
		case LSTIO_GROUP_UPDATE:
			rc = lst_group_update_ioctl((lstio_group_update_args_t *)buf);
			break;
		case LSTIO_NODES_ADD:
			rc = lst_nodes_add_ioctl((lstio_group_nodes_args_t *)buf);
			break;
		case LSTIO_GROUP_LIST:
			rc = lst_group_list_ioctl((lstio_group_list_args_t *)buf);
			break;
		case LSTIO_GROUP_INFO:
			rc = lst_group_info_ioctl((lstio_group_info_args_t *)buf);
			break;
		case LSTIO_BATCH_ADD:
			rc = lst_batch_add_ioctl((lstio_batch_add_args_t *)buf);
			break;
		case LSTIO_BATCH_START:
			rc = lst_batch_run_ioctl((lstio_batch_run_args_t *)buf);
			break;
		case LSTIO_BATCH_STOP:
			rc = lst_batch_stop_ioctl((lstio_batch_stop_args_t *)buf);
			break;
		case LSTIO_BATCH_QUERY:
			rc = lst_batch_query_ioctl((lstio_batch_query_args_t *)buf);
			break;
		case LSTIO_BATCH_LIST:
			rc = lst_batch_list_ioctl((lstio_batch_list_args_t *)buf);
			break;
		case LSTIO_BATCH_INFO:
			rc = lst_batch_info_ioctl((lstio_batch_info_args_t *)buf);
			break;
		case LSTIO_TEST_ADD:
			rc = lst_test_add_ioctl((lstio_test_args_t *)buf);
			break;
		case LSTIO_STAT_QUERY:
			rc = lst_stat_query_ioctl((lstio_stat_args_t *)buf);
			break;
		default:
			rc = -EINVAL;
	}

	if (copy_to_user(data->ioc_pbuf2, &console_session.ses_trans_stat,
			     sizeof(lstcon_trans_stat_t)))
		rc = -EFAULT;
out:
	mutex_unlock(&console_session.ses_mutex);

	LIBCFS_FREE(buf, data->ioc_plen1);

	return rc;
}
/**
 * i915_reset - reset chip after a hang
 * @dev: drm device to reset
 * @flags: reset domains
 *
 * Reset the chip.  Useful if a hang is detected. Returns zero on successful
 * reset or otherwise an error code.
 *
 * Procedure is fairly simple:
 *   - reset the chip using the reset reg
 *   - re-init context state
 *   - re-init hardware status page
 *   - re-init ring buffer
 *   - re-init interrupt state
 *   - re-init display
 */
int i915_reset(struct drm_device *dev, u8 flags)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	/*
	 * We really should only reset the display subsystem if we actually
	 * need to
	 */
	bool need_display = true;
	int ret;

	if (!i915_try_reset)
		return 0;

	if (!mutex_trylock(&dev->struct_mutex))
		return -EBUSY;

	i915_gem_reset(dev);

	ret = -ENODEV;
	if (get_seconds() - dev_priv->last_gpu_reset < 5) {
		DRM_ERROR("GPU hanging too fast, declaring wedged!\n");
	} else switch (INTEL_INFO(dev)->gen) {
	case 7:
	case 6:
		ret = gen6_do_reset(dev, flags);
		break;
	case 5:
		ret = ironlake_do_reset(dev, flags);
		break;
	case 4:
		ret = i965_do_reset(dev, flags);
		break;
	case 2:
		ret = i8xx_do_reset(dev, flags);
		break;
	}
	dev_priv->last_gpu_reset = get_seconds();
	if (ret) {
		DRM_ERROR("Failed to reset chip.\n");
		mutex_unlock(&dev->struct_mutex);
		return ret;
	}

