Example #1
0
static int
ext2_ext_balloc(struct inode *ip, uint32_t lbn, int size,
    struct ucred *cred, struct buf **bpp, int flags)
{
	struct m_ext2fs *fs;
	struct buf *bp = NULL;
	struct vnode *vp = ITOV(ip);
	daddr_t newblk;
	int osize, nsize, blks, error, allocated;

	fs = ip->i_e2fs;
	blks = howmany(size, fs->e2fs_bsize);

	error = ext4_ext_get_blocks(ip, lbn, blks, cred, NULL, &allocated, &newblk);
	if (error)
		return (error);

	if (allocated) {
		if (ip->i_size < (lbn + 1) * fs->e2fs_bsize)
			nsize = fragroundup(fs, size);
		else
			nsize = fs->e2fs_bsize;

		bp = getblk(vp, lbn, nsize, 0, 0, 0);
		if(!bp)
			return (EIO);

		bp->b_blkno = fsbtodb(fs, newblk);
		if (flags & BA_CLRBUF)
			vfs_bio_clrbuf(bp);
	} else {
		if (ip->i_size >= (lbn + 1) * fs->e2fs_bsize) {

			error = bread(vp, lbn, fs->e2fs_bsize, NOCRED, &bp);
			if (error) {
				brelse(bp);
				return (error);
			}
			bp->b_blkno = fsbtodb(fs, newblk);
			*bpp = bp;
			return (0);
		}

		/*
		 * Consider need to reallocate a fragment.
		 */
		osize = fragroundup(fs, blkoff(fs, ip->i_size));
		nsize = fragroundup(fs, size);
		if (nsize <= osize)
			error = bread(vp, lbn, osize, NOCRED, &bp);
		else
			error = bread(vp, lbn, fs->e2fs_bsize, NOCRED, &bp);
		if (error) {
			brelse(bp);
			return (error);
		}
		bp->b_blkno = fsbtodb(fs, newblk);
	}

	*bpp = bp;

	return (error);
}
Example #2
0
/*
 * Read data to a buf, including read-ahead if we find this to be beneficial.
 * cluster_read replaces bread.
 */
int
cluster_read(struct vnode *vp, u_quad_t filesize, daddr_t lblkno, long size,
    struct ucred *cred, long totread, int seqcount, int gbflags,
    struct buf **bpp)
{
	struct buf *bp, *rbp, *reqbp;
	struct bufobj *bo;
	daddr_t blkno, origblkno;
	int maxra, racluster;
	int error, ncontig;
	int i;

	error = 0;
	bo = &vp->v_bufobj;
	if (!unmapped_buf_allowed)
		gbflags &= ~GB_UNMAPPED;

	/*
	 * Try to limit the amount of read-ahead by a few
	 * ad-hoc parameters.  This needs work!!!
	 */
	racluster = vp->v_mount->mnt_iosize_max / size;
	maxra = seqcount;
	maxra = min(read_max, maxra);
	maxra = min(nbuf/8, maxra);
	if (((u_quad_t)(lblkno + maxra + 1) * size) > filesize)
		maxra = (filesize / size) - lblkno;

	/*
	 * get the requested block
	 */
	*bpp = reqbp = bp = getblk(vp, lblkno, size, 0, 0, gbflags);
	origblkno = lblkno;

	/*
	 * if it is in the cache, then check to see if the reads have been
	 * sequential.  If they have, then try some read-ahead, otherwise
	 * back-off on prospective read-aheads.
	 */
	if (bp->b_flags & B_CACHE) {
		if (!seqcount) {
			return 0;
		} else if ((bp->b_flags & B_RAM) == 0) {
			return 0;
		} else {
			bp->b_flags &= ~B_RAM;
			BO_RLOCK(bo);
			for (i = 1; i < maxra; i++) {
				/*
				 * Stop if the buffer does not exist or it
				 * is invalid (about to go away?)
				 */
				rbp = gbincore(&vp->v_bufobj, lblkno+i);
				if (rbp == NULL || (rbp->b_flags & B_INVAL))
					break;

				/*
				 * Set another read-ahead mark so we know 
				 * to check again. (If we can lock the
				 * buffer without waiting)
				 */
				if ((((i % racluster) == (racluster - 1)) ||
				    (i == (maxra - 1))) 
				    && (0 == BUF_LOCK(rbp, 
					LK_EXCLUSIVE | LK_NOWAIT, NULL))) {
					rbp->b_flags |= B_RAM;
					BUF_UNLOCK(rbp);
				}			
			}
			BO_RUNLOCK(bo);
			if (i >= maxra) {
				return 0;
			}
			lblkno += i;
		}
		reqbp = bp = NULL;
	/*
	 * If it isn't in the cache, then get a chunk from
	 * disk if sequential, otherwise just get the block.
	 */
	} else {
		off_t firstread = bp->b_offset;
		int nblks;
		long minread;

		KASSERT(bp->b_offset != NOOFFSET,
		    ("cluster_read: no buffer offset"));

		ncontig = 0;

		/*
		 * Adjust totread if needed
		 */
		minread = read_min * size;
		if (minread > totread)
			totread = minread;

		/*
		 * Compute the total number of blocks that we should read
		 * synchronously.
		 */
		if (firstread + totread > filesize)
			totread = filesize - firstread;
		nblks = howmany(totread, size);
		if (nblks > racluster)
			nblks = racluster;

		/*
		 * Now compute the number of contiguous blocks.
		 */
		if (nblks > 1) {
	    		error = VOP_BMAP(vp, lblkno, NULL,
				&blkno, &ncontig, NULL);
			/*
			 * If this failed to map just do the original block.
			 */
			if (error || blkno == -1)
				ncontig = 0;
		}

		/*
		 * If we have contiguous data available do a cluster
		 * otherwise just read the requested block.
		 */
		if (ncontig) {
			/* Account for our first block. */
			ncontig = min(ncontig + 1, nblks);
			if (ncontig < nblks)
				nblks = ncontig;
			bp = cluster_rbuild(vp, filesize, lblkno,
			    blkno, size, nblks, gbflags, bp);
			lblkno += (bp->b_bufsize / size);
		} else {
			bp->b_flags |= B_RAM;
			bp->b_iocmd = BIO_READ;
			lblkno += 1;
		}
	}

	/*
	 * handle the synchronous read so that it is available ASAP.
	 */
	if (bp) {
		if ((bp->b_flags & B_CLUSTER) == 0) {
			vfs_busy_pages(bp, 0);
		}
		bp->b_flags &= ~B_INVAL;
		bp->b_ioflags &= ~BIO_ERROR;
		if ((bp->b_flags & B_ASYNC) || bp->b_iodone != NULL)
			BUF_KERNPROC(bp);
		bp->b_iooffset = dbtob(bp->b_blkno);
		bstrategy(bp);
		curthread->td_ru.ru_inblock++;
	}

	/*
	 * If we have been doing sequential I/O, then do some read-ahead.
	 */
	while (lblkno < (origblkno + maxra)) {
		error = VOP_BMAP(vp, lblkno, NULL, &blkno, &ncontig, NULL);
		if (error)
			break;

		if (blkno == -1)
			break;

		/*
		 * We could throttle ncontig here by maxra but we might as
		 * well read the data if it is contiguous.  We're throttled
		 * by racluster anyway.
		 */
		if (ncontig) {
			ncontig = min(ncontig + 1, racluster);
			rbp = cluster_rbuild(vp, filesize, lblkno, blkno,
			    size, ncontig, gbflags, NULL);
			lblkno += (rbp->b_bufsize / size);
			if (rbp->b_flags & B_DELWRI) {
				bqrelse(rbp);
				continue;
			}
		} else {
			rbp = getblk(vp, lblkno, size, 0, 0, gbflags);
			lblkno += 1;
			if (rbp->b_flags & B_DELWRI) {
				bqrelse(rbp);
				continue;
			}
			rbp->b_flags |= B_ASYNC | B_RAM;
			rbp->b_iocmd = BIO_READ;
			rbp->b_blkno = blkno;
		}
		if (rbp->b_flags & B_CACHE) {
			rbp->b_flags &= ~B_ASYNC;
			bqrelse(rbp);
			continue;
		}
		if ((rbp->b_flags & B_CLUSTER) == 0) {
			vfs_busy_pages(rbp, 0);
		}
		rbp->b_flags &= ~B_INVAL;
		rbp->b_ioflags &= ~BIO_ERROR;
		if ((rbp->b_flags & B_ASYNC) || rbp->b_iodone != NULL)
			BUF_KERNPROC(rbp);
		rbp->b_iooffset = dbtob(rbp->b_blkno);
		bstrategy(rbp);
		curthread->td_ru.ru_inblock++;
	}

	if (reqbp)
		return (bufwait(reqbp));
	else
		return (error);
}
Example #3
0
/*
 * Check the super block and its summary info.
 */
static int
checksb(int listerr)
{
	caddr_t err;

	/*
	 * When the fs check is successfully completed, the alternate super
	 * block at sblk.b_bno will be overwritten by ckfini() with the
	 * repaired super block.
	 */
	sblk.b_bno = bflag ? bflag : (SBOFF / dev_bsize);
	sblk.b_size = SBSIZE;

	/*
	 * Sanity-check some of the values we are going to use later
	 * in allocation requests.
	 */
	if (sblock.fs_cstotal.cs_ndir < 1 ||
	    sblock.fs_cstotal.cs_ndir > sblock.fs_ncg * sblock.fs_ipg) {
		if (verbose)
			(void) printf(
	    "Found %d directories, should be between 1 and %d inclusive.\n",
			    sblock.fs_cstotal.cs_ndir,
			    sblock.fs_ncg * sblock.fs_ipg);
		err = "NUMBER OF DIRECTORIES OUT OF RANGE";
		goto failedsb;
	}

	if (sblock.fs_nrpos <= 0 || sblock.fs_postbloff < 0 ||
	    sblock.fs_cpc < 0 ||
	    (sblock.fs_postbloff +
	    (sblock.fs_nrpos * sblock.fs_cpc * sizeof (short))) >
	    sblock.fs_sbsize) {
		err = "ROTATIONAL POSITION TABLE SIZE OUT OF RANGE";
		goto failedsb;
	}

	if (sblock.fs_cssize !=
	    fragroundup(&sblock, sblock.fs_ncg * sizeof (struct csum))) {
		err = "SIZE OF CYLINDER GROUP SUMMARY AREA WRONG";
		goto failedsb;
	}

	if (sblock.fs_inopb != (sblock.fs_bsize / sizeof (struct dinode))) {
		err = "INOPB NONSENSICAL RELATIVE TO BSIZE";
		goto failedsb;
	}

	if (sblock.fs_bsize > MAXBSIZE) {
		err = "BLOCK SIZE LARGER THAN MAXIMUM SUPPORTED";
		goto failedsb;
	}

	if (sblock.fs_bsize != (sblock.fs_frag * sblock.fs_fsize)) {
		err = "FRAGS PER BLOCK OR FRAG SIZE WRONG";
		goto failedsb;
	}

	if (sblock.fs_dsize >= sblock.fs_size) {
		err = "NUMBER OF DATA BLOCKS OUT OF RANGE";
		goto failedsb;
	}

#if 0
	if (sblock.fs_size >
	    (sblock.fs_nsect * sblock.fs_ntrak * sblock.fs_ncyl)) {
		err = "FILESYSTEM SIZE LARGER THAN DEVICE";
		goto failedsb;
	}
#endif

	/*
	 *  Check that the number of inodes per group isn't less than or
	 *  equal to zero.  Also makes sure it isn't more than the
	 *  maximum number mkfs enforces.
	 */
	if (sblock.fs_ipg <= 0 || sblock.fs_ipg > MAXIpG) {
		err = "INODES PER GROUP OUT OF RANGE";
		goto failedsb;
	}

	if (sblock.fs_cgsize > sblock.fs_bsize) {
		err = "CG HEADER LARGER THAN ONE BLOCK";
		goto failedsb;
	}

	/*
	 * Set all possible fields that could differ, then do check
	 * of whole super block against an alternate super block.
	 * When an alternate super-block is specified this check is skipped.
	 */
	(void) getblk(&asblk, cgsblock(&sblock, sblock.fs_ncg - 1),
	    (size_t)sblock.fs_sbsize);
	if (asblk.b_errs != 0) {
		brelse(&asblk);
		return (0);
	}
	if (bflag != 0) {
		/*
		 * Invalidate clean flag and state information.
		 * Note that we couldn't return until after the
		 * above getblk(), because we're going to want to
		 * update asblk when everything's done.
		 */
		sblock.fs_clean = FSACTIVE;
		sblock.fs_state = (long)sblock.fs_time;
		sblock.fs_reclaim = 0;
		sbdirty();
		havesb = 1;
		return (1);
	}
	altsblock.fs_link = sblock.fs_link;
	altsblock.fs_rolled = sblock.fs_rolled;
	altsblock.fs_time = sblock.fs_time;
	altsblock.fs_state = sblock.fs_state;
	altsblock.fs_cstotal = sblock.fs_cstotal;
	altsblock.fs_cgrotor = sblock.fs_cgrotor;
	altsblock.fs_fmod = sblock.fs_fmod;
	altsblock.fs_clean = sblock.fs_clean;
	altsblock.fs_ronly = sblock.fs_ronly;
	altsblock.fs_flags = sblock.fs_flags;
	altsblock.fs_maxcontig = sblock.fs_maxcontig;
	altsblock.fs_minfree = sblock.fs_minfree;
	altsblock.fs_optim = sblock.fs_optim;
	altsblock.fs_rotdelay = sblock.fs_rotdelay;
	altsblock.fs_maxbpg = sblock.fs_maxbpg;
	altsblock.fs_logbno = sblock.fs_logbno;
	altsblock.fs_reclaim = sblock.fs_reclaim;
	altsblock.fs_si = sblock.fs_si;
	(void) memmove((void *)altsblock.fs_fsmnt, (void *)sblock.fs_fsmnt,
	    sizeof (sblock.fs_fsmnt));
	/*
	 * The following should not have to be copied.
	 */
	(void) memmove((void *)altsblock.fs_u.fs_csp_pad,
	    (void *)sblock.fs_u.fs_csp_pad, sizeof (sblock.fs_u.fs_csp_pad));
	altsblock.fs_fsbtodb = sblock.fs_fsbtodb;
	altsblock.fs_npsect = sblock.fs_npsect;
	altsblock.fs_nrpos = sblock.fs_nrpos;
	if (memcmp((void *)&sblock, (void *)&altsblock,
	    (size_t)sblock.fs_sbsize) != 0) {
		err = "BAD VALUES IN SUPER BLOCK";
		goto failedsb;
	}
	havesb = 1;
	return (1);

failedsb:
	badsb(listerr, err);
	return (0);
}
Example #4
0
/*
 * Indirect blocks are now on the vnode for the file.  They are given negative
 * logical block numbers.  Indirect blocks are addressed by the negative
 * address of the first data block to which they point.  Double indirect blocks
 * are addressed by one less than the address of the first indirect block to
 * which they point.  Triple indirect blocks are addressed by one less than
 * the address of the first double indirect block to which they point.
 *
 * ufs_bmaparray does the bmap conversion, and if requested returns the
 * array of logical blocks which must be traversed to get to a block.
 * Each entry contains the offset into that block that gets you to the
 * next block and the disk address of the block (if it is assigned).
 */
int
ufs_bmaparray(struct vnode *vp, daddr64_t bn, daddr64_t *bnp, struct indir *ap,
    int *nump, int *runp)
{
	struct inode *ip;
	struct buf *bp;
	struct ufsmount *ump;
	struct mount *mp;
	struct vnode *devvp;
	struct indir a[NIADDR+1], *xap;
	daddr64_t daddr, metalbn;
	int error, maxrun = 0, num;

	ip = VTOI(vp);
	mp = vp->v_mount;
	ump = VFSTOUFS(mp);
#ifdef DIAGNOSTIC
	if ((ap != NULL && nump == NULL) || (ap == NULL && nump != NULL))
		panic("ufs_bmaparray: invalid arguments");
#endif

	if (runp) {
		/*
		 * XXX
		 * If MAXBSIZE is the largest transfer the disks can handle,
		 * we probably want maxrun to be 1 block less so that we
		 * don't create a block larger than the device can handle.
		 */
		*runp = 0;
		maxrun = MAXBSIZE / mp->mnt_stat.f_iosize - 1;
	}

	xap = ap == NULL ? a : ap;
	if (!nump)
		nump = &num;
	if ((error = ufs_getlbns(vp, bn, xap, nump)) != 0)
		return (error);

	num = *nump;
	if (num == 0) {
		*bnp = blkptrtodb(ump, DIP(ip, db[bn]));
		if (*bnp == 0)
			*bnp = -1;
		else if (runp)
			for (++bn; bn < NDADDR && *runp < maxrun &&
			    is_sequential(ump, DIP(ip, db[bn - 1]),
			        DIP(ip, db[bn]));
			    ++bn, ++*runp);
		return (0);
	}


	/* Get disk address out of indirect block array */
	daddr = DIP(ip, ib[xap->in_off]);

	devvp = VFSTOUFS(vp->v_mount)->um_devvp;
	for (bp = NULL, ++xap; --num; ++xap) {
		/* 
		 * Exit the loop if there is no disk address assigned yet and
		 * the indirect block isn't in the cache, or if we were
		 * looking for an indirect block and we've found it.
		 */

		metalbn = xap->in_lbn;
		if ((daddr == 0 && !incore(vp, metalbn)) || metalbn == bn)
			break;
		/*
		 * If we get here, we've either got the block in the cache
		 * or we have a disk address for it, go fetch it.
		 */
		if (bp)
			brelse(bp);

		xap->in_exists = 1;
		bp = getblk(vp, metalbn, mp->mnt_stat.f_iosize, 0, 0);
		if (bp->b_flags & (B_DONE | B_DELWRI)) {
			;
		}
#ifdef DIAGNOSTIC
		else if (!daddr)
			panic("ufs_bmaparray: indirect block not in cache");
#endif
		else {
			bp->b_blkno = blkptrtodb(ump, daddr);
			bp->b_flags |= B_READ;
			bcstats.pendingreads++;
			bcstats.numreads++;
			VOP_STRATEGY(bp);
			curproc->p_ru.ru_inblock++;		/* XXX */
			if ((error = biowait(bp)) != 0) {
				brelse(bp);
				return (error);
			}
		}