	/* Ok, now get things going again... */

	/*
	 * Everything depends on having the GTT running, so we need to start
	 * there.  Fortunately we don't need to do this unless we reset the
	 * chip at a PCI level.
	 *
	 * Next we need to restore the context, but we don't use those
	 * yet either...
	 *
	 * Ring buffer needs to be re-initialized in the KMS case, or if X
	 * was running at the time of the reset (i.e. we weren't VT
	 * switched away).
	 */
	if (drm_core_check_feature(dev, DRIVER_MODESET) ||
			!dev_priv->mm.suspended) {
		dev_priv->mm.suspended = 0;

		i915_gem_init_swizzling(dev);

		dev_priv->ring[RCS].init(&dev_priv->ring[RCS]);
		if (HAS_BSD(dev))
		    dev_priv->ring[VCS].init(&dev_priv->ring[VCS]);
		if (HAS_BLT(dev))
		    dev_priv->ring[BCS].init(&dev_priv->ring[BCS]);

		i915_gem_init_ppgtt(dev);

		mutex_unlock(&dev->struct_mutex);
		drm_irq_uninstall(dev);
		drm_mode_config_reset(dev);
		drm_irq_install(dev);
		mutex_lock(&dev->struct_mutex);
	}

	mutex_unlock(&dev->struct_mutex);

	/*
	 * Perform a full modeset as on later generations, e.g. Ironlake, we may
	 * need to retrain the display link and cannot just restore the register
	 * values.
	 */
	if (need_display) {
		mutex_lock(&dev->mode_config.mutex);
		drm_helper_resume_force_mode(dev);
		mutex_unlock(&dev->mode_config.mutex);
	}

	return 0;
}
Example #26
0
static int jffs2_mkdir (struct inode *dir_i, struct dentry *dentry, int mode)
{
	struct jffs2_inode_info *f, *dir_f;
	struct jffs2_sb_info *c;
	struct inode *inode;
	struct jffs2_raw_inode *ri;
	struct jffs2_raw_dirent *rd;
	struct jffs2_full_dnode *fn;
	struct jffs2_full_dirent *fd;
	int namelen;
	uint32_t alloclen, phys_ofs;
	int ret;

	mode |= S_IFDIR;

	ri = jffs2_alloc_raw_inode();
	if (!ri)
		return -ENOMEM;
	
	c = JFFS2_SB_INFO(dir_i->i_sb);

	/* Try to reserve enough space for both node and dirent. 
	 * Just the node will do for now, though 
	 */
	namelen = dentry->d_name.len;
	ret = jffs2_reserve_space(c, sizeof(*ri), &phys_ofs, &alloclen, ALLOC_NORMAL);

	if (ret) {
		jffs2_free_raw_inode(ri);
		return ret;
	}

	inode = jffs2_new_inode(dir_i, mode, ri);

	if (IS_ERR(inode)) {
		jffs2_free_raw_inode(ri);
		jffs2_complete_reservation(c);
		return PTR_ERR(inode);
	}

	inode->i_op = &jffs2_dir_inode_operations;
	inode->i_fop = &jffs2_dir_operations;
	/* Directories get nlink 2 at start */
	inode->i_nlink = 2;

	f = JFFS2_INODE_INFO(inode);

	ri->data_crc = cpu_to_je32(0);
	ri->node_crc = cpu_to_je32(crc32(0, ri, sizeof(*ri)-8));
	
	fn = jffs2_write_dnode(c, f, ri, NULL, 0, phys_ofs, ALLOC_NORMAL);

	jffs2_free_raw_inode(ri);

	if (IS_ERR(fn)) {
		/* Eeek. Wave bye bye */
		up(&f->sem);
		jffs2_complete_reservation(c);
		jffs2_clear_inode(inode);
		return PTR_ERR(fn);
	}
	/* No data here. Only a metadata node, which will be 
	   obsoleted by the first data write
	*/
	f->metadata = fn;
	up(&f->sem);

	jffs2_complete_reservation(c);
	ret = jffs2_reserve_space(c, sizeof(*rd)+namelen, &phys_ofs, &alloclen, ALLOC_NORMAL);
	if (ret) {
		/* Eep. */
		jffs2_clear_inode(inode);
		return ret;
	}
	
	rd = jffs2_alloc_raw_dirent();
	if (!rd) {
		/* Argh. Now we treat it like a normal delete */
		jffs2_complete_reservation(c);
		jffs2_clear_inode(inode);
		return -ENOMEM;
	}

	dir_f = JFFS2_INODE_INFO(dir_i);
	down(&dir_f->sem);