#ifdef FFS2
		if (ip->i_ump->um_fstype == UM_UFS2) {
			daddr = ((int64_t *)bp->b_data)[xap->in_off];
			if (num == 1 && daddr && runp)
				for (bn = xap->in_off + 1;
				    bn < MNINDIR(ump) && *runp < maxrun &&
				    is_sequential(ump,
					((int64_t *)bp->b_data)[bn - 1],
					((int64_t *)bp->b_data)[bn]);
				    ++bn, ++*runp);

                        continue;
		}

#endif /* FFS2 */

		daddr = ((int32_t *)bp->b_data)[xap->in_off];
		if (num == 1 && daddr && runp)
			for (bn = xap->in_off + 1;
			    bn < MNINDIR(ump) && *runp < maxrun &&
			    is_sequential(ump,
				((int32_t *)bp->b_data)[bn - 1],
				((int32_t *)bp->b_data)[bn]);
			    ++bn, ++*runp);
	}
	if (bp)
		brelse(bp);

	daddr = blkptrtodb(ump, daddr);
	*bnp = daddr == 0 ? -1 : daddr;
	return (0);
}
Example #5
0
/*
 * Balloc defines the structure of file system storage
 * by allocating the physical blocks on a device given
 * the inode and the logical block number in a file.
 * This is the allocation strategy for UFS2. Above is
 * the allocation strategy for UFS1.
 */
int
ffs_balloc_ufs2(vnode *vp, off_t startoffset, int size,
    Ucred *cred, int flags, Buf **bpp)
{
	int error = 0;
	print("HARVEY TODO: %s\n", __func__);
#if 0
	struct inode *ip;
	struct ufs2_dinode *dp;
	ufs_lbn_t lbn, lastlbn;
	struct fs *fs;
	struct buf *bp, *nbp;
	struct ufsmount *ump;
	struct indir indirs[UFS_NIADDR + 2];
	ufs2_daddr_t nb, newb, *bap, pref;
	ufs2_daddr_t *allocib, *blkp, *allocblk, allociblk[UFS_NIADDR + 1];
	ufs2_daddr_t *lbns_remfree, lbns[UFS_NIADDR + 1];
	int deallocated, osize, nsize, num, i, error;
	int unwindidx = -1;
	int saved_inbdflush;
	static struct timeval lastfail;
	static int curfail;
	int gbflags, reclaimed;

	ip = VTOI(vp);
	dp = ip->i_din2;
	fs = ITOFS(ip);
	ump = ITOUMP(ip);
	lbn = lblkno(fs, startoffset);
	size = blkoff(fs, startoffset) + size;
	reclaimed = 0;
	if (size > fs->fs_bsize)
		panic("ffs_balloc_ufs2: blk too big");
	*bpp = nil;
	if (lbn < 0)
		return (EFBIG);
	gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0;

	if (DOINGSOFTDEP(vp))
		softdep_prealloc(vp, MNT_WAIT);
	
	/*
	 * Check for allocating external data.
	 */
	if (flags & IO_EXT) {
		if (lbn >= UFS_NXADDR)
			return (EFBIG);
		/*
		 * If the next write will extend the data into a new block,
		 * and the data is currently composed of a fragment
		 * this fragment has to be extended to be a full block.
		 */
		lastlbn = lblkno(fs, dp->di_extsize);
		if (lastlbn < lbn) {
			nb = lastlbn;
			osize = sblksize(fs, dp->di_extsize, nb);
			if (osize < fs->fs_bsize && osize > 0) {
				UFS_LOCK(ump);
				error = ffs_realloccg(ip, -1 - nb,
				    dp->di_extb[nb],
				    ffs_blkpref_ufs2(ip, lastlbn, (int)nb,
				    &dp->di_extb[0]), osize,
				    (int)fs->fs_bsize, flags, cred, &bp);
				if (error)
					return (error);
				if (DOINGSOFTDEP(vp))
					softdep_setup_allocext(ip, nb,
					    dbtofsb(fs, bp->b_blkno),
					    dp->di_extb[nb],
					    fs->fs_bsize, osize, bp);
				dp->di_extsize = smalllblktosize(fs, nb + 1);
				dp->di_extb[nb] = dbtofsb(fs, bp->b_blkno);
				bp->b_xflags |= BX_ALTDATA;
				ip->i_flag |= IN_CHANGE;
				if (flags & IO_SYNC)
					bwrite(bp);
				else
					bawrite(bp);
			}
		}
		/*
		 * All blocks are direct blocks
		 */
		if (flags & BA_METAONLY)
			panic("ffs_balloc_ufs2: BA_METAONLY for ext block");
		nb = dp->di_extb[lbn];
		if (nb != 0 && dp->di_extsize >= smalllblktosize(fs, lbn + 1)) {
			error = bread_gb(vp, -1 - lbn, fs->fs_bsize, NOCRED,
			    gbflags, &bp);
			if (error) {
				brelse(bp);
				return (error);
			}
			bp->b_blkno = fsbtodb(fs, nb);
			bp->b_xflags |= BX_ALTDATA;
			*bpp = bp;
			return (0);
		}
		if (nb != 0) {
			/*
			 * Consider need to reallocate a fragment.
			 */
			osize = fragroundup(fs, blkoff(fs, dp->di_extsize));
			nsize = fragroundup(fs, size);
			if (nsize <= osize) {
				error = bread_gb(vp, -1 - lbn, osize, NOCRED,
				    gbflags, &bp);
				if (error) {
					brelse(bp);
					return (error);
				}
				bp->b_blkno = fsbtodb(fs, nb);
				bp->b_xflags |= BX_ALTDATA;
			} else {
				UFS_LOCK(ump);
				error = ffs_realloccg(ip, -1 - lbn,
				    dp->di_extb[lbn],
				    ffs_blkpref_ufs2(ip, lbn, (int)lbn,
				    &dp->di_extb[0]), osize, nsize, flags,
				    cred, &bp);
				if (error)
					return (error);
				bp->b_xflags |= BX_ALTDATA;
				if (DOINGSOFTDEP(vp))
					softdep_setup_allocext(ip, lbn,
					    dbtofsb(fs, bp->b_blkno), nb,
					    nsize, osize, bp);
			}
		} else {
			if (dp->di_extsize < smalllblktosize(fs, lbn + 1))
				nsize = fragroundup(fs, size);
			else
				nsize = fs->fs_bsize;
			UFS_LOCK(ump);
			error = ffs_alloc(ip, lbn,
			   ffs_blkpref_ufs2(ip, lbn, (int)lbn, &dp->di_extb[0]),
			   nsize, flags, cred, &newb);
			if (error)
				return (error);
			bp = getblk(vp, -1 - lbn, nsize, 0, 0, gbflags);
			bp->b_blkno = fsbtodb(fs, newb);
			bp->b_xflags |= BX_ALTDATA;
			if (flags & BA_CLRBUF)
				vfs_bio_clrbuf(bp);
			if (DOINGSOFTDEP(vp))
				softdep_setup_allocext(ip, lbn, newb, 0,
				    nsize, 0, bp);
		}
		dp->di_extb[lbn] = dbtofsb(fs, bp->b_blkno);
		ip->i_flag |= IN_CHANGE;
		*bpp = bp;
		return (0);
	}
	/*
	 * If the next write will extend the file into a new block,
	 * and the file is currently composed of a fragment
	 * this fragment has to be extended to be a full block.
	 */
	lastlbn = lblkno(fs, ip->i_size);
	if (lastlbn < UFS_NDADDR && lastlbn < lbn) {
		nb = lastlbn;
		osize = blksize(fs, ip, nb);
		if (osize < fs->fs_bsize && osize > 0) {
			UFS_LOCK(ump);
			error = ffs_realloccg(ip, nb, dp->di_db[nb],
			    ffs_blkpref_ufs2(ip, lastlbn, (int)nb,
			    &dp->di_db[0]), osize, (int)fs->fs_bsize,
			    flags, cred, &bp);
			if (error)
				return (error);
			if (DOINGSOFTDEP(vp))
				softdep_setup_allocdirect(ip, nb,
				    dbtofsb(fs, bp->b_blkno),
				    dp->di_db[nb],
				    fs->fs_bsize, osize, bp);
			ip->i_size = smalllblktosize(fs, nb + 1);
			dp->di_size = ip->i_size;
			dp->di_db[nb] = dbtofsb(fs, bp->b_blkno);
			ip->i_flag |= IN_CHANGE | IN_UPDATE;
			if (flags & IO_SYNC)
				bwrite(bp);
			else
				bawrite(bp);
		}
	}
	/*
	 * The first UFS_NDADDR blocks are direct blocks
	 */
	if (lbn < UFS_NDADDR) {
		if (flags & BA_METAONLY)
			panic("ffs_balloc_ufs2: BA_METAONLY for direct block");
		nb = dp->di_db[lbn];
		if (nb != 0 && ip->i_size >= smalllblktosize(fs, lbn + 1)) {
			error = bread_gb(vp, lbn, fs->fs_bsize, NOCRED,
			    gbflags, &bp);
			if (error) {
				brelse(bp);
				return (error);
			}
			bp->b_blkno = fsbtodb(fs, nb);
			*bpp = bp;
			return (0);
		}
		if (nb != 0) {
			/*
			 * Consider need to reallocate a fragment.
			 */
			osize = fragroundup(fs, blkoff(fs, ip->i_size));
			nsize = fragroundup(fs, size);
			if (nsize <= osize) {
				error = bread_gb(vp, lbn, osize, NOCRED,
				    gbflags, &bp);
				if (error) {
					brelse(bp);
					return (error);
				}
				bp->b_blkno = fsbtodb(fs, nb);
			} else {
				UFS_LOCK(ump);
				error = ffs_realloccg(ip, lbn, dp->di_db[lbn],
				    ffs_blkpref_ufs2(ip, lbn, (int)lbn,
				    &dp->di_db[0]), osize, nsize, flags,
				    cred, &bp);
				if (error)
					return (error);
				if (DOINGSOFTDEP(vp))
					softdep_setup_allocdirect(ip, lbn,
					    dbtofsb(fs, bp->b_blkno), nb,
					    nsize, osize, bp);
			}
		} else {
			if (ip->i_size < smalllblktosize(fs, lbn + 1))
				nsize = fragroundup(fs, size);
			else
				nsize = fs->fs_bsize;
			UFS_LOCK(ump);
			error = ffs_alloc(ip, lbn,
			    ffs_blkpref_ufs2(ip, lbn, (int)lbn,
				&dp->di_db[0]), nsize, flags, cred, &newb);
			if (error)
				return (error);
			bp = getblk(vp, lbn, nsize, 0, 0, gbflags);
			bp->b_blkno = fsbtodb(fs, newb);
			if (flags & BA_CLRBUF)
				vfs_bio_clrbuf(bp);
			if (DOINGSOFTDEP(vp))
				softdep_setup_allocdirect(ip, lbn, newb, 0,
				    nsize, 0, bp);
		}
		dp->di_db[lbn] = dbtofsb(fs, bp->b_blkno);
		ip->i_flag |= IN_CHANGE | IN_UPDATE;
		*bpp = bp;
		return (0);
	}
	/*
	 * Determine the number of levels of indirection.
	 */
	pref = 0;
	if ((error = ufs_getlbns(vp, lbn, indirs, &num)) != 0)
		return(error);
#ifdef INVARIANTS
	if (num < 1)
		panic ("ffs_balloc_ufs2: ufs_getlbns returned indirect block");
#endif
	saved_inbdflush = curthread_pflags_set(TDP_INBDFLUSH);
	/*
	 * Fetch the first indirect block allocating if necessary.
	 */
	--num;
	nb = dp->di_ib[indirs[0].in_off];
	allocib = nil;
	allocblk = allociblk;
	lbns_remfree = lbns;
	if (nb == 0) {
		UFS_LOCK(ump);
		pref = ffs_blkpref_ufs2(ip, lbn, -indirs[0].in_off - 1,
		    (ufs2_daddr_t *)0);
		if ((error = ffs_alloc(ip, lbn, pref, (int)fs->fs_bsize,
		    flags, cred, &newb)) != 0) {
			curthread_pflags_restore(saved_inbdflush);
			return (error);
		}
		pref = newb + fs->fs_frag;
		nb = newb;
		MPASS(allocblk < allociblk + nitems(allociblk));
		MPASS(lbns_remfree < lbns + nitems(lbns));
		*allocblk++ = nb;
		*lbns_remfree++ = indirs[1].in_lbn;
		bp = getblk(vp, indirs[1].in_lbn, fs->fs_bsize, 0, 0,
		    GB_UNMAPPED);
		bp->b_blkno = fsbtodb(fs, nb);
		vfs_bio_clrbuf(bp);
		if (DOINGSOFTDEP(vp)) {
			softdep_setup_allocdirect(ip,
			    UFS_NDADDR + indirs[0].in_off, newb, 0,
			    fs->fs_bsize, 0, bp);
			bdwrite(bp);
		} else if ((flags & IO_SYNC) == 0 && DOINGASYNC(vp)) {
			if (bp->b_bufsize == fs->fs_bsize)
				bp->b_flags |= B_CLUSTEROK;
			bdwrite(bp);
		} else {
			if ((error = bwrite(bp)) != 0)
				goto fail;
		}
		allocib = &dp->di_ib[indirs[0].in_off];
		*allocib = nb;
		ip->i_flag |= IN_CHANGE | IN_UPDATE;
	}
	/*
	 * Fetch through the indirect blocks, allocating as necessary.
	 */
retry:
	for (i = 1;;) {
		error = bread(vp,
		    indirs[i].in_lbn, (int)fs->fs_bsize, NOCRED, &bp);
		if (error) {
			brelse(bp);
			goto fail;
		}
		bap = (ufs2_daddr_t *)bp->b_data;
		nb = bap[indirs[i].in_off];
		if (i == num)
			break;
		i += 1;
		if (nb != 0) {
			bqrelse(bp);
			continue;
		}
		UFS_LOCK(ump);
		/*
		 * If parent indirect has just been allocated, try to cluster
		 * immediately following it.
		 */
		if (pref == 0)
			pref = ffs_blkpref_ufs2(ip, lbn, i - num - 1,
			    (ufs2_daddr_t *)0);
		if ((error = ffs_alloc(ip, lbn, pref, (int)fs->fs_bsize,
		    flags | IO_BUFLOCKED, cred, &newb)) != 0) {
			brelse(bp);
			if (DOINGSOFTDEP(vp) && ++reclaimed == 1) {
				UFS_LOCK(ump);
				softdep_request_cleanup(fs, vp, cred,
				    FLUSH_BLOCKS_WAIT);
				UFS_UNLOCK(ump);
				goto retry;
			}
			if (ppsratecheck(&lastfail, &curfail, 1)) {
				ffs_fserr(fs, ip->i_number, "filesystem full");
				uprintf("\n%s: write failed, filesystem "
				    "is full\n", fs->fs_fsmnt);
			}
			goto fail;
		}
		pref = newb + fs->fs_frag;
		nb = newb;
		MPASS(allocblk < allociblk + nitems(allociblk));
		MPASS(lbns_remfree < lbns + nitems(lbns));
		*allocblk++ = nb;
		*lbns_remfree++ = indirs[i].in_lbn;
		nbp = getblk(vp, indirs[i].in_lbn, fs->fs_bsize, 0, 0,
		    GB_UNMAPPED);
		nbp->b_blkno = fsbtodb(fs, nb);
		vfs_bio_clrbuf(nbp);
		if (DOINGSOFTDEP(vp)) {
			softdep_setup_allocindir_meta(nbp, ip, bp,
			    indirs[i - 1].in_off, nb);
			bdwrite(nbp);
		} else if ((flags & IO_SYNC) == 0 && DOINGASYNC(vp)) {
			if (nbp->b_bufsize == fs->fs_bsize)
				nbp->b_flags |= B_CLUSTEROK;
			bdwrite(nbp);
		} else {
			if ((error = bwrite(nbp)) != 0) {
				brelse(bp);
				goto fail;
			}
		}
		bap[indirs[i - 1].in_off] = nb;
		if (allocib == nil && unwindidx < 0)
			unwindidx = i - 1;
		/*
		 * If required, write synchronously, otherwise use
		 * delayed write.
		 */
		if (flags & IO_SYNC) {
			bwrite(bp);
		} else {
			if (bp->b_bufsize == fs->fs_bsize)
				bp->b_flags |= B_CLUSTEROK;
			bdwrite(bp);
		}
	}
	/*
	 * If asked only for the indirect block, then return it.
	 */
	if (flags & BA_METAONLY) {
		curthread_pflags_restore(saved_inbdflush);
		*bpp = bp;
		return (0);
	}
	/*
	 * Get the data block, allocating if necessary.
	 */
	if (nb == 0) {
		UFS_LOCK(ump);
		/*
		 * If allocating metadata at the front of the cylinder
		 * group and parent indirect block has just been allocated,
		 * then cluster next to it if it is the first indirect in
		 * the file. Otherwise it has been allocated in the metadata
		 * area, so we want to find our own place out in the data area.
		 */
		if (pref == 0 || (lbn > UFS_NDADDR && fs->fs_metaspace != 0))
			pref = ffs_blkpref_ufs2(ip, lbn, indirs[i].in_off,
			    &bap[0]);
		error = ffs_alloc(ip, lbn, pref, (int)fs->fs_bsize,
		    flags | IO_BUFLOCKED, cred, &newb);
		if (error) {
			brelse(bp);
			if (DOINGSOFTDEP(vp) && ++reclaimed == 1) {
				UFS_LOCK(ump);
				softdep_request_cleanup(fs, vp, cred,
				    FLUSH_BLOCKS_WAIT);
				UFS_UNLOCK(ump);
				goto retry;
			}
			if (ppsratecheck(&lastfail, &curfail, 1)) {
				ffs_fserr(fs, ip->i_number, "filesystem full");
				uprintf("\n%s: write failed, filesystem "
				    "is full\n", fs->fs_fsmnt);
			}
			goto fail;
		}
		nb = newb;
		MPASS(allocblk < allociblk + nitems(allociblk));
		MPASS(lbns_remfree < lbns + nitems(lbns));
		*allocblk++ = nb;
		*lbns_remfree++ = lbn;
		nbp = getblk(vp, lbn, fs->fs_bsize, 0, 0, gbflags);
		nbp->b_blkno = fsbtodb(fs, nb);
		if (flags & BA_CLRBUF)
			vfs_bio_clrbuf(nbp);
		if (DOINGSOFTDEP(vp))
			softdep_setup_allocindir_page(ip, lbn, bp,
			    indirs[i].in_off, nb, 0, nbp);
		bap[indirs[i].in_off] = nb;
		/*
		 * If required, write synchronously, otherwise use
		 * delayed write.
		 */
		if (flags & IO_SYNC) {
			bwrite(bp);
		} else {
			if (bp->b_bufsize == fs->fs_bsize)
				bp->b_flags |= B_CLUSTEROK;
			bdwrite(bp);
		}
		curthread_pflags_restore(saved_inbdflush);
		*bpp = nbp;
		return (0);
	}
	brelse(bp);
	/*
	 * If requested clear invalid portions of the buffer.  If we
	 * have to do a read-before-write (typical if BA_CLRBUF is set),
	 * try to do some read-ahead in the sequential case to reduce
	 * the number of I/O transactions.
	 */
	if (flags & BA_CLRBUF) {
		int seqcount = (flags & BA_SEQMASK) >> BA_SEQSHIFT;
		if (seqcount != 0 &&
		    (vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0 &&
		    !(vm_page_count_severe() || buf_dirty_count_severe())) {
			error = cluster_read(vp, ip->i_size, lbn,
			    (int)fs->fs_bsize, NOCRED,
			    MAXBSIZE, seqcount, gbflags, &nbp);
		} else {
			error = bread_gb(vp, lbn, (int)fs->fs_bsize,
			    NOCRED, gbflags, &nbp);
		}
		if (error) {
			brelse(nbp);
			goto fail;
		}
	} else {
Example #6
0
/*
 * Balloc defines the structure of file system storage
 * by allocating the physical blocks on a device given
 * the inode and the logical block number in a file.
 */
int
ext2fs_balloc(struct inode *ip, daddr_t bn, int size,
    kauth_cred_t cred, struct buf **bpp, int flags)
{
	struct m_ext2fs *fs;
	daddr_t nb;
	struct buf *bp, *nbp;
	struct vnode *vp = ITOV(ip);
	struct indir indirs[EXT2FS_NIADDR + 2];
	daddr_t newb, lbn, pref;
	int32_t *bap;	/* XXX ondisk32 */
	int num, i, error;
	u_int deallocated;
	daddr_t *blkp, *allocblk, allociblk[EXT2FS_NIADDR + 1];
	int32_t *allocib;	/* XXX ondisk32 */
	int unwindidx = -1;
	UVMHIST_FUNC("ext2fs_balloc"); UVMHIST_CALLED(ubchist);

	UVMHIST_LOG(ubchist, "bn 0x%x", bn,0,0,0);

	if (bpp != NULL) {
		*bpp = NULL;
	}
	if (bn < 0)
		return (EFBIG);
	fs = ip->i_e2fs;
	lbn = bn;

	/*
	 * The first EXT2FS_NDADDR blocks are direct blocks
	 */
	if (bn < EXT2FS_NDADDR) {
		/* XXX ondisk32 */
		nb = fs2h32(ip->i_e2fs_blocks[bn]);
		if (nb != 0) {

			/*
			 * the block is already allocated, just read it.
			 */

			if (bpp != NULL) {
				error = bread(vp, bn, fs->e2fs_bsize, NOCRED,
					      B_MODIFY, &bp);
				if (error) {
					return (error);
				}
				*bpp = bp;
			}
			return (0);
		}

		/*
		 * allocate a new direct block.
		 */

		error = ext2fs_alloc(ip, bn,
		    ext2fs_blkpref(ip, bn, bn, &ip->i_e2fs_blocks[0]),
		    cred, &newb);
		if (error)
			return (error);
		ip->i_e2fs_last_lblk = lbn;
		ip->i_e2fs_last_blk = newb;
		/* XXX ondisk32 */
		ip->i_e2fs_blocks[bn] = h2fs32((int32_t)newb);
		ip->i_flag |= IN_CHANGE | IN_UPDATE;
		if (bpp != NULL) {
			bp = getblk(vp, bn, fs->e2fs_bsize, 0, 0);
			bp->b_blkno = EXT2_FSBTODB(fs, newb);
			if (flags & B_CLRBUF)
				clrbuf(bp);
			*bpp = bp;
		}
		return (0);
	}
	/*
	 * Determine the number of levels of indirection.
	 */
	pref = 0;
	if ((error = ufs_getlbns(vp, bn, indirs, &num)) != 0)
		return(error);
#ifdef DIAGNOSTIC
	if (num < 1)
		panic ("ext2fs_balloc: ufs_getlbns returned indirect block\n");
#endif
	/*
	 * Fetch the first indirect block allocating if necessary.
	 */
	--num;
	/* XXX ondisk32 */
	nb = fs2h32(ip->i_e2fs_blocks[EXT2FS_NDADDR + indirs[0].in_off]);
	allocib = NULL;
	allocblk = allociblk;
	if (nb == 0) {
		pref = ext2fs_blkpref(ip, lbn, 0, (int32_t *)0);
		error = ext2fs_alloc(ip, lbn, pref, cred, &newb);
		if (error)
			return (error);
		nb = newb;
		*allocblk++ = nb;
		ip->i_e2fs_last_blk = newb;
		bp = getblk(vp, indirs[1].in_lbn, fs->e2fs_bsize, 0, 0);
		bp->b_blkno = EXT2_FSBTODB(fs, newb);
		clrbuf(bp);
		/*
		 * Write synchronously so that indirect blocks
		 * never point at garbage.
		 */
		if ((error = bwrite(bp)) != 0)
			goto fail;
		unwindidx = 0;
		allocib = &ip->i_e2fs_blocks[EXT2FS_NDADDR + indirs[0].in_off];
		/* XXX ondisk32 */
		*allocib = h2fs32((int32_t)newb);
		ip->i_flag |= IN_CHANGE | IN_UPDATE;
	}
	/*
	 * Fetch through the indirect blocks, allocating as necessary.
	 */
	for (i = 1;;) {
		error = bread(vp,
		    indirs[i].in_lbn, (int)fs->e2fs_bsize, NOCRED, 0, &bp);
		if (error) {
			goto fail;
		}
		bap = (int32_t *)bp->b_data;	/* XXX ondisk32 */
		nb = fs2h32(bap[indirs[i].in_off]);
		if (i == num)
			break;
		i++;
		if (nb != 0) {
			brelse(bp, 0);
			continue;
		}
		pref = ext2fs_blkpref(ip, lbn, 0, (int32_t *)0);
		error = ext2fs_alloc(ip, lbn, pref, cred, &newb);
		if (error) {
			brelse(bp, 0);
			goto fail;
		}
		nb = newb;
		*allocblk++ = nb;
		ip->i_e2fs_last_blk = newb;
		nbp = getblk(vp, indirs[i].in_lbn, fs->e2fs_bsize, 0, 0);
		nbp->b_blkno = EXT2_FSBTODB(fs, nb);
		clrbuf(nbp);
		/*
		 * Write synchronously so that indirect blocks
		 * never point at garbage.
		 */
		if ((error = bwrite(nbp)) != 0) {
			brelse(bp, 0);
			goto fail;
		}
		if (unwindidx < 0)
			unwindidx = i - 1;
		/* XXX ondisk32 */
		bap[indirs[i - 1].in_off] = h2fs32((int32_t)nb);
		/*
		 * If required, write synchronously, otherwise use
		 * delayed write.
		 */
		if (flags & B_SYNC) {
			bwrite(bp);
		} else {
			bdwrite(bp);
		}
	}
	/*
	 * Get the data block, allocating if necessary.
	 */
	if (nb == 0) {
		pref = ext2fs_blkpref(ip, lbn, indirs[num].in_off, &bap[0]);
		error = ext2fs_alloc(ip, lbn, pref, cred, &newb);
		if (error) {
			brelse(bp, 0);
			goto fail;
		}
		nb = newb;
		*allocblk++ = nb;
		ip->i_e2fs_last_lblk = lbn;
		ip->i_e2fs_last_blk = newb;
		/* XXX ondisk32 */
		bap[indirs[num].in_off] = h2fs32((int32_t)nb);
		/*
		 * If required, write synchronously, otherwise use
		 * delayed write.
		 */
		if (flags & B_SYNC) {
			bwrite(bp);
		} else {
			bdwrite(bp);
		}
		if (bpp != NULL) {
			nbp = getblk(vp, lbn, fs->e2fs_bsize, 0, 0);
			nbp->b_blkno = EXT2_FSBTODB(fs, nb);
			if (flags & B_CLRBUF)
				clrbuf(nbp);
			*bpp = nbp;
		}
		return (0);
	}
	brelse(bp, 0);
	if (bpp != NULL) {
		if (flags & B_CLRBUF) {
			error = bread(vp, lbn, (int)fs->e2fs_bsize, NOCRED,
				      B_MODIFY, &nbp);
			if (error) {
				goto fail;
			}
		} else {
			nbp = getblk(vp, lbn, fs->e2fs_bsize, 0, 0);
			nbp->b_blkno = EXT2_FSBTODB(fs, nb);
		}
		*bpp = nbp;
	}
	return (0);
fail:
	/*
	 * If we have failed part way through block allocation, we
	 * have to deallocate any indirect blocks that we have allocated.
	 */
	for (deallocated = 0, blkp = allociblk; blkp < allocblk; blkp++) {
		ext2fs_blkfree(ip, *blkp);
		deallocated += fs->e2fs_bsize;
	}
	if (unwindidx >= 0) {
		if (unwindidx == 0) {
			*allocib = 0;
		} else {
			int r;

			r = bread(vp, indirs[unwindidx].in_lbn,
			    (int)fs->e2fs_bsize, NOCRED, B_MODIFY, &bp);
			if (r) {
				panic("Could not unwind indirect block, error %d", r);
			} else {
				bap = (int32_t *)bp->b_data; /* XXX ondisk32 */
				bap[indirs[unwindidx].in_off] = 0;
				if (flags & B_SYNC)
					bwrite(bp);
				else
					bdwrite(bp);
			}
		}
		for (i = unwindidx + 1; i <= num; i++) {
			bp = getblk(vp, indirs[i].in_lbn, (int)fs->e2fs_bsize,
			    0, 0);
			brelse(bp, BC_INVAL);
		}
	}
	if (deallocated) {
		ext2fs_setnblock(ip, ext2fs_nblock(ip) - btodb(deallocated));
		ip->i_e2fs_flags |= IN_CHANGE | IN_UPDATE;
	}
	return error;
}
Example #7
0
static int
prclin(void)                       /* Build up line; return 1 for eof */
{
  uint8_t *pbptr;                  /* -> xxprev->bdata[bchars] for speed */
  int inindent = 040000;           /* Inside indenting w/s, mask matches mode */
/*  */
  for (pbchars = linpos = 0, pbptr = xxprev->bdata; pbchars < BUFMAX; linpos++)
  {
    if (state != 0 && state != 1)
    {                              /* Else assume state 2 */
      if (!(linpos % tabsiz))      /* Reached tabstop (multiple of 8) */
        state = 0;                 /* Fall through */
      else
        goto endswitch;            /* switch(state) case 2 */
    }                              /* if(state!=0&&state!=1) */
    if (!bytes && getblk())        /* Eof, getblk writes data */
      return 1;
    thisch = *bufpos++;
    bytes--;

/* When reading in binary, try to guess good places to break "lines"
 * (which are arbitrary anyway) unless requested not to (for w/f to use
 * the least amount of memory). (LATER)
 * We also try not to break strings of printable characters. */

    if (binary)
    {
      if (thisch == '\n' || (thisch == 0 && pbchars > BLKCAP / 2) ||
        (pbchars >= BLKCAP - 2 && (prevch < ' ' || prevch > '\176')))
      {
        *pbptr++ = prevch = thisch;
        pbchars++;                 /* Store thisch */
        return 0;                  /* Finish this line */
      }                            /* if(thisch=='\n'||(thisch==0&&... */
    }                              /* if(binary) */
    else
/* For Ascii files, now process significant characters: Newline, Return & Tab */

    {
      if (inindent && thisch != '\t' && thisch != ' ')
        inindent = 0;
      if (thisch < ' ' || state)   /* One of the following tests might pass */
      {
        if (thisch == '\r')
        {

/* If doing a DOS read and already holding on to a Cr, store it and stay in
 * state 1. Else, move to state 1 and store nothing */

          if (xxmode & 1 && state != 1) /* DOS read, not holding Cr */
          {
            state = 1;             /* Holding a Cr */
            continue;              /* for(pbchars=linpos... (don't store Cr) */
          }                        /* if(xxmode&1) */
          linpos = -1;             /* Back at line start */
          goto endswitch;          /* switch(state) cases 0 & 1 */
        }                          /* if(thisch=='\r') */
        if (thisch == '\n')
        {
          if (state == 1)          /* Holding Cr */
            state = 0;             /* Discard Cr */
          if (state != 0)          /* Unexpected */
          {
            visbel();
            printf("\r\nUnexpected state %d at Nl\r\n", state);
          }                        /* if (state != 0) */
          return 0;                /* Have line */
        }                          /* if(thisch=='\n') */
        else if (state == 1)       /* Holding on to Cr 2B stored now */
        {
          bytes++, bufpos--;       /* Put back char just read */
          state = 0;
          thisch = '\r';
          linpos = -1;             /* Back at line start */
        }                          /* else if(state==1) */

/* Only check for tab character after return has been checked for */

        if (thisch == '\t' || thisch == '\b')
        {
/* +tr || +l in ldg w/s */
          if ((xxmode & 4) || (xxmode & 040000 & inindent))
          {
            if (thisch == '\t')
            {
              thisch = ' ';        /* Store spaces */
              state = 2;           /* Until on next 8-char boundary */
            }                      /* if(thisch=='\t' */
            else if (linpos > 0)   /* thisch must be '\b' */
              linpos -= 2;
          }                        /* if(xxmode&4) */
        }                          /* if(thisch=='\t'||thisch=='\b') */
      }                            /* if(thisch<' '||state) */
    }                              /* if(binary) else */
  endswitch:
    *pbptr++ = prevch = thisch;
    pbchars++;
  }      /* for(pbchars=linpos=0,pbptr=xxprev->bdata;pbchars<BUFMAX;linpos++) */
/*
 * Dropped out of loop: we have a full line. If the file is binary, this
 * is the norm, just write away the chars read.
 * Otherwise warn user, drain chars until EOL...
 */
  state = 0;                       /* No longer holding on to Cr */
  if (!binary && lngwrn)
  {
/* If the very next ch is Nl, we haven't actually misssed anything, */
/* so defer outputting a warning here. */
    bool tried_next_ch = false;

    for (;;)
    {
      if (!bytes && getblk())
      {
        if (!tried_next_ch)
          puts("Long line found!\r");
        return 1;
      }                            /* if (!bytes && getblk()) */
      thisch = *bufpos++;
      bytes--;
      if (thisch == '\n')          /* Eol */
        break;
      if (!tried_next_ch)
      {
        tried_next_ch = true;
        puts("Long line found!\r");
      }                            /* if (!tried_next_ch) */
    }                              /* for(;;) */
  }                                /* if(!binary&&lngwrn) */
  return 0;
}                                  /* static int prclin(void) */
Example #8
0
errcode_t journal_find_head(journal_t *journal)
{
	unsigned int		next_commit_ID;
	blk64_t			next_log_block, head_block;
	int			err;
	journal_superblock_t	*sb;
	journal_header_t	*tmp;
	struct buffer_head	*bh;
	unsigned int		sequence;
	int			blocktype;

	/*
	 * First thing is to establish what we expect to find in the log
	 * (in terms of transaction IDs), and where (in terms of log
	 * block offsets): query the superblock.
	 */

	sb = journal->j_superblock;
	next_commit_ID = ext2fs_be32_to_cpu(sb->s_sequence);
	next_log_block = ext2fs_be32_to_cpu(sb->s_start);
	head_block = next_log_block;

	if (next_log_block == 0)
		return 0;

	bh = getblk(journal->j_dev, 0, journal->j_blocksize);
	if (bh == NULL)
		return ENOMEM;

	/*
	 * Now we walk through the log, transaction by transaction,
	 * making sure that each transaction has a commit block in the
	 * expected place.  Each complete transaction gets replayed back
	 * into the main filesystem.
	 */
	while (1) {
		dbg_printf("Scanning for sequence ID %u at %lu/%lu\n",
			  next_commit_ID, (unsigned long)next_log_block,
			  journal->j_last);

		/* Skip over each chunk of the transaction looking
		 * either the next descriptor block or the final commit
		 * record. */
		err = journal_bmap(journal, next_log_block, &bh->b_blocknr);
		if (err)
			goto err;
		mark_buffer_uptodate(bh, 0);
		ll_rw_block(READ, 1, &bh);
		err = bh->b_err;
		if (err)
			goto err;

		next_log_block++;
		wrap(journal, next_log_block);

		/* What kind of buffer is it?
		 *
		 * If it is a descriptor block, check that it has the
		 * expected sequence number.  Otherwise, we're all done
		 * here. */

		tmp = (journal_header_t *)bh->b_data;

		if (tmp->h_magic != ext2fs_cpu_to_be32(JFS_MAGIC_NUMBER)) {
			dbg_printf("JBD2: wrong magic 0x%x\n", tmp->h_magic);
			goto err;
		}

		blocktype = ext2fs_be32_to_cpu(tmp->h_blocktype);
		sequence = ext2fs_be32_to_cpu(tmp->h_sequence);
		dbg_printf("Found magic %d, sequence %d\n",
			  blocktype, sequence);

		if (sequence != next_commit_ID) {
			dbg_printf("JBD2: Wrong sequence %d (wanted %d)\n",
				   sequence, next_commit_ID);
			goto err;
		}