	rd->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
	rd->nodetype = cpu_to_je16(JFFS2_NODETYPE_DIRENT);
	rd->totlen = cpu_to_je32(sizeof(*rd) + namelen);
	rd->hdr_crc = cpu_to_je32(crc32(0, rd, sizeof(struct jffs2_unknown_node)-4));

	rd->pino = cpu_to_je32(dir_i->i_ino);
	rd->version = cpu_to_je32(++dir_f->highest_version);
	rd->ino = cpu_to_je32(inode->i_ino);
	rd->mctime = cpu_to_je32(get_seconds());
	rd->nsize = namelen;
	rd->type = DT_DIR;
	rd->node_crc = cpu_to_je32(crc32(0, rd, sizeof(*rd)-8));
	rd->name_crc = cpu_to_je32(crc32(0, dentry->d_name.name, namelen));

	fd = jffs2_write_dirent(c, dir_f, rd, dentry->d_name.name, namelen, phys_ofs, ALLOC_NORMAL);
	
	if (IS_ERR(fd)) {
		/* dirent failed to write. Delete the inode normally 
		   as if it were the final unlink() */
		jffs2_complete_reservation(c);
		jffs2_free_raw_dirent(rd);
		up(&dir_f->sem);
		jffs2_clear_inode(inode);
		return PTR_ERR(fd);
	}

	dir_i->i_mtime = dir_i->i_ctime = ITIME(je32_to_cpu(rd->mctime));
	dir_i->i_nlink++;

	jffs2_free_raw_dirent(rd);

	/* Link the fd into the inode's list, obsoleting an old
	   one if necessary. */
	jffs2_add_fd_to_list(c, fd, &dir_f->dents);

	up(&dir_f->sem);
	jffs2_complete_reservation(c);

	d_instantiate(dentry, inode);
	return 0;
}
Example #27
0
static int kmmpd(void *data)
{
	struct super_block *sb = ((struct mmpd_data *) data)->sb;
	struct buffer_head *bh = ((struct mmpd_data *) data)->bh;
	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
	struct mmp_struct *mmp;
	ext4_fsblk_t mmp_block;
	u32 seq = 0;
	unsigned long failed_writes = 0;
	int mmp_update_interval = le16_to_cpu(es->s_mmp_update_interval);
	unsigned mmp_check_interval;
	unsigned long last_update_time;
	unsigned long diff;
	int retval;

	mmp_block = le64_to_cpu(es->s_mmp_block);
	mmp = (struct mmp_struct *)(bh->b_data);
	mmp->mmp_time = cpu_to_le64(get_seconds());
	mmp_check_interval = max(EXT4_MMP_CHECK_MULT * mmp_update_interval,
				 EXT4_MMP_MIN_CHECK_INTERVAL);
	mmp->mmp_check_interval = cpu_to_le16(mmp_check_interval);
	bdevname(bh->b_bdev, mmp->mmp_bdevname);

	memcpy(mmp->mmp_nodename, init_utsname()->nodename,
	       sizeof(mmp->mmp_nodename));

	while (!kthread_should_stop()) {
		if (++seq > EXT4_MMP_SEQ_MAX)
			seq = 1;

		mmp->mmp_seq = cpu_to_le32(seq);
		mmp->mmp_time = cpu_to_le64(get_seconds());
		last_update_time = jiffies;

		retval = write_mmp_block(bh);
		if (retval) {
			if ((failed_writes % 60) == 0)
				ext4_error(sb, "Error writing to MMP block");
			failed_writes++;
		}

		if (!(le32_to_cpu(es->s_feature_incompat) &
		    EXT4_FEATURE_INCOMPAT_MMP)) {
			ext4_warning(sb, "kmmpd being stopped since MMP feature"
				     " has been disabled.");
			EXT4_SB(sb)->s_mmp_tsk = NULL;
			goto failed;
		}

		if (sb->s_flags & MS_RDONLY) {
			ext4_warning(sb, "kmmpd being stopped since filesystem "
				     "has been remounted as readonly.");
			EXT4_SB(sb)->s_mmp_tsk = NULL;
			goto failed;
		}

		diff = jiffies - last_update_time;
		if (diff < mmp_update_interval * HZ)
			schedule_timeout_interruptible(mmp_update_interval *
						       HZ - diff);

		diff = jiffies - last_update_time;
		if (diff > mmp_check_interval * HZ) {
			struct buffer_head *bh_check = NULL;
			struct mmp_struct *mmp_check;

			retval = read_mmp_block(sb, &bh_check, mmp_block);
			if (retval) {
				ext4_error(sb, "error reading MMP data: %d",
					   retval);