		/* OK, we have a valid descriptor block which matches
		 * all of the sequence number checks.  What are we going
		 * to do with it?  That depends on the pass... */

		switch (blocktype) {
		case JFS_DESCRIPTOR_BLOCK:
			next_log_block += count_tags(journal, bh->b_data);
			wrap(journal, next_log_block);
			continue;

		case JFS_COMMIT_BLOCK:
			head_block = next_log_block;
			next_commit_ID++;
			continue;

		case JFS_REVOKE_BLOCK:
			continue;

		default:
			dbg_printf("Unrecognised magic %d, end of scan.\n",
				  blocktype);
			err = -EINVAL;
			goto err;
		}
	}

err:
	if (err == 0) {
		dbg_printf("head seq=%d blk=%llu\n", next_commit_ID,
			   head_block);
		journal->j_transaction_sequence = next_commit_ID;
		journal->j_head = head_block;
	}
	brelse(bh);
	return err;
}
Example #9
0
static errcode_t journal_commit_trans(journal_transaction_t *trans)
{
	struct buffer_head *bh, *cbh = NULL;
	struct commit_header *commit;
#ifdef HAVE_SYS_TIME_H
	struct timeval tv;
#endif
	errcode_t err;

	JOURNAL_CHECK_TRANS_MAGIC(trans);

	if ((trans->flags & J_TRANS_COMMITTED) ||
	    !(trans->flags & J_TRANS_OPEN))
		return EXT2_ET_INVALID_ARGUMENT;

	bh = getblk(trans->journal->j_dev, 0, trans->journal->j_blocksize);
	if (bh == NULL)
		return ENOMEM;

	/* write the descriptor block header */
	commit = (struct commit_header *)bh->b_data;
	commit->h_magic = ext2fs_cpu_to_be32(JFS_MAGIC_NUMBER);
	commit->h_blocktype = ext2fs_cpu_to_be32(JFS_COMMIT_BLOCK);
	commit->h_sequence = ext2fs_cpu_to_be32(trans->tid);
	if (JFS_HAS_COMPAT_FEATURE(trans->journal,
				   JFS_FEATURE_COMPAT_CHECKSUM)) {
		__u32 csum_v1 = ~0;
		blk64_t cblk;

		cbh = getblk(trans->journal->j_dev, 0,
			     trans->journal->j_blocksize);
		if (cbh == NULL) {
			err = ENOMEM;
			goto error;
		}

		for (cblk = trans->start; cblk < trans->block; cblk++) {
			err = journal_bmap(trans->journal, cblk,
					   &cbh->b_blocknr);
			if (err)
				goto error;
			mark_buffer_uptodate(cbh, 0);
			ll_rw_block(READ, 1, &cbh);
			err = cbh->b_err;
			if (err)
				goto error;
			csum_v1 = ext2fs_crc32_be(csum_v1,
					(unsigned char const *)cbh->b_data,
					cbh->b_size);
		}

		commit->h_chksum_type = JFS_CRC32_CHKSUM;
		commit->h_chksum_size = JFS_CRC32_CHKSUM_SIZE;
		commit->h_chksum[0] = ext2fs_cpu_to_be32(csum_v1);
	} else {
		commit->h_chksum_type = 0;
		commit->h_chksum_size = 0;
		commit->h_chksum[0] = 0;
	}
#ifdef HAVE_SYS_TIME_H
	gettimeofday(&tv, NULL);
	commit->h_commit_sec = ext2fs_cpu_to_be32(tv.tv_sec);
	commit->h_commit_nsec = ext2fs_cpu_to_be32(tv.tv_usec * 1000);
#else
	commit->h_commit_sec = 0;
	commit->h_commit_nsec = 0;
#endif

	/* Write block */
	jbd2_commit_block_csum_set(trans->journal, bh);
	err = journal_bmap(trans->journal, trans->block, &bh->b_blocknr);
	if (err)
		goto error;

	dbg_printf("Writing commit block at %llu:%llu\n", trans->block,
		   bh->b_blocknr);
	mark_buffer_dirty(bh);
	ll_rw_block(WRITE, 1, &bh);
	err = bh->b_err;
	if (err)
		goto error;
	trans->flags |= J_TRANS_COMMITTED;
	trans->flags &= ~J_TRANS_OPEN;
	trans->block++;

	trans->fs->super->s_feature_incompat |= EXT3_FEATURE_INCOMPAT_RECOVER;
	ext2fs_mark_super_dirty(trans->fs);
error:
	if (cbh)
		brelse(cbh);
	brelse(bh);
	return err;
}
Example #10
0
static errcode_t journal_add_revoke_to_trans(journal_transaction_t *trans,
					     blk64_t *revoke_list,
					     size_t revoke_len)
{
	journal_revoke_header_t *jrb;
	void *buf;
	size_t i, offset;
	blk64_t curr_blk;
	int sz, csum_size = 0;
	struct buffer_head *bh;
	errcode_t err;

	JOURNAL_CHECK_TRANS_MAGIC(trans);

	if ((trans->flags & J_TRANS_COMMITTED) ||
	    !(trans->flags & J_TRANS_OPEN))
		return EXT2_ET_INVALID_ARGUMENT;

	if (revoke_len == 0)
		return 0;

	/* Do we need to leave space at the end for a checksum? */
	if (journal_has_csum_v2or3(trans->journal))
		csum_size = sizeof(struct journal_revoke_tail);

	curr_blk = trans->block;

	bh = getblk(trans->journal->j_dev, curr_blk,
		    trans->journal->j_blocksize);
	if (bh == NULL)
		return ENOMEM;
	jrb = buf = bh->b_data;
	jrb->r_header.h_magic = ext2fs_cpu_to_be32(JFS_MAGIC_NUMBER);
	jrb->r_header.h_blocktype = ext2fs_cpu_to_be32(JFS_REVOKE_BLOCK);
	jrb->r_header.h_sequence = ext2fs_cpu_to_be32(trans->tid);
	offset = sizeof(*jrb);

	if (JFS_HAS_INCOMPAT_FEATURE(trans->journal,
				     JFS_FEATURE_INCOMPAT_64BIT))
		sz = 8;
	else
		sz = 4;

	for (i = 0; i < revoke_len; i++) {
		/* Block full, write to journal */
		if (offset + sz > trans->journal->j_blocksize - csum_size) {
			jrb->r_count = ext2fs_cpu_to_be32(offset);
			jbd2_revoke_csum_set(trans->journal, bh);

			err = journal_bmap(trans->journal, curr_blk,
					   &bh->b_blocknr);
			if (err)
				goto error;
			dbg_printf("Writing revoke block at %llu:%llu\n",
				   curr_blk, bh->b_blocknr);
			mark_buffer_dirty(bh);
			ll_rw_block(WRITE, 1, &bh);
			err = bh->b_err;
			if (err)
				goto error;

			offset = sizeof(*jrb);
			curr_blk++;
		}

		if (revoke_list[i] >=
		    ext2fs_blocks_count(trans->journal->j_fs_dev->k_fs->super)) {
			err = EXT2_ET_BAD_BLOCK_NUM;
			goto error;
		}

		if (JFS_HAS_INCOMPAT_FEATURE(trans->journal,
					     JFS_FEATURE_INCOMPAT_64BIT))
			*((__u64 *)(&((char *)buf)[offset])) =
				ext2fs_cpu_to_be64(revoke_list[i]);
		else
			*((__u32 *)(&((char *)buf)[offset])) =
				ext2fs_cpu_to_be32(revoke_list[i]);
		offset += sz;
	}

	if (offset > 0) {
		jrb->r_count = ext2fs_cpu_to_be32(offset);
		jbd2_revoke_csum_set(trans->journal, bh);

		err = journal_bmap(trans->journal, curr_blk, &bh->b_blocknr);
		if (err)
			goto error;
		dbg_printf("Writing revoke block at %llu:%llu\n",
			   curr_blk, bh->b_blocknr);
		mark_buffer_dirty(bh);
		ll_rw_block(WRITE, 1, &bh);
		err = bh->b_err;
		if (err)
			goto error;
		curr_blk++;
	}

error:
	trans->block = curr_blk;
	brelse(bh);
	return err;
}
Example #11
0
static errcode_t journal_add_blocks_to_trans(journal_transaction_t *trans,
				      blk64_t *block_list, size_t block_len,
				      FILE *fp)
{
	blk64_t curr_blk, jdb_blk;
	size_t i, j;
	int csum_size = 0;
	journal_header_t *jdb;
	journal_block_tag_t *jdbt;
	int tag_bytes;
	void *buf = NULL, *jdb_buf = NULL;
	struct buffer_head *bh = NULL, *data_bh;
	errcode_t err;

	JOURNAL_CHECK_TRANS_MAGIC(trans);

	if ((trans->flags & J_TRANS_COMMITTED) ||
	    !(trans->flags & J_TRANS_OPEN))
		return EXT2_ET_INVALID_ARGUMENT;

	if (block_len == 0)
		return 0;

	/* Do we need to leave space at the end for a checksum? */
	if (journal_has_csum_v2or3(trans->journal))
		csum_size = sizeof(struct journal_block_tail);

	curr_blk = jdb_blk = trans->block;

	data_bh = getblk(trans->journal->j_dev, curr_blk,
			 trans->journal->j_blocksize);
	if (data_bh == NULL)
		return ENOMEM;
	buf = data_bh->b_data;

	/* write the descriptor block header */
	bh = getblk(trans->journal->j_dev, curr_blk,
		    trans->journal->j_blocksize);
	if (bh == NULL) {
		err = ENOMEM;
		goto error;
	}
	jdb = jdb_buf = bh->b_data;
	jdb->h_magic = ext2fs_cpu_to_be32(JFS_MAGIC_NUMBER);
	jdb->h_blocktype = ext2fs_cpu_to_be32(JFS_DESCRIPTOR_BLOCK);
	jdb->h_sequence = ext2fs_cpu_to_be32(trans->tid);
	jdbt = (journal_block_tag_t *)(jdb + 1);

	curr_blk++;
	for (i = 0; i < block_len; i++) {
		j = fread(data_bh->b_data, trans->journal->j_blocksize, 1, fp);
		if (j != 1) {
			err = errno;
			goto error;
		}

		tag_bytes = journal_tag_bytes(trans->journal);

		/* No space left in descriptor block, write it out */
		if ((char *)jdbt + tag_bytes >
		    (char *)jdb_buf + trans->journal->j_blocksize - csum_size) {
			jbd2_descr_block_csum_set(trans->journal, bh);
			err = journal_bmap(trans->journal, jdb_blk,
					   &bh->b_blocknr);
			if (err)
				goto error;
			dbg_printf("Writing descriptor block at %llu:%llu\n",
				   jdb_blk, bh->b_blocknr);
			mark_buffer_dirty(bh);
			ll_rw_block(WRITE, 1, &bh);
			err = bh->b_err;
			if (err)
				goto error;

			jdbt = (journal_block_tag_t *)(jdb + 1);
			jdb_blk = curr_blk;
			curr_blk++;
		}

		if (block_list[i] >=
		    ext2fs_blocks_count(trans->journal->j_fs_dev->k_fs->super)) {
			err = EXT2_ET_BAD_BLOCK_NUM;
			goto error;
		}

		/* Fill out the block tag */
		jdbt->t_blocknr = ext2fs_cpu_to_be32(block_list[i] & 0xFFFFFFFF);
		jdbt->t_flags = 0;
		if (jdbt != (journal_block_tag_t *)(jdb + 1))
			jdbt->t_flags |= ext2fs_cpu_to_be16(JFS_FLAG_SAME_UUID);
		else {
			memcpy(jdbt + tag_bytes,
			       trans->journal->j_superblock->s_uuid,
			       sizeof(trans->journal->j_superblock->s_uuid));
			tag_bytes += 16;
		}
		if (i == block_len - 1)
			jdbt->t_flags |= ext2fs_cpu_to_be16(JFS_FLAG_LAST_TAG);
		if (*((__u32 *)buf) == ext2fs_cpu_to_be32(JFS_MAGIC_NUMBER)) {
			*((__u32 *)buf) = 0;
			jdbt->t_flags |= ext2fs_cpu_to_be16(JFS_FLAG_ESCAPE);
		}
		if (JFS_HAS_INCOMPAT_FEATURE(trans->journal,
					     JFS_FEATURE_INCOMPAT_64BIT))
			jdbt->t_blocknr_high = ext2fs_cpu_to_be32(block_list[i] >> 32);
		jbd2_block_tag_csum_set(trans->journal, jdbt, data_bh,
					trans->tid);

		/* Write the data block */
		err = journal_bmap(trans->journal, curr_blk,
				   &data_bh->b_blocknr);
		if (err)
			goto error;
		dbg_printf("Writing data block %llu at %llu:%llu tag %d\n",
			   block_list[i], curr_blk, data_bh->b_blocknr,
			   tag_bytes);
		mark_buffer_dirty(data_bh);
		ll_rw_block(WRITE, 1, &data_bh);
		err = data_bh->b_err;
		if (err)
			goto error;

		curr_blk++;
		jdbt = (journal_block_tag_t *)(((char *)jdbt) + tag_bytes);
	}

	/* Write out the last descriptor block */
	if (jdbt != (journal_block_tag_t *)(jdb + 1)) {
		jbd2_descr_block_csum_set(trans->journal, bh);
		err = journal_bmap(trans->journal, jdb_blk, &bh->b_blocknr);
		if (err)
			goto error;
		dbg_printf("Writing descriptor block at %llu:%llu\n",
			   jdb_blk, bh->b_blocknr);
		mark_buffer_dirty(bh);
		ll_rw_block(WRITE, 1, &bh);
		err = bh->b_err;
		if (err)
			goto error;
	}

error:
	trans->block = curr_blk;
	if (bh)
		brelse(bh);
	brelse(data_bh);
	return err;
}
Example #12
0
int
xfs_write_file(xfs_inode_t *xip, struct uio *uio, int ioflag)
{
	struct buf	*bp;
	//struct thread	*td;
	daddr_t		lbn;
	off_t		osize = 0;
	off_t		offset= 0;
	int		blkoffset, error, resid, xfersize;
	int		fsblocksize;
	int		seqcount;
	xfs_iomap_t	iomap;
	int		maps = 1;

	xfs_vnode_t	*xvp = XFS_ITOV(xip);
	struct vnode	*vp = xvp->v_vnode;

	xfs_mount_t	*mp = (&xip->i_iocore)->io_mount;

	seqcount = ioflag >> IO_SEQSHIFT;

	memset(&iomap,0,sizeof(xfs_iomap_t));

	/*
	 * Maybe this should be above the vnode op call, but so long as
	 * file servers have no limits, I don't think it matters.
	 */
#if 0
	td = uio->uio_td;
	if (vn_rlimit_fsize(vp, uio, uio->uio_td))
		return (EFBIG);
#endif

	resid = uio->uio_resid;
	offset = uio->uio_offset;
	osize = xip->i_d.di_size;

   /* xfs bmap wants bytes for both offset and size */
	XVOP_BMAP(xvp,
		  uio->uio_offset,
		  uio->uio_resid,
		  BMAPI_WRITE|BMAPI_DIRECT,
		  &iomap, &maps, error);
	if(error) {
		printf("XVOP_BMAP failed\n");
		goto error;
	}

	for (error = 0; uio->uio_resid > 0;) {

		lbn = XFS_B_TO_FSBT(mp, offset);
		blkoffset = XFS_B_FSB_OFFSET(mp, offset);
		xfersize = mp->m_sb.sb_blocksize - blkoffset;
		fsblocksize = mp->m_sb.sb_blocksize;

		if (uio->uio_resid < xfersize)
			xfersize = uio->uio_resid;

		/*
		 * getblk sets buf by  blkno *  bo->bo_bsize
		 * bo_bsize is set from the mnt point fsize
		 * so we call getblk in the case using fsblocks
		 * not basic blocks
		 */

		bp = getblk(vp, lbn, fsblocksize, 0, 0, 0);
		if(!bp) {
			printf("getblk failed\n");
			error = EINVAL;
			break;
		}

		if (!(bp->b_flags & B_CACHE)  && fsblocksize > xfersize)
			vfs_bio_clrbuf(bp);

		if (offset + xfersize >  xip->i_d.di_size) {
			xip->i_d.di_size = offset + xfersize;
			vnode_pager_setsize(vp, offset + fsblocksize);
		}

		/* move the offset for the next itteration of the loop */
		offset += xfersize;

		error = uiomove((char *)bp->b_data + blkoffset, xfersize, uio);

		if ((ioflag & IO_VMIO) &&
		   (LIST_FIRST(&bp->b_dep) == NULL)) /* in ext2fs? */
			bp->b_flags |= B_RELBUF;

		/* force to full direct for now */
		bp->b_flags |= B_DIRECT;
		/* and sync ... the delay path is not pushing data out */
		ioflag |= IO_SYNC;

		if (ioflag & IO_SYNC) {
			(void)bwrite(bp);
		} else if (0 /* RMC xfersize + blkoffset == fs->s_frag_size */) {
			if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) {
				bp->b_flags |= B_CLUSTEROK;
				cluster_write(vp, bp, osize, seqcount);
			} else {
				bawrite(bp);
			}
		} else {
			bp->b_flags |= B_CLUSTEROK;
			bdwrite(bp);
		}
		if (error || xfersize == 0)
			break;
	}
	/*
	 * If we successfully wrote any data, and we are not the superuser
	 * we clear the setuid and setgid bits as a precaution against
	 * tampering.
	 */
#if 0
	if (resid > uio->uio_resid && ap->a_cred && ap->a_cred->cr_uid != 0)
		ip->i_mode &= ~(ISUID | ISGID);
#endif
	if (error) {
		if (ioflag & IO_UNIT) {
#if 0
			(void)ext2_truncate(vp, osize,
			    ioflag & IO_SYNC, ap->a_cred, uio->uio_td);
#endif
			uio->uio_offset -= resid - uio->uio_resid;
			uio->uio_resid = resid;
		}
	} else if (resid > uio->uio_resid && (ioflag & IO_SYNC)) {
		/* Update the vnode here? */
	}

error:
	return error;
}
Example #13
0
/*
 * Release blocks associated with the inode ip and stored in the indirect
 * block bn.  Blocks are free'd in LIFO order up to (but not including)
 * lastbn.  If level is greater than SINGLE, the block is an indirect block
 * and recursive calls to indirtrunc must be used to cleanse other indirect
 * blocks.
 *
 * NB: triple indirect blocks are untested.
 */
static int
lfs_indirtrunc(struct inode *ip, daddr_t lbn, daddr_t dbn,
	       daddr_t lastbn, int level, daddr_t *countp,
	       daddr_t *rcountp, long *lastsegp, size_t *bcp)
{
	int i;
	struct buf *bp;
	struct lfs *fs = ip->i_lfs;
	int32_t *bap;	/* XXX ondisk32 */
	struct vnode *vp;
	daddr_t nb, nlbn, last;
	int32_t *copy = NULL;	/* XXX ondisk32 */
	daddr_t blkcount, rblkcount, factor;
	int nblocks;
	daddr_t blocksreleased = 0, real_released = 0;
	int error = 0, allerror = 0;

	ASSERT_SEGLOCK(fs);
	/*
	 * Calculate index in current block of last
	 * block to be kept.  -1 indicates the entire
	 * block so we need not calculate the index.
	 */
	factor = 1;
	for (i = SINGLE; i < level; i++)
		factor *= LFS_NINDIR(fs);
	last = lastbn;
	if (lastbn > 0)
		last /= factor;
	nblocks = lfs_btofsb(fs, lfs_sb_getbsize(fs));
	/*
	 * Get buffer of block pointers, zero those entries corresponding
	 * to blocks to be free'd, and update on disk copy first.  Since
	 * double(triple) indirect before single(double) indirect, calls
	 * to bmap on these blocks will fail.  However, we already have
	 * the on disk address, so we have to set the b_blkno field
	 * explicitly instead of letting bread do everything for us.
	 */
	vp = ITOV(ip);
	bp = getblk(vp, lbn, lfs_sb_getbsize(fs), 0, 0);
	if (bp->b_oflags & (BO_DONE | BO_DELWRI)) {
		/* Braces must be here in case trace evaluates to nothing. */
		trace(TR_BREADHIT, pack(vp, lfs_sb_getbsize(fs)), lbn);
	} else {
		trace(TR_BREADMISS, pack(vp, lfs_sb_getbsize(fs)), lbn);
		curlwp->l_ru.ru_inblock++; /* pay for read */
		bp->b_flags |= B_READ;
		if (bp->b_bcount > bp->b_bufsize)
			panic("lfs_indirtrunc: bad buffer size");
		bp->b_blkno = LFS_FSBTODB(fs, dbn);
		VOP_STRATEGY(vp, bp);
		error = biowait(bp);
	}
	if (error) {
		brelse(bp, 0);
		*countp = *rcountp = 0;
		return (error);
	}

	bap = (int32_t *)bp->b_data;	/* XXX ondisk32 */
	if (lastbn >= 0) {
		copy = lfs_malloc(fs, lfs_sb_getbsize(fs), LFS_NB_IBLOCK);
		memcpy((void *)copy, (void *)bap, lfs_sb_getbsize(fs));
		memset((void *)&bap[last + 1], 0,
		/* XXX ondisk32 */
		  (u_int)(LFS_NINDIR(fs) - (last + 1)) * sizeof (int32_t));
		error = VOP_BWRITE(bp->b_vp, bp);
		if (error)
			allerror = error;
		bap = copy;
	}

	/*
	 * Recursively free totally unused blocks.
	 */
	for (i = LFS_NINDIR(fs) - 1, nlbn = lbn + 1 - i * factor; i > last;
	    i--, nlbn += factor) {
		nb = bap[i];
		if (nb == 0)
			continue;
		if (level > SINGLE) {
			error = lfs_indirtrunc(ip, nlbn, nb,
					       (daddr_t)-1, level - 1,
					       &blkcount, &rblkcount,
					       lastsegp, bcp);
			if (error)
				allerror = error;
			blocksreleased += blkcount;
			real_released += rblkcount;
		}
		lfs_blkfree(fs, ip, nb, lfs_sb_getbsize(fs), lastsegp, bcp);
		if (bap[i] > 0)
			real_released += nblocks;
		blocksreleased += nblocks;
	}

	/*
	 * Recursively free last partial block.
	 */
	if (level > SINGLE && lastbn >= 0) {
		last = lastbn % factor;
		nb = bap[i];
		if (nb != 0) {
			error = lfs_indirtrunc(ip, nlbn, nb,
					       last, level - 1, &blkcount,
					       &rblkcount, lastsegp, bcp);
			if (error)
				allerror = error;
			real_released += rblkcount;
			blocksreleased += blkcount;
		}
	}

	if (copy != NULL) {
		lfs_free(fs, copy, LFS_NB_IBLOCK);
	} else {
		mutex_enter(&bufcache_lock);
		if (bp->b_oflags & BO_DELWRI) {
			LFS_UNLOCK_BUF(bp);
			lfs_sb_addavail(fs, lfs_btofsb(fs, bp->b_bcount));
			wakeup(&fs->lfs_availsleep);
		}
		brelsel(bp, BC_INVAL);
		mutex_exit(&bufcache_lock);
	}

	*countp = blocksreleased;
	*rcountp = real_released;
	return (allerror);
}
Example #14
0
static int trunc_indirect(struct inode * inode, int offset, unsigned long * p)
{
	int i, tmp;
	struct buffer_head * bh;
	struct buffer_head * ind_bh;
	unsigned long * ind;
	int retry = 0;
#define INDIRECT_BLOCK (DIRECT_BLOCK-offset)

	tmp = *p;
	if (!tmp)
		return 0;
	ind_bh = bread(inode->i_dev, tmp, BLOCK_SIZE);
	if (tmp != *p) {
		brelse(ind_bh);
		return 1;
	}
	if (!ind_bh) {
		*p = 0;
		return 0;
	}
repeat:
	for (i = INDIRECT_BLOCK ; i < 256 ; i++) {
		if (i < 0)
			i = 0;
		if (i < INDIRECT_BLOCK)
			goto repeat;
		ind = i+(unsigned long *) ind_bh->b_data;
		tmp = *ind;
		if (!tmp)
			continue;
		bh = getblk(inode->i_dev,tmp,BLOCK_SIZE);
		if (i < INDIRECT_BLOCK) {
			brelse(bh);
			goto repeat;
		}
		if ((bh && bh->b_count != 1) || tmp != *ind) {
			retry = 1;
			brelse(bh);
			continue;
		}
		*ind = 0;
		mark_buffer_dirty(ind_bh, 1);
		brelse(bh);
		ext_free_block(inode->i_sb,tmp);
	}
	ind = (unsigned long *) ind_bh->b_data;
	for (i = 0; i < 256; i++)
		if (*(ind++))
			break;
	if (i >= 256)
		if (ind_bh->b_count != 1)
			retry = 1;
		else {
			tmp = *p;
			*p = 0;
			inode->i_dirt = 1;
			ext_free_block(inode->i_sb,tmp);
		}
	brelse(ind_bh);
	return retry;
}
Example #15
0
static errcode_t ext2fs_get_journal(ext2_filsys fs, journal_t **ret_journal)
{
	struct process_block_struct pb;
	struct ext2_super_block *sb = fs->super;
	struct ext2_super_block jsuper;
	struct buffer_head	*bh;
	struct inode		*j_inode = NULL;
	struct kdev_s		*dev_fs = NULL, *dev_journal;
	const char		*journal_name = 0;
	journal_t		*journal = NULL;
	errcode_t		retval = 0;
	io_manager		io_ptr = 0;
	unsigned long long	start = 0;
	int			ext_journal = 0;
	int			tried_backup_jnl = 0;

	retval = ext2fs_get_memzero(sizeof(journal_t), &journal);
	if (retval)
		return retval;

	retval = ext2fs_get_memzero(2 * sizeof(struct kdev_s), &dev_fs);
	if (retval)
		goto errout;
	dev_journal = dev_fs+1;

	dev_fs->k_fs = dev_journal->k_fs = fs;
	dev_fs->k_dev = K_DEV_FS;
	dev_journal->k_dev = K_DEV_JOURNAL;

	journal->j_dev = dev_journal;
	journal->j_fs_dev = dev_fs;
	journal->j_inode = NULL;
	journal->j_blocksize = fs->blocksize;

	if (uuid_is_null(sb->s_journal_uuid)) {
		if (!sb->s_journal_inum) {
			retval = EXT2_ET_BAD_INODE_NUM;
			goto errout;
		}
		retval = ext2fs_get_memzero(sizeof(*j_inode), &j_inode);
		if (retval)
			goto errout;

		j_inode->i_fs = fs;
		j_inode->i_ino = sb->s_journal_inum;

		retval = ext2fs_read_inode(fs, sb->s_journal_inum,
					   &j_inode->i_ext2);
		if (retval) {
try_backup_journal:
			if (sb->s_jnl_backup_type != EXT3_JNL_BACKUP_BLOCKS ||
			    tried_backup_jnl)
				goto errout;
			memset(&j_inode->i_ext2, 0, sizeof(struct ext2_inode));
			memcpy(&j_inode->i_ext2.i_block[0], sb->s_jnl_blocks,
			       EXT2_N_BLOCKS*4);
			j_inode->i_ext2.i_size_high = sb->s_jnl_blocks[15];
			j_inode->i_ext2.i_size = sb->s_jnl_blocks[16];
			j_inode->i_ext2.i_links_count = 1;
			j_inode->i_ext2.i_mode = LINUX_S_IFREG | 0600;
			tried_backup_jnl++;
		}
		if (!j_inode->i_ext2.i_links_count ||
		    !LINUX_S_ISREG(j_inode->i_ext2.i_mode)) {
			retval = EXT2_ET_NO_JOURNAL;
			goto try_backup_journal;
		}
		if (EXT2_I_SIZE(&j_inode->i_ext2) / journal->j_blocksize <
		    JFS_MIN_JOURNAL_BLOCKS) {
			retval = EXT2_ET_JOURNAL_TOO_SMALL;
			goto try_backup_journal;
		}
		pb.last_block = -1;
		retval = ext2fs_block_iterate3(fs, j_inode->i_ino,
					       BLOCK_FLAG_HOLE, 0,
					       process_journal_block, &pb);
		if ((pb.last_block + 1) * fs->blocksize <
		    (int) EXT2_I_SIZE(&j_inode->i_ext2)) {
			retval = EXT2_ET_JOURNAL_TOO_SMALL;
			goto try_backup_journal;
		}
		if (tried_backup_jnl && (fs->flags & EXT2_FLAG_RW)) {
			retval = ext2fs_write_inode(fs, sb->s_journal_inum,
						    &j_inode->i_ext2);
			if (retval)
				goto errout;
		}

		journal->j_maxlen = EXT2_I_SIZE(&j_inode->i_ext2) /
			journal->j_blocksize;

#ifdef USE_INODE_IO
		retval = ext2fs_inode_io_intern2(fs, sb->s_journal_inum,
						 &j_inode->i_ext2,
						 &journal_name);
		if (retval)
			goto errout;

		io_ptr = inode_io_manager;
#else
		journal->j_inode = j_inode;
		fs->journal_io = fs->io;
		retval = (errcode_t)journal_bmap(journal, 0, &start);
		if (retval)
			goto errout;
#endif
	} else {
		ext_journal = 1;
		if (!fs->journal_name) {
			char uuid[37];
			blkid_cache blkid;

			blkid_get_cache(&blkid, NULL);
			uuid_unparse(sb->s_journal_uuid, uuid);
			fs->journal_name = blkid_get_devname(blkid,
							      "UUID", uuid);
			if (!fs->journal_name)
				fs->journal_name = blkid_devno_to_devname(sb->s_journal_dev);
			blkid_put_cache(blkid);
		}
		journal_name = fs->journal_name;

		if (!journal_name) {
			retval = EXT2_ET_LOAD_EXT_JOURNAL;
			goto errout;
		}

		jfs_debug(1, "Using journal file %s\n", journal_name);
		io_ptr = unix_io_manager;
	}

#if 0
	test_io_backing_manager = io_ptr;
	io_ptr = test_io_manager;
#endif
#ifndef USE_INODE_IO
	if (ext_journal)
#endif
	{
		retval = io_ptr->open(journal_name, fs->flags & EXT2_FLAG_RW,
				      &fs->journal_io);
	}
	if (retval)
		goto errout;

	io_channel_set_blksize(fs->journal_io, fs->blocksize);

	if (ext_journal) {
		blk64_t maxlen;

		start = ext2fs_journal_sb_start(fs->blocksize) - 1;
		bh = getblk(dev_journal, start, fs->blocksize);
		if (!bh) {
			retval = EXT2_ET_NO_MEMORY;
			goto errout;
		}
		ll_rw_block(READ, 1, &bh);
		retval = bh->b_err;
		if (retval) {
			brelse(bh);
			goto errout;
		}
		memcpy(&jsuper, start ? bh->b_data :
				bh->b_data + SUPERBLOCK_OFFSET,
		       sizeof(jsuper));
#ifdef WORDS_BIGENDIAN
		if (jsuper.s_magic == ext2fs_swab16(EXT2_SUPER_MAGIC))
			ext2fs_swap_super(&jsuper);
#endif
		if (jsuper.s_magic != EXT2_SUPER_MAGIC ||
		    !ext2fs_has_feature_journal_dev(&jsuper)) {
			retval = EXT2_ET_LOAD_EXT_JOURNAL;
			brelse(bh);
			goto errout;
		}
		/* Make sure the journal UUID is correct */
		if (memcmp(jsuper.s_uuid, fs->super->s_journal_uuid,
			   sizeof(jsuper.s_uuid))) {
			retval = EXT2_ET_LOAD_EXT_JOURNAL;
			brelse(bh);
			goto errout;
		}

		/* Check the superblock checksum */
		if (ext2fs_has_feature_metadata_csum(&jsuper)) {
			struct struct_ext2_filsys fsx;
			struct ext2_super_block	superx;
			void *p;

			p = start ? bh->b_data : bh->b_data + SUPERBLOCK_OFFSET;
			memcpy(&fsx, fs, sizeof(fsx));
			memcpy(&superx, fs->super, sizeof(superx));
			fsx.super = &superx;
			ext2fs_set_feature_metadata_csum(fsx.super);
			if (!ext2fs_superblock_csum_verify(&fsx, p)) {
				retval = EXT2_ET_LOAD_EXT_JOURNAL;
				brelse(bh);
				goto errout;
			}
		}
		brelse(bh);

		maxlen = ext2fs_blocks_count(&jsuper);
		journal->j_maxlen = (maxlen < 1ULL << 32) ? maxlen :
				    (1ULL << 32) - 1;
		start++;
	}

	bh = getblk(dev_journal, start, journal->j_blocksize);
	if (!bh) {
		retval = EXT2_ET_NO_MEMORY;
		goto errout;
	}

	journal->j_sb_buffer = bh;
	journal->j_superblock = (journal_superblock_t *)bh->b_data;

#ifdef USE_INODE_IO
	if (j_inode)
		ext2fs_free_mem(&j_inode);
#endif

	*ret_journal = journal;
	return 0;

errout:
	if (dev_fs)
		ext2fs_free_mem(&dev_fs);
	if (j_inode)
		ext2fs_free_mem(&j_inode);
	if (journal)
		ext2fs_free_mem(&journal);
	return retval;
}
Example #16
0
/*
 * hpfs_write(struct vnode *a_vp, struct uio *a_uio, int a_ioflag,
 *	      struct ucred *a_cred)
 */
static int
hpfs_write(struct vop_write_args *ap)
{
	struct vnode *vp = ap->a_vp;
	struct hpfsnode *hp = VTOHP(vp);
	struct uio *uio = ap->a_uio;
	struct buf *bp;
	u_int xfersz, towrite;
	u_int off;
	daddr_t lbn, bn;
	int runl;
	int error = 0;

	dprintf(("hpfs_write(0x%x, off: %d resid: %ld, segflg: %d):\n",
		hp->h_no, (u_int32_t)uio->uio_offset,
		uio->uio_resid, uio->uio_segflg));

	if (ap->a_ioflag & IO_APPEND) {
		dprintf(("hpfs_write: APPEND mode\n"));
		uio->uio_offset = hp->h_fn.fn_size;
	}
	if (uio->uio_offset + uio->uio_resid > hp->h_fn.fn_size) {
		error = hpfs_extend (hp, uio->uio_offset + uio->uio_resid);
		if (error) {
			kprintf("hpfs_write: hpfs_extend FAILED %d\n", error);
			return (error);
		}
	}

	while (uio->uio_resid) {
		lbn = uio->uio_offset >> DEV_BSHIFT;
		off = uio->uio_offset & (DEV_BSIZE - 1);
		dprintf(("hpfs_write: resid: 0x%lx lbn: 0x%x off: 0x%x\n",
			uio->uio_resid, lbn, off));
		error = hpfs_hpbmap(hp, lbn, &bn, &runl);
		if (error)
			return (error);

		towrite = szmin(off + uio->uio_resid,
				min(DFLTPHYS, (runl+1)*DEV_BSIZE));
		xfersz = (towrite + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
		dprintf(("hpfs_write: bn: 0x%x (0x%x) towrite: 0x%x (0x%x)\n",
			bn, runl, towrite, xfersz));