				EXT4_SB(sb)->s_mmp_tsk = NULL;
				goto failed;
			}

			mmp_check = (struct mmp_struct *)(bh_check->b_data);
			if (mmp->mmp_seq != mmp_check->mmp_seq ||
			    memcmp(mmp->mmp_nodename, mmp_check->mmp_nodename,
				   sizeof(mmp->mmp_nodename))) {
				dump_mmp_msg(sb, mmp_check,
					     "Error while updating MMP info. "
					     "The filesystem seems to have been"
					     " multiply mounted.");
				ext4_error(sb, "abort");
				goto failed;
			}
			put_bh(bh_check);
		}

		 /*
		 * Adjust the mmp_check_interval depending on how much time
		 * it took for the MMP block to be written.
		 */
		mmp_check_interval = max(min(EXT4_MMP_CHECK_MULT * diff / HZ,
					     EXT4_MMP_MAX_CHECK_INTERVAL),
					 EXT4_MMP_MIN_CHECK_INTERVAL);
		mmp->mmp_check_interval = cpu_to_le16(mmp_check_interval);
	}

	mmp->mmp_seq = cpu_to_le32(EXT4_MMP_SEQ_CLEAN);
	mmp->mmp_time = cpu_to_le64(get_seconds());

	retval = write_mmp_block(bh);

failed:
	kfree(data);
	brelse(bh);
	return retval;
}
Example #28
0
asmlinkage long sys_msgctl(int msqid, int cmd, struct msqid_ds __user *buf)
{
	struct kern_ipc_perm *ipcp;
	struct msq_setbuf setbuf;
	struct msg_queue *msq;
	int err, version;
	struct ipc_namespace *ns;

	if (msqid < 0 || cmd < 0)
		return -EINVAL;

	memset(&setbuf.mode,	0, sizeof(setbuf.mode));
	memset(&setbuf.gid,	0, sizeof(setbuf.gid));
	memset(&setbuf.uid,	0, sizeof(setbuf.uid));
	memset(&setbuf.qbytes,	0, sizeof(setbuf.qbytes));

	version = ipc_parse_version(&cmd);
	ns = current->nsproxy->ipc_ns;

	switch (cmd) {
	case IPC_INFO:
	case MSG_INFO:
	{
		struct msginfo msginfo;
		int max_id;

		if (!buf)
			return -EFAULT;
		/*
		 * We must not return kernel stack data.
		 * due to padding, it's not enough
		 * to set all member fields.
		 */
		err = security_msg_queue_msgctl(NULL, cmd);
		if (err)
			return err;

		memset(&msginfo, 0, sizeof(msginfo));
		msginfo.msgmni = ns->msg_ctlmni;
		msginfo.msgmax = ns->msg_ctlmax;
		msginfo.msgmnb = ns->msg_ctlmnb;
		msginfo.msgssz = MSGSSZ;
		msginfo.msgseg = MSGSEG;
		mutex_lock(&msg_ids(ns).mutex);
		if (cmd == MSG_INFO) {
			msginfo.msgpool = msg_ids(ns).in_use;
			msginfo.msgmap = atomic_read(&msg_hdrs);
			msginfo.msgtql = atomic_read(&msg_bytes);
		} else {
			msginfo.msgmap = MSGMAP;
			msginfo.msgpool = MSGPOOL;
			msginfo.msgtql = MSGTQL;
		}
		max_id = msg_ids(ns).max_id;
		mutex_unlock(&msg_ids(ns).mutex);
		if (copy_to_user(buf, &msginfo, sizeof(struct msginfo)))
			return -EFAULT;
		return (max_id < 0) ? 0 : max_id;
	}
	case MSG_STAT:
	case IPC_STAT:
	{
		struct msqid64_ds tbuf;
		int success_return;