		/*
		 * We do not have to issue a read-before-write if the xfer
		 * size does not cover the whole block.
		 *
		 * In the UIO_NOCOPY case, however, we are not overwriting
		 * anything and must do a read-before-write to fill in
		 * any missing pieces.
		 */
		if (off == 0 && towrite == xfersz &&
		    uio->uio_segflg != UIO_NOCOPY) {
			bp = getblk(hp->h_devvp, dbtodoff(bn), xfersz, 0, 0);
			clrbuf(bp);
		} else {
			error = bread(hp->h_devvp, dbtodoff(bn), xfersz, &bp);
			if (error) {
				brelse(bp);
				return (error);
			}
		}

		error = uiomove(bp->b_data + off, (size_t)(towrite - off), uio);
		if(error) {
			brelse(bp);
			return (error);
		}

		if (ap->a_ioflag & IO_SYNC)
			bwrite(bp);
		else
			bawrite(bp);
	}

	dprintf(("hpfs_write: successful\n"));
	return (0);
}
Example #17
0
static errcode_t e2fsck_get_journal(e2fsck_t ctx, journal_t **ret_journal)
{
	struct process_block_struct pb;
	struct ext2_super_block *sb = ctx->fs->super;
	struct ext2_super_block jsuper;
	struct problem_context	pctx;
	struct buffer_head 	*bh;
	struct inode		*j_inode = NULL;
	struct kdev_s		*dev_fs = NULL, *dev_journal;
	const char		*journal_name = 0;
	journal_t		*journal = NULL;
	errcode_t		retval = 0;
	io_manager		io_ptr = 0;
	unsigned long long	start = 0;
	int			ext_journal = 0;
	int			tried_backup_jnl = 0;

	clear_problem_context(&pctx);

	journal = e2fsck_allocate_memory(ctx, sizeof(journal_t), "journal");
	if (!journal) {
		return EXT2_ET_NO_MEMORY;
	}

	dev_fs = e2fsck_allocate_memory(ctx, 2*sizeof(struct kdev_s), "kdev");
	if (!dev_fs) {
		retval = EXT2_ET_NO_MEMORY;
		goto errout;
	}
	dev_journal = dev_fs+1;

	dev_fs->k_ctx = dev_journal->k_ctx = ctx;
	dev_fs->k_dev = K_DEV_FS;
	dev_journal->k_dev = K_DEV_JOURNAL;

	journal->j_dev = dev_journal;
	journal->j_fs_dev = dev_fs;
	journal->j_inode = NULL;
	journal->j_blocksize = ctx->fs->blocksize;

	if (uuid_is_null(sb->s_journal_uuid)) {
		if (!sb->s_journal_inum) {
			retval = EXT2_ET_BAD_INODE_NUM;
			goto errout;
		}
		j_inode = e2fsck_allocate_memory(ctx, sizeof(*j_inode),
						 "journal inode");
		if (!j_inode) {
			retval = EXT2_ET_NO_MEMORY;
			goto errout;
		}

		j_inode->i_ctx = ctx;
		j_inode->i_ino = sb->s_journal_inum;

		if ((retval = ext2fs_read_inode(ctx->fs,
						sb->s_journal_inum,
						&j_inode->i_ext2))) {
		try_backup_journal:
			if (sb->s_jnl_backup_type != EXT3_JNL_BACKUP_BLOCKS ||
			    tried_backup_jnl)
				goto errout;
			memset(&j_inode->i_ext2, 0, sizeof(struct ext2_inode));
			memcpy(&j_inode->i_ext2.i_block[0], sb->s_jnl_blocks,
			       EXT2_N_BLOCKS*4);
			j_inode->i_ext2.i_size_high = sb->s_jnl_blocks[15];
			j_inode->i_ext2.i_size = sb->s_jnl_blocks[16];
			j_inode->i_ext2.i_links_count = 1;
			j_inode->i_ext2.i_mode = LINUX_S_IFREG | 0600;
			e2fsck_use_inode_shortcuts(ctx, 1);
			ctx->stashed_ino = j_inode->i_ino;
			ctx->stashed_inode = &j_inode->i_ext2;
			tried_backup_jnl++;
		}
		if (!j_inode->i_ext2.i_links_count ||
		    !LINUX_S_ISREG(j_inode->i_ext2.i_mode)) {
			retval = EXT2_ET_NO_JOURNAL;
			goto try_backup_journal;
		}
		if (EXT2_I_SIZE(&j_inode->i_ext2) / journal->j_blocksize <
		    JFS_MIN_JOURNAL_BLOCKS) {
			retval = EXT2_ET_JOURNAL_TOO_SMALL;
			goto try_backup_journal;
		}
		pb.last_block = -1;
		retval = ext2fs_block_iterate3(ctx->fs, j_inode->i_ino,
					       BLOCK_FLAG_HOLE, 0,
					       process_journal_block, &pb);
		if ((pb.last_block + 1) * ctx->fs->blocksize <
		    (int) EXT2_I_SIZE(&j_inode->i_ext2)) {
			retval = EXT2_ET_JOURNAL_TOO_SMALL;
			goto try_backup_journal;
		}
		if (tried_backup_jnl && !(ctx->options & E2F_OPT_READONLY)) {
			retval = ext2fs_write_inode(ctx->fs, sb->s_journal_inum,
						    &j_inode->i_ext2);
			if (retval)
				goto errout;
		}

		journal->j_maxlen = EXT2_I_SIZE(&j_inode->i_ext2) /
			journal->j_blocksize;

#ifdef USE_INODE_IO
		retval = ext2fs_inode_io_intern2(ctx->fs, sb->s_journal_inum,
						 &j_inode->i_ext2,
						 &journal_name);
		if (retval)
			goto errout;

		io_ptr = inode_io_manager;
#else
		journal->j_inode = j_inode;
		ctx->journal_io = ctx->fs->io;
		if ((retval = (errcode_t) journal_bmap(journal, 0, &start)) != 0)
			goto errout;
#endif
	} else {
		ext_journal = 1;
		if (!ctx->journal_name) {
			char uuid[37];

			uuid_unparse(sb->s_journal_uuid, uuid);
			ctx->journal_name = blkid_get_devname(ctx->blkid,
							      "UUID", uuid);
			if (!ctx->journal_name)
				ctx->journal_name = blkid_devno_to_devname(sb->s_journal_dev);
		}
		journal_name = ctx->journal_name;

		if (!journal_name) {
			fix_problem(ctx, PR_0_CANT_FIND_JOURNAL, &pctx);
			retval = EXT2_ET_LOAD_EXT_JOURNAL;
			goto errout;
		}

		jfs_debug(1, "Using journal file %s\n", journal_name);
		io_ptr = unix_io_manager;
	}

#if 0
	test_io_backing_manager = io_ptr;
	io_ptr = test_io_manager;
#endif
#ifndef USE_INODE_IO
	if (ext_journal)
#endif
	{
		int flags = IO_FLAG_RW;
		if (!(ctx->mount_flags & EXT2_MF_ISROOT &&
		      ctx->mount_flags & EXT2_MF_READONLY))
			flags |= IO_FLAG_EXCLUSIVE;
		if ((ctx->mount_flags & EXT2_MF_READONLY) &&
		    (ctx->options & E2F_OPT_FORCE))
			flags &= ~IO_FLAG_EXCLUSIVE;


		retval = io_ptr->open(journal_name, flags,
				      &ctx->journal_io);
	}
	if (retval)
		goto errout;

	io_channel_set_blksize(ctx->journal_io, ctx->fs->blocksize);

	if (ext_journal) {
		blk64_t maxlen;

		start = ext2fs_journal_sb_start(ctx->fs->blocksize) - 1;
		bh = getblk(dev_journal, start, ctx->fs->blocksize);
		if (!bh) {
			retval = EXT2_ET_NO_MEMORY;
			goto errout;
		}
		ll_rw_block(READ, 1, &bh);
		if ((retval = bh->b_err) != 0) {
			brelse(bh);
			goto errout;
		}
		memcpy(&jsuper, start ? bh->b_data :  bh->b_data + SUPERBLOCK_OFFSET,
		       sizeof(jsuper));
#ifdef WORDS_BIGENDIAN
		if (jsuper.s_magic == ext2fs_swab16(EXT2_SUPER_MAGIC))
			ext2fs_swap_super(&jsuper);
#endif
		if (jsuper.s_magic != EXT2_SUPER_MAGIC ||
		    !(jsuper.s_feature_incompat & EXT3_FEATURE_INCOMPAT_JOURNAL_DEV)) {
			fix_problem(ctx, PR_0_EXT_JOURNAL_BAD_SUPER, &pctx);
			retval = EXT2_ET_LOAD_EXT_JOURNAL;
			brelse(bh);
			goto errout;
		}
		/* Make sure the journal UUID is correct */
		if (memcmp(jsuper.s_uuid, ctx->fs->super->s_journal_uuid,
			   sizeof(jsuper.s_uuid))) {
			fix_problem(ctx, PR_0_JOURNAL_BAD_UUID, &pctx);
			retval = EXT2_ET_LOAD_EXT_JOURNAL;
			brelse(bh);
			goto errout;
		}

		/* Check the superblock checksum */
		if (jsuper.s_feature_ro_compat &
		    EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) {
			struct struct_ext2_filsys fsx;
			struct ext2_super_block	superx;
			void *p;

			p = start ? bh->b_data : bh->b_data + SUPERBLOCK_OFFSET;
			memcpy(&fsx, ctx->fs, sizeof(fsx));
			memcpy(&superx, ctx->fs->super, sizeof(superx));
			fsx.super = &superx;
			fsx.super->s_feature_ro_compat |=
					EXT4_FEATURE_RO_COMPAT_METADATA_CSUM;
			if (!ext2fs_superblock_csum_verify(&fsx, p) &&
			    fix_problem(ctx, PR_0_EXT_JOURNAL_SUPER_CSUM_INVALID,
					&pctx)) {
				ext2fs_superblock_csum_set(&fsx, p);
				mark_buffer_dirty(bh);
			}
		}
		brelse(bh);

		maxlen = ext2fs_blocks_count(&jsuper);
		journal->j_maxlen = (maxlen < 1ULL << 32) ? maxlen : (1ULL << 32) - 1;
		start++;
	}

	if (!(bh = getblk(dev_journal, start, journal->j_blocksize))) {
		retval = EXT2_ET_NO_MEMORY;
		goto errout;
	}

	journal->j_sb_buffer = bh;
	journal->j_superblock = (journal_superblock_t *)bh->b_data;

#ifdef USE_INODE_IO
	if (j_inode)
		ext2fs_free_mem(&j_inode);
#endif

	*ret_journal = journal;
	e2fsck_use_inode_shortcuts(ctx, 0);
	return 0;

errout:
	e2fsck_use_inode_shortcuts(ctx, 0);
	if (dev_fs)
		ext2fs_free_mem(&dev_fs);
	if (j_inode)
		ext2fs_free_mem(&j_inode);
	if (journal)
		ext2fs_free_mem(&journal);
	return retval;
}
Example #18
0
void
pass1(void)
{
	ino_t inumber, inosused, ninosused;
	size_t inospace;
	struct inostat *info;
	int c;
	struct inodesc idesc;
	daddr_t i, cgd;
	u_int8_t *cp;

	/*
	 * Set file system reserved blocks in used block map.
	 */
	for (c = 0; c < sblock.fs_ncg; c++) {
		cgd = cgdmin(&sblock, c);
		if (c == 0)
			i = cgbase(&sblock, c);
		else
			i = cgsblock(&sblock, c);
		for (; i < cgd; i++)
			setbmap(i);
	}
	i = sblock.fs_csaddr;
	cgd = i + howmany(sblock.fs_cssize, sblock.fs_fsize);
	for (; i < cgd; i++)
		setbmap(i);
	/*
	 * Find all allocated blocks.
	 */
	memset(&idesc, 0, sizeof(struct inodesc));
	idesc.id_type = ADDR;
	idesc.id_func = pass1check;
	n_files = n_blks = 0;
	info_inumber = 0;
	info_fn = pass1_info;
	for (c = 0; c < sblock.fs_ncg; c++) {
		inumber = c * sblock.fs_ipg;
		setinodebuf(inumber);
		getblk(&cgblk, cgtod(&sblock, c), sblock.fs_cgsize);
		if (sblock.fs_magic == FS_UFS2_MAGIC) {
			inosused = cgrp.cg_initediblk;
			if (inosused > sblock.fs_ipg)
				inosused = sblock.fs_ipg;
		} else
			inosused = sblock.fs_ipg;

		/*
		 * If we are using soft updates, then we can trust the
		 * cylinder group inode allocation maps to tell us which
		 * inodes are allocated. We will scan the used inode map
		 * to find the inodes that are really in use, and then
		 * read only those inodes in from disk.
		 */
		if (preen && usedsoftdep) {
			cp = &cg_inosused(&cgrp)[(inosused - 1) / CHAR_BIT];
			for ( ; inosused > 0; inosused -= CHAR_BIT, cp--) {
				if (*cp == 0)
					continue;
				for (i = 1 << (CHAR_BIT - 1); i > 0; i >>= 1) {
					if (*cp & i)
						break;
					inosused--;
				}
				break;
			}
			if (inosused < 0)
				inosused = 0;
		}
		/*
 		 * Allocate inoinfo structures for the allocated inodes.
		 */
		inostathead[c].il_numalloced = inosused;
		if (inosused == 0) {
			inostathead[c].il_stat = 0;
			continue;
		}
		info = calloc((unsigned)inosused, sizeof(struct inostat));
		inospace = (unsigned)inosused * sizeof(struct inostat);
		if (info == NULL)
			errexit("cannot alloc %zu bytes for inoinfo", inospace);
		inostathead[c].il_stat = info;
		/*
		 * Scan the allocated inodes.
		 */
		for (i = 0; i < inosused; i++, inumber++) {
			info_inumber = inumber;
			if (inumber < ROOTINO) {
				(void)getnextinode(inumber);
				continue;
			}
			checkinode(inumber, &idesc);
		}
		lastino += 1;
		if (inosused < sblock.fs_ipg || inumber == lastino)
			continue;
		/*
		 * If we were not able to determine in advance which inodes
		 * were in use, then reduce the size of the inoinfo structure
		 * to the size necessary to describe the inodes that we
		 * really found.
		 */
		if (lastino < (c * sblock.fs_ipg))
			ninosused = 0;
		else
			ninosused = lastino - (c * sblock.fs_ipg);
		inostathead[c].il_numalloced = ninosused;
		if (ninosused == 0) {
			free(inostathead[c].il_stat);
			inostathead[c].il_stat = 0;
			continue;
		}
		if (ninosused != inosused) {
			struct inostat *ninfo;
			size_t ninospace;

			ninfo = reallocarray(info, ninosused, sizeof(*ninfo));
			if (ninfo == NULL) {
				pfatal("too many inodes %llu, or out of memory\n",
				    (unsigned long long)ninosused);
				exit(8);
			}
			ninospace = ninosused * sizeof(*ninfo);
			if (ninosused > inosused)
				memset(&ninfo[inosused], 0, ninospace - inospace);
			inostathead[c].il_stat = ninfo;
		}
	}
Example #19
0
File: bc.c Project: zapat0s/CptS460
int main()
{ 
	u16    i,iblk;
	char  *loc;
	u32   *l;
	GD    *gp;
	INODE *ip;

	prints("What image: ");
	gets(kstr);
	prints("\r\n");

	// Read group descriptor block and find inode table
	getblk(2, buf1);
	gp = (GD *)buf1;
	iblk = (u16)gp->bg_inode_table;

	getblk((u16)iblk, buf1);  // read first inode block
	ip = (INODE *)buf1 + 1;   // ip->root inode #2 ( / directory)

	// Read through directory entries looking for /boot
	i = findentry((u16)ip->i_block[0], "boot");

	// get inode
	ip = getinode(iblk, i);

	i = findentry((u16)ip->i_block[0], kstr);

	// Get inode
	ip = getinode(iblk, i);

	// get single indirect blocks
	getblk((u16)ip->i_block[12], buf2);
	
	// Copy file into memory
	prints("Loading: ");
	setes(0x1000);
	loc = 0;
	i = 0;

	// Get first 12 blocks
	while(i < 12 && ip->i_block[i] != 0)
	{
		getblk((u16)ip->i_block[i], loc);
		i++;
		loc += 1024;
		putc('.');
	}

	l = buf2;
	i = 0;
	while(i < 256 && l[i] > 0)
	{
		getblk((u16)(l[i]), loc);
		i++;
		loc += 1024;
		putc('+');
	}

	prints("\n\rReady?\n\r");
	getc();
	return 1;
}  
Example #20
0
/*
 * Indirect blocks are now on the vnode for the file.  They are given negative
 * logical block numbers.  Indirect blocks are addressed by the negative
 * address of the first data block to which they point.  Double indirect blocks
 * are addressed by one less than the address of the first indirect block to
 * which they point.  Triple indirect blocks are addressed by one less than
 * the address of the first double indirect block to which they point.
 *
 * ext2_bmaparray does the bmap conversion, and if requested returns the
 * array of logical blocks which must be traversed to get to a block.
 * Each entry contains the offset into that block that gets you to the
 * next block and the disk address of the block (if it is assigned).
 */
static
int
ext2_bmaparray(struct vnode *vp, ext2_daddr_t bn, ext2_daddr_t *bnp,
	      struct indir *ap, int *nump, int *runp, int *runb)
{
	struct inode *ip;
	struct buf *bp;
	struct ext2_mount *ump;
	struct mount *mp;
	struct ext2_sb_info *fs;
	struct indir a[NIADDR+1], *xap;
	ext2_daddr_t daddr;
	long metalbn;
	int error, maxrun, num;

	ip = VTOI(vp);
	mp = vp->v_mount;
	ump = VFSTOEXT2(mp);
	fs = ip->i_e2fs;
#ifdef DIAGNOSTIC
	if ((ap != NULL && nump == NULL) || (ap == NULL && nump != NULL))
		panic("ext2_bmaparray: invalid arguments");
#endif

	if (runp) {
		*runp = 0;
	}

	if (runb) {
		*runb = 0;
	}

	maxrun = mp->mnt_iosize_max / mp->mnt_stat.f_iosize - 1;

	xap = ap == NULL ? a : ap;
	if (!nump)
		nump = &num;
	error = ext2_getlbns(vp, bn, xap, nump);
	if (error)
		return (error);

	num = *nump;
	if (num == 0) {
		*bnp = blkptrtodb(ump, ip->i_db[bn]);
		if (*bnp == 0)
			*bnp = -1;
		else if (runp) {
			daddr_t bnb = bn;
			for (++bn; bn < NDADDR && *runp < maxrun &&
			    is_sequential(ump, ip->i_db[bn - 1], ip->i_db[bn]);
			    ++bn, ++*runp);
			bn = bnb;
			if (runb && (bn > 0)) {
				for (--bn; (bn >= 0) && (*runb < maxrun) &&
					is_sequential(ump, ip->i_db[bn],
						ip->i_db[bn+1]);
						--bn, ++*runb);
			}
		}
		return (0);
	}


	/* Get disk address out of indirect block array */
	daddr = ip->i_ib[xap->in_off];

	for (bp = NULL, ++xap; --num; ++xap) {
		/*
		 * Exit the loop if there is no disk address assigned yet and
		 * the indirect block isn't in the cache, or if we were
		 * looking for an indirect block and we've found it.
		 */

		metalbn = xap->in_lbn;
		if ((daddr == 0 &&
		     !findblk(vp, dbtodoff(fs, metalbn), FINDBLK_TEST)) ||
		    metalbn == bn) {
			break;
		}
		/*
		 * If we get here, we've either got the block in the cache
		 * or we have a disk address for it, go fetch it.
		 */
		if (bp)
			bqrelse(bp);

		xap->in_exists = 1;
		bp = getblk(vp, lblktodoff(fs, metalbn),
			    mp->mnt_stat.f_iosize, 0, 0);
		if ((bp->b_flags & B_CACHE) == 0) {
#ifdef DIAGNOSTIC
			if (!daddr)
				panic("ext2_bmaparray: indirect block not in cache");
#endif
			/*
			 * This runs through ext2_strategy using bio2 to
			 * cache the disk offset, then comes back through
			 * bio1.  So we want to wait on bio1
			 */
			bp->b_bio1.bio_done = biodone_sync;
			bp->b_bio1.bio_flags |= BIO_SYNC;
			bp->b_bio2.bio_offset = fsbtodoff(fs, daddr);
			bp->b_flags &= ~(B_INVAL|B_ERROR);
			bp->b_cmd = BUF_CMD_READ;
			vfs_busy_pages(bp->b_vp, bp);
			vn_strategy(bp->b_vp, &bp->b_bio1);
			error = biowait(&bp->b_bio1, "biord");
			if (error) {
				brelse(bp);
				return (error);
			}
		}

		daddr = ((ext2_daddr_t *)bp->b_data)[xap->in_off];
		if (num == 1 && daddr && runp) {
			for (bn = xap->in_off + 1;
			    bn < MNINDIR(ump) && *runp < maxrun &&
			    is_sequential(ump,
			    ((ext2_daddr_t *)bp->b_data)[bn - 1],
			    ((ext2_daddr_t *)bp->b_data)[bn]);
			    ++bn, ++*runp);
			bn = xap->in_off;
			if (runb && bn) {
				for(--bn; bn >= 0 && *runb < maxrun &&
					is_sequential(ump, ((daddr_t *)bp->b_data)[bn],
					    ((daddr_t *)bp->b_data)[bn+1]);
					--bn, ++*runb);
			}
		}
	}
	if (bp)
		bqrelse(bp);

	daddr = blkptrtodb(ump, daddr);
	*bnp = daddr == 0 ? -1 : daddr;
	return (0);
}
/* VOP_BWRITE ULFS_NIADDR+2 times */
int
lfs_balloc(struct vnode *vp, off_t startoffset, int iosize, kauth_cred_t cred,
    int flags, struct buf **bpp)
{
	int offset;
	daddr_t daddr, idaddr;
	struct buf *ibp, *bp;
	struct inode *ip;
	struct lfs *fs;
	struct indir indirs[ULFS_NIADDR+2], *idp;
	daddr_t	lbn, lastblock;
	int bcount;
	int error, frags, i, nsize, osize, num;

	ip = VTOI(vp);
	fs = ip->i_lfs;
	offset = lfs_blkoff(fs, startoffset);
	KASSERT(iosize <= lfs_sb_getbsize(fs));
	lbn = lfs_lblkno(fs, startoffset);
	/* (void)lfs_check(vp, lbn, 0); */

	ASSERT_MAYBE_SEGLOCK(fs);

	/*
	 * Three cases: it's a block beyond the end of file, it's a block in
	 * the file that may or may not have been assigned a disk address or
	 * we're writing an entire block.
	 *
	 * Note, if the daddr is UNWRITTEN, the block already exists in
	 * the cache (it was read or written earlier).	If so, make sure
	 * we don't count it as a new block or zero out its contents. If
	 * it did not, make sure we allocate any necessary indirect
	 * blocks.
	 *
	 * If we are writing a block beyond the end of the file, we need to
	 * check if the old last block was a fragment.	If it was, we need
	 * to rewrite it.
	 */

	if (bpp)
		*bpp = NULL;

	/* Check for block beyond end of file and fragment extension needed. */
	lastblock = lfs_lblkno(fs, ip->i_size);
	if (lastblock < ULFS_NDADDR && lastblock < lbn) {
		osize = lfs_blksize(fs, ip, lastblock);
		if (osize < lfs_sb_getbsize(fs) && osize > 0) {
			if ((error = lfs_fragextend(vp, osize, lfs_sb_getbsize(fs),
						    lastblock,
						    (bpp ? &bp : NULL), cred)))
				return (error);
			ip->i_size = (lastblock + 1) * lfs_sb_getbsize(fs);
			lfs_dino_setsize(fs, ip->i_din, ip->i_size);
			uvm_vnp_setsize(vp, ip->i_size);
			ip->i_flag |= IN_CHANGE | IN_UPDATE;
			if (bpp)
				(void) VOP_BWRITE(bp->b_vp, bp);
		}
	}

	/*
	 * If the block we are writing is a direct block, it's the last
	 * block in the file, and offset + iosize is less than a full
	 * block, we can write one or more fragments.  There are two cases:
	 * the block is brand new and we should allocate it the correct
	 * size or it already exists and contains some fragments and
	 * may need to extend it.
	 */
	if (lbn < ULFS_NDADDR && lfs_lblkno(fs, ip->i_size) <= lbn) {
		osize = lfs_blksize(fs, ip, lbn);
		nsize = lfs_fragroundup(fs, offset + iosize);
		if (lfs_lblktosize(fs, lbn) >= ip->i_size) {
			/* Brand new block or fragment */
			frags = lfs_numfrags(fs, nsize);
			if (!ISSPACE(fs, frags, cred))
				return ENOSPC;
			if (bpp) {
				*bpp = bp = getblk(vp, lbn, nsize, 0, 0);
				bp->b_blkno = UNWRITTEN;
				if (flags & B_CLRBUF)
					clrbuf(bp);
			}
			ip->i_lfs_effnblks += frags;
			mutex_enter(&lfs_lock);
			lfs_sb_subbfree(fs, frags);
			mutex_exit(&lfs_lock);
			lfs_dino_setdb(fs, ip->i_din, lbn, UNWRITTEN);
		} else {
			if (nsize <= osize) {
				/* No need to extend */
				if (bpp && (error = bread(vp, lbn, osize,
				    0, &bp)))
					return error;
			} else {
				/* Extend existing block */
				if ((error =
				     lfs_fragextend(vp, osize, nsize, lbn,
						    (bpp ? &bp : NULL), cred)))
					return error;
			}
			if (bpp)
				*bpp = bp;
		}
		return 0;
	}

	error = ulfs_bmaparray(vp, lbn, &daddr, &indirs[0], &num, NULL, NULL);
	if (error)
		return (error);

	KASSERT(daddr <= LFS_MAX_DADDR(fs));

	/*
	 * Do byte accounting all at once, so we can gracefully fail *before*
	 * we start assigning blocks.
	 */
	frags = fs->um_seqinc;
	bcount = 0;
	if (daddr == UNASSIGNED) {
		bcount = frags;
	}
	for (i = 1; i < num; ++i) {
		if (!indirs[i].in_exists) {
			bcount += frags;
		}
	}
	if (ISSPACE(fs, bcount, cred)) {
		mutex_enter(&lfs_lock);
		lfs_sb_subbfree(fs, bcount);
		mutex_exit(&lfs_lock);
		ip->i_lfs_effnblks += bcount;
	} else {
		return ENOSPC;
	}

	if (daddr == UNASSIGNED) {
		if (num > 0 && lfs_dino_getib(fs, ip->i_din, indirs[0].in_off) == 0) {
			lfs_dino_setib(fs, ip->i_din, indirs[0].in_off, UNWRITTEN);
		}

		/*
		 * Create new indirect blocks if necessary
		 */
		if (num > 1) {
			idaddr = lfs_dino_getib(fs, ip->i_din, indirs[0].in_off);
			for (i = 1; i < num; ++i) {
				ibp = getblk(vp, indirs[i].in_lbn,
				    lfs_sb_getbsize(fs), 0,0);
				if (!indirs[i].in_exists) {
					clrbuf(ibp);
					ibp->b_blkno = UNWRITTEN;
				} else if (!(ibp->b_oflags & (BO_DELWRI | BO_DONE))) {
					ibp->b_blkno = LFS_FSBTODB(fs, idaddr);
					ibp->b_flags |= B_READ;
					VOP_STRATEGY(vp, ibp);
					biowait(ibp);
				}
				/*
				 * This block exists, but the next one may not.
				 * If that is the case mark it UNWRITTEN to keep
				 * the accounting straight.
				 */
				/* XXX ondisk32 */
				if (((int32_t *)ibp->b_data)[indirs[i].in_off] == 0)
					((int32_t *)ibp->b_data)[indirs[i].in_off] =
						UNWRITTEN;
				/* XXX ondisk32 */
				idaddr = ((int32_t *)ibp->b_data)[indirs[i].in_off];
#ifdef DEBUG
				if (vp == fs->lfs_ivnode) {
					LFS_ENTER_LOG("balloc", __FILE__,
						__LINE__, indirs[i].in_lbn,
						ibp->b_flags, curproc->p_pid);
				}
#endif
				if ((error = VOP_BWRITE(ibp->b_vp, ibp)))
					return error;
			}
		}
	}


	/*
	 * Get the existing block from the cache, if requested.
	 */
	if (bpp)
		*bpp = bp = getblk(vp, lbn, lfs_blksize(fs, ip, lbn), 0, 0);

	/*
	 * Do accounting on blocks that represent pages.
	 */
	if (!bpp)
		lfs_register_block(vp, lbn);

	/*
	 * The block we are writing may be a brand new block
	 * in which case we need to do accounting.
	 *
	 * We can tell a truly new block because ulfs_bmaparray will say
	 * it is UNASSIGNED.  Once we allocate it we will assign it the
	 * disk address UNWRITTEN.
	 */
	if (daddr == UNASSIGNED) {
		if (bpp) {
			if (flags & B_CLRBUF)
				clrbuf(bp);

			/* Note the new address */
			bp->b_blkno = UNWRITTEN;
		}

		switch (num) {
		    case 0:
			lfs_dino_setdb(fs, ip->i_din, lbn, UNWRITTEN);
			break;
		    case 1:
			lfs_dino_setib(fs, ip->i_din, indirs[0].in_off, UNWRITTEN);
			break;
		    default:
			idp = &indirs[num - 1];
			if (bread(vp, idp->in_lbn, lfs_sb_getbsize(fs),
				  B_MODIFY, &ibp))
				panic("lfs_balloc: bread bno %lld",
				    (long long)idp->in_lbn);
			/* XXX ondisk32 */
			((int32_t *)ibp->b_data)[idp->in_off] = UNWRITTEN;
#ifdef DEBUG
			if (vp == fs->lfs_ivnode) {
				LFS_ENTER_LOG("balloc", __FILE__,
					__LINE__, idp->in_lbn,
					ibp->b_flags, curproc->p_pid);
			}
#endif
			VOP_BWRITE(ibp->b_vp, ibp);
		}
	} else if (bpp && !(bp->b_oflags & (BO_DONE|BO_DELWRI))) {
		/*
		 * Not a brand new block, also not in the cache;
		 * read it in from disk.
		 */
		if (iosize == lfs_sb_getbsize(fs))
			/* Optimization: I/O is unnecessary. */
			bp->b_blkno = daddr;
		else {
			/*
			 * We need to read the block to preserve the
			 * existing bytes.
			 */
			bp->b_blkno = daddr;
			bp->b_flags |= B_READ;
			VOP_STRATEGY(vp, bp);
			return (biowait(bp));
		}
	}

	return (0);
}
Example #22
0
static int do_one_pass(journal_t *journal, struct recovery_info *info,
		       enum passtype pass)
{
	
	unsigned int		first_commit_ID, next_commit_ID;
	unsigned long		next_log_block;
	int			err, success = 0;
	journal_superblock_t *	sb;
	journal_header_t * 	tmp;
	struct buffer_head *	bh;
	unsigned int		sequence;
	int			blocktype;
	
	/* Precompute the maximum metadata descriptors in a descriptor block */
	int			MAX_BLOCKS_PER_DESC;
	MAX_BLOCKS_PER_DESC = ((journal->j_blocksize-sizeof(journal_header_t))
			       / sizeof(journal_block_tag_t));

	/* 
	 * First thing is to establish what we expect to find in the log
	 * (in terms of transaction IDs), and where (in terms of log
	 * block offsets): query the superblock.  
	 */

	sb = journal->j_superblock;
	next_commit_ID = ntohl(sb->s_sequence);
	next_log_block = ntohl(sb->s_start);

	first_commit_ID = next_commit_ID;
	if (pass == PASS_SCAN)
		info->start_transaction = first_commit_ID;
	
	jfs_debug(1, "Starting recovery pass %d\n", pass);
	
	/*
	 * Now we walk through the log, transaction by transaction,
	 * making sure that each transaction has a commit block in the
	 * expected place.  Each complete transaction gets replayed back
	 * into the main filesystem. 
	 */

	while (1) {
		int			flags;
		char *			tagp;
		journal_block_tag_t *	tag;
		struct buffer_head *	obh;
		struct buffer_head *	nbh;
		
		/* If we already know where to stop the log traversal,
		 * check right now that we haven't gone past the end of
		 * the log. */
		
		if (pass != PASS_SCAN)
			if (tid_geq(next_commit_ID, info->end_transaction))
				break;
		
		jfs_debug(2, "Scanning for sequence ID %u at %lu/%lu\n",
			  next_commit_ID, next_log_block, journal->j_last);

		/* Skip over each chunk of the transaction looking
		 * either the next descriptor block or the final commit
		 * record. */
		
		jfs_debug(3, "JFS: checking block %ld\n", next_log_block);
		err = jread(&bh, journal, next_log_block);
		if (err)
			goto failed;
		
		next_log_block++;
		wrap(journal, next_log_block);
		
		/* What kind of buffer is it? 
		 * 
		 * If it is a descriptor block, check that it has the
		 * expected sequence number.  Otherwise, we're all done
		 * here. */

		tmp = (journal_header_t *) bh->b_data;
		
		if (tmp->h_magic != htonl(JFS_MAGIC_NUMBER)) {
			brelse(bh);
			break;
		}
		
		blocktype = ntohl(tmp->h_blocktype);
		sequence = ntohl(tmp->h_sequence);
		jfs_debug(3, "Found magic %d, sequence %d\n", 
			  blocktype, sequence);
		
		if (sequence != next_commit_ID) {
			brelse(bh);
			break;
		}
		
		/* OK, we have a valid descriptor block which matches
		 * all of the sequence number checks.  What are we going
		 * to do with it?  That depends on the pass... */
		
		switch(blocktype) {
		case JFS_DESCRIPTOR_BLOCK:
			/* If it is a valid descriptor block, replay it
			 * in pass REPLAY; otherwise, just skip over the
			 * blocks it describes. */
			if (pass != PASS_REPLAY) {
				next_log_block += count_tags(bh, journal->j_blocksize);
				wrap(journal, next_log_block);
				brelse(bh);
				continue;
			}

			/* A descriptor block: we can now write all of
			 * the data blocks.  Yay, useful work is finally
			 * getting done here! */

			tagp = &bh->b_data[sizeof(journal_header_t)];
			while ((tagp - bh->b_data +sizeof(journal_block_tag_t))
			       <= journal->j_blocksize) {
				unsigned long io_block;
				
				tag = (journal_block_tag_t *) tagp;
				flags = ntohl(tag->t_flags);
				
				io_block = next_log_block++;
				wrap(journal, next_log_block);
				err = jread(&obh, journal, io_block);
				if (err) {
					/* Recover what we can, but
					 * report failure at the end. */
					success = err;
					printk (KERN_ERR 
						"JFS: IO error %d recovering "
						"block %ld in log\n",
						err, io_block);
				} else {
					unsigned long blocknr;
					
					J_ASSERT(obh != NULL);
					blocknr = ntohl(tag->t_blocknr);

					/* If the block has been
					 * revoked, then we're all done
					 * here. */
					if (journal_test_revoke
					    (journal, blocknr, 
					     next_commit_ID)) {
						brelse(obh);
						++info->nr_revoke_hits;
						goto skip_write;
					}
								