		if (!buf)
			return -EFAULT;
		if (cmd == MSG_STAT && msqid >= msg_ids(ns).entries->size)
			return -EINVAL;

		memset(&tbuf, 0, sizeof(tbuf));

		msq = msg_lock(ns, msqid);
		if (msq == NULL)
			return -EINVAL;

		if (cmd == MSG_STAT) {
			success_return = msg_buildid(ns, msqid, msq->q_perm.seq);
		} else {
			err = -EIDRM;
			if (msg_checkid(ns, msq, msqid))
				goto out_unlock;
			success_return = 0;
		}
		err = -EACCES;
		if (ipcperms(&msq->q_perm, S_IRUGO))
			goto out_unlock;

		err = security_msg_queue_msgctl(msq, cmd);
		if (err)
			goto out_unlock;

		kernel_to_ipc64_perm(&msq->q_perm, &tbuf.msg_perm);
		tbuf.msg_stime  = msq->q_stime;
		tbuf.msg_rtime  = msq->q_rtime;
		tbuf.msg_ctime  = msq->q_ctime;
		tbuf.msg_cbytes = msq->q_cbytes;
		tbuf.msg_qnum   = msq->q_qnum;
		tbuf.msg_qbytes = msq->q_qbytes;
		tbuf.msg_lspid  = msq->q_lspid;
		tbuf.msg_lrpid  = msq->q_lrpid;
		msg_unlock(msq);
		if (copy_msqid_to_user(buf, &tbuf, version))
			return -EFAULT;
		return success_return;
	}
	case IPC_SET:
		if (!buf)
			return -EFAULT;
		if (copy_msqid_from_user(&setbuf, buf, version))
			return -EFAULT;
		break;
	case IPC_RMID:
		break;
	default:
		return  -EINVAL;
	}

	mutex_lock(&msg_ids(ns).mutex);
	msq = msg_lock(ns, msqid);
	err = -EINVAL;
	if (msq == NULL)
		goto out_up;

	err = -EIDRM;
	if (msg_checkid(ns, msq, msqid))
		goto out_unlock_up;
	ipcp = &msq->q_perm;

	err = audit_ipc_obj(ipcp);
	if (err)
		goto out_unlock_up;
	if (cmd==IPC_SET) {
		err = audit_ipc_set_perm(setbuf.qbytes, setbuf.uid, setbuf.gid,
					 setbuf.mode);
		if (err)
			goto out_unlock_up;
	}

	err = -EPERM;
	if (current->euid != ipcp->cuid &&
	    current->euid != ipcp->uid && !capable(CAP_SYS_ADMIN))
		/* We _could_ check for CAP_CHOWN above, but we don't */
		goto out_unlock_up;

	err = security_msg_queue_msgctl(msq, cmd);
	if (err)
		goto out_unlock_up;

	switch (cmd) {
	case IPC_SET:
	{
		err = -EPERM;
		if (setbuf.qbytes > ns->msg_ctlmnb && !capable(CAP_SYS_RESOURCE))
			goto out_unlock_up;

		msq->q_qbytes = setbuf.qbytes;

		ipcp->uid = setbuf.uid;
		ipcp->gid = setbuf.gid;
		ipcp->mode = (ipcp->mode & ~S_IRWXUGO) |
			     (S_IRWXUGO & setbuf.mode);
		msq->q_ctime = get_seconds();
		/* sleeping receivers might be excluded by
		 * stricter permissions.
		 */
		expunge_all(msq, -EAGAIN);
		/* sleeping senders might be able to send
		 * due to a larger queue size.
		 */
		ss_wakeup(&msq->q_senders, 0);
		msg_unlock(msq);
		break;
	}
	case IPC_RMID:
		freeque(ns, msq, msqid);
		break;
	}
	err = 0;
out_up:
	mutex_unlock(&msg_ids(ns).mutex);
	return err;
out_unlock_up:
	msg_unlock(msq);
	goto out_up;
out_unlock:
	msg_unlock(msq);
	return err;
}
Example #29
0
static u64 ufs_alloc_fragments(struct inode *inode, unsigned cgno,
			       u64 goal, unsigned count, int *err)
{
	struct super_block * sb;
	struct ufs_sb_private_info * uspi;
	struct ufs_super_block_first * usb1;
	struct ufs_cg_private_info * ucpi;
	struct ufs_cylinder_group * ucg;
	unsigned oldcg, i, j, k, allocsize;
	u64 result;
	
	UFSD("ENTER, ino %lu, cgno %u, goal %llu, count %u\n",
	     inode->i_ino, cgno, (unsigned long long)goal, count);

	sb = inode->i_sb;
	uspi = UFS_SB(sb)->s_uspi;
	usb1 = ubh_get_usb_first(uspi);
	oldcg = cgno;
	
	/*
	 * 1. searching on preferred cylinder group
	 */
	UFS_TEST_FREE_SPACE_CG

	/*
	 * 2. quadratic rehash
	 */
	for (j = 1; j < uspi->s_ncg; j *= 2) {
		cgno += j;
		if (cgno >= uspi->s_ncg) 
			cgno -= uspi->s_ncg;
		UFS_TEST_FREE_SPACE_CG
	}

	/*
	 * 3. brute force search
	 * We start at i = 2 ( 0 is checked at 1.step, 1 at 2.step )
	 */
	cgno = (oldcg + 1) % uspi->s_ncg;
	for (j = 2; j < uspi->s_ncg; j++) {
		cgno++;
		if (cgno >= uspi->s_ncg)
			cgno = 0;
		UFS_TEST_FREE_SPACE_CG
	}
	
	UFSD("EXIT (FAILED)\n");
	return 0;

cg_found:
	ucpi = ufs_load_cylinder (sb, cgno);
	if (!ucpi)
		return 0;
	ucg = ubh_get_ucg (UCPI_UBH(ucpi));
	if (!ufs_cg_chkmagic(sb, ucg)) 
		ufs_panic (sb, "ufs_alloc_fragments",
			"internal error, bad magic number on cg %u", cgno);
	ucg->cg_time = cpu_to_fs32(sb, get_seconds());

	if (count == uspi->s_fpb) {
		result = ufs_alloccg_block (inode, ucpi, goal, err);
		if (result == INVBLOCK)
			return 0;
		goto succed;
	}

	for (allocsize = count; allocsize < uspi->s_fpb; allocsize++)
		if (fs32_to_cpu(sb, ucg->cg_frsum[allocsize]) != 0)
			break;
	
	if (allocsize == uspi->s_fpb) {
		result = ufs_alloccg_block (inode, ucpi, goal, err);
		if (result == INVBLOCK)
			return 0;
		goal = ufs_dtogd(uspi, result);
		for (i = count; i < uspi->s_fpb; i++)
			ubh_setbit (UCPI_UBH(ucpi), ucpi->c_freeoff, goal + i);
		i = uspi->s_fpb - count;

		fs32_add(sb, &ucg->cg_cs.cs_nffree, i);
		uspi->cs_total.cs_nffree += i;
		fs32_add(sb, &UFS_SB(sb)->fs_cs(cgno).cs_nffree, i);
		fs32_add(sb, &ucg->cg_frsum[i], 1);
		goto succed;
	}

	result = ufs_bitmap_search (sb, ucpi, goal, allocsize);
	if (result == INVBLOCK)
		return 0;
	for (i = 0; i < count; i++)
		ubh_clrbit (UCPI_UBH(ucpi), ucpi->c_freeoff, result + i);
	
	fs32_sub(sb, &ucg->cg_cs.cs_nffree, count);
	uspi->cs_total.cs_nffree -= count;
	fs32_sub(sb, &UFS_SB(sb)->fs_cs(cgno).cs_nffree, count);
	fs32_sub(sb, &ucg->cg_frsum[allocsize], 1);

	if (count != allocsize)
		fs32_add(sb, &ucg->cg_frsum[allocsize - count], 1);

succed:
	ubh_mark_buffer_dirty (USPI_UBH(uspi));
	ubh_mark_buffer_dirty (UCPI_UBH(ucpi));
	if (sb->s_flags & MS_SYNCHRONOUS)
		ubh_sync_block(UCPI_UBH(ucpi));
	sb->s_dirt = 1;

	result += cgno * uspi->s_fpg;
	UFSD("EXIT3, result %llu\n", (unsigned long long)result);
	return result;
}
Example #30
0
//-----------------------------------------------------------------------------
void t_display_rysuj_siatke_czas (T_Display *w)
{
		int wys ;
		char ctmp [20] ;
		
		wys = w->canvas->allocation.height ;
		
		// kolor siatki i opisow
		GdkGC *gc = gdk_gc_new (GTK_LAYOUT(w->canvas)->bin_window);
		GdkColor color ;
		color.red = 0;
		color.green = 40000;
		color.blue = 0;		
		gdk_gc_set_rgb_fg_color(gc,&color) ;
		
		time_t hours = w->last_time - w->last_time % w->time_step ;
		
		int dzialka_godz = w->time_step / 3600 ;
		
		//printf ("%d %d %d\n",hours, dzialka_godz, w->last_time % w->time_step) ;
		if (w->time_step > 60*60) { // dla dzialki powyzej godziny utrzymac polnoc :)
				hours = full_hour(w->last_time) ;
				while ( ((get_hour(hours) % dzialka_godz) != 0) &&
							 (hours > (w->last_time - w->time_range)) )
				{
						hours -= 3600 ;		// czasami nie pokazuje najpozniejszej godziny dla dzialki 3h
						// pewnie przez jakies dziwne zjawiska z czasem (lata przestepne ?)
				} ;
		} ;
		//printf ("%d\n",hours) ;
		
		int x_hours ;
		PangoLayout *etykieta ;
		int et_szer, et_wys ;
		int label_x, label_y ;
		
		while (hours > (w->last_time - w->time_range))
		{
				x_hours = time_to_pixel_x(hours, w) ;
				
				//snprintf (&(ctmp[0]), 20, "%.2d:%.2d", get_hour(hours), get_minute(hours)) ;
				gen_time_label_string(&(ctmp[0]), 20, hours, w) ;
				etykieta = gtk_widget_create_pango_layout (w->canvas,ctmp);
				
				pango_layout_get_pixel_size (etykieta, &et_szer, &et_wys) ;
				label_x = x_hours-et_szer/2 ;
				label_y = et_wys+LABEL_MARGIN/2 ;
				
				PangoMatrix matrix = PANGO_MATRIX_INIT;
				if (w->x_labels_vert == TRUE) 
				{
						pango_matrix_rotate (&matrix, 90.);
						label_x = x_hours - (et_wys)/2 ;
						label_y = et_szer + LABEL_MARGIN ;
				} ;
				pango_context_set_matrix (pango_layout_get_context(etykieta), &matrix);
				pango_layout_context_changed(etykieta) ;
				
				// rysowanie dzialek i etykiet
				gdk_draw_layout (GTK_LAYOUT(w->canvas)->bin_window, 
												 //w->canvas->style->fg_gc[GTK_WIDGET_STATE (w->canvas)],
												 gc,
												 label_x, wys-label_y - w->legend_height, etykieta) ;
				gdk_draw_line (GTK_LAYOUT(w->canvas)->bin_window,
											 //w->canvas->style->fg_gc[GTK_WIDGET_STATE (w->canvas)],
											 gc,
											 x_hours,wys-w->y_pixel_offset,x_hours,wys-wys) ;
				
				// pogrubienie wybranych dzialek
				if ((get_seconds(hours) == 0) && 
						(get_minute(hours) == 0)  && 
						(get_hour(hours) == 0) )
				{
						gdk_draw_line (GTK_LAYOUT(w->canvas)->bin_window,
													 //w->canvas->style->fg_gc[GTK_WIDGET_STATE (w->canvas)],
													 gc,
													 x_hours+1,wys-w->y_pixel_offset,x_hours+1,wys-wys) ;
				} ;
				
				g_object_unref(etykieta) ;
				
				hours -= w->time_step ;
		} ;
		
		g_object_unref(gc) ;
		
} ;