					/* Find a buffer for the new
					 * data being restored */
					nbh = getblk(journal->j_dev, blocknr,
						     journal->j_blocksize);
					if (nbh == NULL) {
						printk(KERN_ERR 
						       "JFS: Out of memory "
						       "during recovery.\n");
						err = -ENOMEM;
						brelse(bh);
						brelse(obh);
						goto failed;
					}

					memcpy(nbh->b_data, obh->b_data, 
					       journal->j_blocksize);
					if (flags & JFS_FLAG_ESCAPE) {
						* ((unsigned int *) bh->b_data) = htonl(JFS_MAGIC_NUMBER);
					}
					
					mark_buffer_dirty(nbh, 1);
					mark_buffer_uptodate(nbh, 1);
					++info->nr_replays;
					/* ll_rw_block(WRITE, 1, &nbh); */
					brelse(obh);
					brelse(nbh);
				}
				
			skip_write:
				tagp += sizeof(journal_block_tag_t);
				if (!(flags & JFS_FLAG_SAME_UUID))
					tagp += 16;

				if (flags & JFS_FLAG_LAST_TAG)
					break;
			}
			
			brelse(bh);
			continue;
				
		case JFS_COMMIT_BLOCK:
			/* Found an expected commit block: not much to
			 * do other than move on to the next sequence
			 * number. */
			brelse(bh);
			next_commit_ID++;
			continue;

		case JFS_REVOKE_BLOCK:
			/* If we aren't in the REVOKE pass, then we can
			 * just skip over this block. */
			if (pass != PASS_REVOKE) {
				brelse(bh);
				continue;
			}

			err = scan_revoke_records(journal, bh, 
						  next_commit_ID, info);
			brelse(bh);
			if (err)
				goto failed;
			continue;

		default:
			jfs_debug(3, "Unrecognised magic %d, end of scan.\n",
				  blocktype);
			goto done;
		}
	}

 done:
	/* 
	 * We broke out of the log scan loop: either we came to the
	 * known end of the log or we found an unexpected block in the
	 * log.  If the latter happened, then we know that the "current"
	 * transaction marks the end of the valid log.
	 */
	
	if (pass == PASS_SCAN)
		info->end_transaction = next_commit_ID;
	else {
		/* It's really bad news if different passes end up at
		 * different places (but possible due to IO errors). */
		if (info->end_transaction != next_commit_ID) {
			printk (KERN_ERR "JFS: recovery pass %d ended at "
				"transaction %u, expected %u\n",
				pass, next_commit_ID, info->end_transaction);
			if (!success)
				success = -EIO;
		}
	}

	return success;

 failed:
	return err;
}
Example #23
0
/*
 * Release blocks associated with the inode ip and stored in the indirect
 * block bn.  Blocks are free'd in LIFO order up to (but not including)
 * lastbn.  If level is greater than SINGLE, the block is an indirect block
 * and recursive calls to indirtrunc must be used to cleanse other indirect
 * blocks.
 *
 * NB: triple indirect blocks are untested.
 */
int
ffs_indirtrunc(struct inode *ip, daddr64_t lbn, daddr64_t dbn,
    daddr64_t lastbn, int level, long *countp)
{
	int i;
	struct buf *bp;
	struct fs *fs = ip->i_fs;
	struct vnode *vp;
	void *copy = NULL;
	daddr64_t nb, nlbn, last;
	long blkcount, factor;
	int nblocks, blocksreleased = 0;
	int error = 0, allerror = 0;
	int32_t *bap1 = NULL;
#ifdef FFS2
	int64_t *bap2 = NULL;
#endif

	/*
	 * Calculate index in current block of last
	 * block to be kept.  -1 indicates the entire
	 * block so we need not calculate the index.
	 */
	factor = 1;
	for (i = SINGLE; i < level; i++)
		factor *= NINDIR(fs);
	last = lastbn;
	if (lastbn > 0)
		last /= factor;
	nblocks = btodb(fs->fs_bsize);
	/*
	 * Get buffer of block pointers, zero those entries corresponding
	 * to blocks to be free'd, and update on disk copy first.  Since
	 * double(triple) indirect before single(double) indirect, calls
	 * to bmap on these blocks will fail.  However, we already have
	 * the on disk address, so we have to set the b_blkno field
	 * explicitly instead of letting bread do everything for us.
	 */
	vp = ITOV(ip);
	bp = getblk(vp, lbn, (int)fs->fs_bsize, 0, 0);
	if (!(bp->b_flags & (B_DONE | B_DELWRI))) {
		curproc->p_stats->p_ru.ru_inblock++;	/* pay for read */
		bcstats.pendingreads++;
		bcstats.numreads++;
		bp->b_flags |= B_READ;
		if (bp->b_bcount > bp->b_bufsize)
			panic("ffs_indirtrunc: bad buffer size");
		bp->b_blkno = dbn;
		VOP_STRATEGY(bp);
		error = biowait(bp);
	}
	if (error) {
		brelse(bp);
		*countp = 0;
		return (error);
	}

#ifdef FFS2
	if (ip->i_ump->um_fstype == UM_UFS2)
		bap2 = (int64_t *)bp->b_data;
	else
#endif
		bap1 = (int32_t *)bp->b_data;

	if (lastbn != -1) {
		copy = malloc(fs->fs_bsize, M_TEMP, M_WAITOK);
		bcopy(bp->b_data, copy, (u_int) fs->fs_bsize);

		for (i = last + 1; i < NINDIR(fs); i++)
			BAP_ASSIGN(ip, i, 0);

		if (!DOINGASYNC(vp)) {
			error = bwrite(bp);
			if (error)
				allerror = error;
		} else {
			bawrite(bp);
		}

#ifdef FFS2
		if (ip->i_ump->um_fstype == UM_UFS2)
			bap2 = (int64_t *)copy;
		else
#endif
			bap1 = (int32_t *)copy;
	}

	/*
	 * Recursively free totally unused blocks.
	 */
	for (i = NINDIR(fs) - 1, nlbn = lbn + 1 - i * factor; i > last;
	    i--, nlbn += factor) {
		nb = BAP(ip, i);
		if (nb == 0)
			continue;
		if (level > SINGLE) {
			error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
					       (daddr64_t)-1, level - 1,
					       &blkcount);
			if (error)
				allerror = error;
			blocksreleased += blkcount;
		}
		ffs_blkfree(ip, nb, fs->fs_bsize);
		blocksreleased += nblocks;
	}

	/*
	 * Recursively free last partial block.
	 */
	if (level > SINGLE && lastbn >= 0) {
		last = lastbn % factor;
		nb = BAP(ip, i);
		if (nb != 0) {
			error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
					       last, level - 1, &blkcount);
			if (error)
				allerror = error;
			blocksreleased += blkcount;
		}
	}
	if (copy != NULL) {
		free(copy, M_TEMP);
	} else {
		bp->b_flags |= B_INVAL;
		brelse(bp);
	}
		
	*countp = blocksreleased;
	return (allerror);
}
Example #24
0
/*
 * Read in the super block and its summary info.
 */
int
readsb(int listerr)
{
	off_t super;
	int bad, ret;
	struct fs *fs;

	super = bflag ? bflag * dev_bsize : -1;
	readcnt[sblk.b_type]++;
	if ((ret = sbget(fsreadfd, &fs, super)) != 0) {
		switch (ret) {
		case EINVAL:
			fprintf(stderr, "The previous newfs operation "
			    "on this volume did not complete.\nYou must "
			    "complete newfs before using this volume.\n");
			exit(11);
		case ENOENT:
			if (bflag)
				fprintf(stderr, "%jd is not a file system "
				    "superblock\n", super / dev_bsize);
			else
				fprintf(stderr, "Cannot find file system "
				    "superblock\n");
			return (0);
		case EIO:
		default:
			fprintf(stderr, "I/O error reading %jd\n",
			    super / dev_bsize);
			return (0);
		}
	}
	memcpy(&sblock, fs, fs->fs_sbsize);
	free(fs);
	/*
	 * Compute block size that the file system is based on,
	 * according to fsbtodb, and adjust superblock block number
	 * so we can tell if this is an alternate later.
	 */
	dev_bsize = sblock.fs_fsize / fsbtodb(&sblock, 1);
	sblk.b_bno = sblock.fs_sblockactualloc / dev_bsize;
	sblk.b_size = SBLOCKSIZE;
	/*
	 * Compare all fields that should not differ in alternate super block.
	 * When an alternate super-block is specified this check is skipped.
	 */
	if (bflag)
		goto out;
	getblk(&asblk, cgsblock(&sblock, sblock.fs_ncg - 1), sblock.fs_sbsize);
	if (asblk.b_errs)
		return (0);
	bad = 0;
#define CHK(x, y)				\
	if (altsblock.x != sblock.x) {		\
		bad++;				\
		if (listerr && debug)		\
			printf("SUPER BLOCK VS ALTERNATE MISMATCH %s: " y " vs " y "\n", \
			    #x, (intmax_t)sblock.x, (intmax_t)altsblock.x); \
	}
	CHK(fs_sblkno, "%jd");
	CHK(fs_cblkno, "%jd");
	CHK(fs_iblkno, "%jd");
	CHK(fs_dblkno, "%jd");
	CHK(fs_ncg, "%jd");
	CHK(fs_bsize, "%jd");
	CHK(fs_fsize, "%jd");
	CHK(fs_frag, "%jd");
	CHK(fs_bmask, "%#jx");
	CHK(fs_fmask, "%#jx");
	CHK(fs_bshift, "%jd");
	CHK(fs_fshift, "%jd");
	CHK(fs_fragshift, "%jd");
	CHK(fs_fsbtodb, "%jd");
	CHK(fs_sbsize, "%jd");
	CHK(fs_nindir, "%jd");
	CHK(fs_inopb, "%jd");
	CHK(fs_cssize, "%jd");
	CHK(fs_ipg, "%jd");
	CHK(fs_fpg, "%jd");
	CHK(fs_magic, "%#jx");
#undef CHK
	if (bad) {
		if (listerr == 0)
			return (0);
		if (preen)
			printf("%s: ", cdevname);
		printf(
		    "VALUES IN SUPER BLOCK LSB=%jd DISAGREE WITH THOSE IN\n"
		    "LAST ALTERNATE LSB=%jd\n",
		    sblk.b_bno, asblk.b_bno);
		if (reply("IGNORE ALTERNATE SUPER BLOCK") == 0)
			return (0);
	}
out:
	/*
	 * If not yet done, update UFS1 superblock with new wider fields.
	 */
	if (sblock.fs_magic == FS_UFS1_MAGIC &&
	    sblock.fs_maxbsize != sblock.fs_bsize) {
		sblock.fs_maxbsize = sblock.fs_bsize;
		sblock.fs_time = sblock.fs_old_time;
		sblock.fs_size = sblock.fs_old_size;
		sblock.fs_dsize = sblock.fs_old_dsize;
		sblock.fs_csaddr = sblock.fs_old_csaddr;
		sblock.fs_cstotal.cs_ndir = sblock.fs_old_cstotal.cs_ndir;
		sblock.fs_cstotal.cs_nbfree = sblock.fs_old_cstotal.cs_nbfree;
		sblock.fs_cstotal.cs_nifree = sblock.fs_old_cstotal.cs_nifree;
		sblock.fs_cstotal.cs_nffree = sblock.fs_old_cstotal.cs_nffree;
	}
	havesb = 1;
	return (1);
}
Example #25
0
/*
 * If blocks are contiguous on disk, use this to provide clustered
 * read ahead.  We will read as many blocks as possible sequentially
 * and then parcel them up into logical blocks in the buffer hash table.
 */
static struct buf *
cluster_rbuild(struct vnode *vp, u_quad_t filesize, daddr_t lbn,
    daddr_t blkno, long size, int run, int gbflags, struct buf *fbp)
{
	struct buf *bp, *tbp;
	daddr_t bn;
	off_t off;
	long tinc, tsize;
	int i, inc, j, k, toff;

	KASSERT(size == vp->v_mount->mnt_stat.f_iosize,
	    ("cluster_rbuild: size %ld != f_iosize %jd\n",
	    size, (intmax_t)vp->v_mount->mnt_stat.f_iosize));

	/*
	 * avoid a division
	 */
	while ((u_quad_t) size * (lbn + run) > filesize) {
		--run;
	}

	if (fbp) {
		tbp = fbp;
		tbp->b_iocmd = BIO_READ; 
	} else {
		tbp = getblk(vp, lbn, size, 0, 0, gbflags);
		if (tbp->b_flags & B_CACHE)
			return tbp;
		tbp->b_flags |= B_ASYNC | B_RAM;
		tbp->b_iocmd = BIO_READ;
	}
	tbp->b_blkno = blkno;
	if( (tbp->b_flags & B_MALLOC) ||
		((tbp->b_flags & B_VMIO) == 0) || (run <= 1) )
		return tbp;

	bp = trypbuf(&cluster_pbuf_freecnt);
	if (bp == 0)
		return tbp;

	/*
	 * We are synthesizing a buffer out of vm_page_t's, but
	 * if the block size is not page aligned then the starting
	 * address may not be either.  Inherit the b_data offset
	 * from the original buffer.
	 */
	bp->b_flags = B_ASYNC | B_CLUSTER | B_VMIO;
	if ((gbflags & GB_UNMAPPED) != 0) {
		bp->b_data = unmapped_buf;
	} else {
		bp->b_data = (char *)((vm_offset_t)bp->b_data |
		    ((vm_offset_t)tbp->b_data & PAGE_MASK));
	}
	bp->b_iocmd = BIO_READ;
	bp->b_iodone = cluster_callback;
	bp->b_blkno = blkno;
	bp->b_lblkno = lbn;
	bp->b_offset = tbp->b_offset;
	KASSERT(bp->b_offset != NOOFFSET, ("cluster_rbuild: no buffer offset"));
	pbgetvp(vp, bp);

	TAILQ_INIT(&bp->b_cluster.cluster_head);

	bp->b_bcount = 0;
	bp->b_bufsize = 0;
	bp->b_npages = 0;

	inc = btodb(size);
	for (bn = blkno, i = 0; i < run; ++i, bn += inc) {
		if (i == 0) {
			VM_OBJECT_WLOCK(tbp->b_bufobj->bo_object);
			vfs_drain_busy_pages(tbp);
			vm_object_pip_add(tbp->b_bufobj->bo_object,
			    tbp->b_npages);
			for (k = 0; k < tbp->b_npages; k++)
				vm_page_sbusy(tbp->b_pages[k]);
			VM_OBJECT_WUNLOCK(tbp->b_bufobj->bo_object);
		} else {
			if ((bp->b_npages * PAGE_SIZE) +
			    round_page(size) > vp->v_mount->mnt_iosize_max) {
				break;
			}

			tbp = getblk(vp, lbn + i, size, 0, 0, GB_LOCK_NOWAIT |
			    (gbflags & GB_UNMAPPED));

			/* Don't wait around for locked bufs. */
			if (tbp == NULL)
				break;

			/*
			 * Stop scanning if the buffer is fully valid
			 * (marked B_CACHE), or locked (may be doing a
			 * background write), or if the buffer is not
			 * VMIO backed.  The clustering code can only deal
			 * with VMIO-backed buffers.  The bo lock is not
			 * required for the BKGRDINPROG check since it
			 * can not be set without the buf lock.
			 */
			if ((tbp->b_vflags & BV_BKGRDINPROG) ||
			    (tbp->b_flags & B_CACHE) ||
			    (tbp->b_flags & B_VMIO) == 0) {
				bqrelse(tbp);
				break;
			}

			/*
			 * The buffer must be completely invalid in order to
			 * take part in the cluster.  If it is partially valid
			 * then we stop.
			 */
			off = tbp->b_offset;
			tsize = size;
			VM_OBJECT_WLOCK(tbp->b_bufobj->bo_object);
			for (j = 0; tsize > 0; j++) {
				toff = off & PAGE_MASK;
				tinc = tsize;
				if (toff + tinc > PAGE_SIZE)
					tinc = PAGE_SIZE - toff;
				VM_OBJECT_ASSERT_WLOCKED(tbp->b_pages[j]->object);
				if ((tbp->b_pages[j]->valid &
				    vm_page_bits(toff, tinc)) != 0)
					break;
				if (vm_page_xbusied(tbp->b_pages[j]))
					break;
				vm_object_pip_add(tbp->b_bufobj->bo_object, 1);
				vm_page_sbusy(tbp->b_pages[j]);
				off += tinc;
				tsize -= tinc;
			}
			if (tsize > 0) {
clean_sbusy:
				vm_object_pip_add(tbp->b_bufobj->bo_object, -j);
				for (k = 0; k < j; k++)
					vm_page_sunbusy(tbp->b_pages[k]);
				VM_OBJECT_WUNLOCK(tbp->b_bufobj->bo_object);
				bqrelse(tbp);
				break;
			}
			VM_OBJECT_WUNLOCK(tbp->b_bufobj->bo_object);

			/*
			 * Set a read-ahead mark as appropriate
			 */
			if ((fbp && (i == 1)) || (i == (run - 1)))
				tbp->b_flags |= B_RAM;

			/*
			 * Set the buffer up for an async read (XXX should
			 * we do this only if we do not wind up brelse()ing?).
			 * Set the block number if it isn't set, otherwise
			 * if it is make sure it matches the block number we
			 * expect.
			 */
			tbp->b_flags |= B_ASYNC;
			tbp->b_iocmd = BIO_READ;
			if (tbp->b_blkno == tbp->b_lblkno) {
				tbp->b_blkno = bn;
			} else if (tbp->b_blkno != bn) {
				VM_OBJECT_WLOCK(tbp->b_bufobj->bo_object);
				goto clean_sbusy;
			}
		}
		/*
		 * XXX fbp from caller may not be B_ASYNC, but we are going
		 * to biodone() it in cluster_callback() anyway
		 */
		BUF_KERNPROC(tbp);
		TAILQ_INSERT_TAIL(&bp->b_cluster.cluster_head,
			tbp, b_cluster.cluster_entry);
		VM_OBJECT_WLOCK(tbp->b_bufobj->bo_object);
		for (j = 0; j < tbp->b_npages; j += 1) {
			vm_page_t m;
			m = tbp->b_pages[j];
			if ((bp->b_npages == 0) ||
			    (bp->b_pages[bp->b_npages-1] != m)) {
				bp->b_pages[bp->b_npages] = m;
				bp->b_npages++;
			}
			if (m->valid == VM_PAGE_BITS_ALL)
				tbp->b_pages[j] = bogus_page;
		}
		VM_OBJECT_WUNLOCK(tbp->b_bufobj->bo_object);
		/*
		 * Don't inherit tbp->b_bufsize as it may be larger due to
		 * a non-page-aligned size.  Instead just aggregate using
		 * 'size'.
		 */
		if (tbp->b_bcount != size)
			printf("warning: tbp->b_bcount wrong %ld vs %ld\n", tbp->b_bcount, size);
		if (tbp->b_bufsize != size)
			printf("warning: tbp->b_bufsize wrong %ld vs %ld\n", tbp->b_bufsize, size);
		bp->b_bcount += size;
		bp->b_bufsize += size;
	}

	/*
	 * Fully valid pages in the cluster are already good and do not need
	 * to be re-read from disk.  Replace the page with bogus_page
	 */
	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
	for (j = 0; j < bp->b_npages; j++) {
		VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[j]->object);
		if (bp->b_pages[j]->valid == VM_PAGE_BITS_ALL)
			bp->b_pages[j] = bogus_page;
	}
	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
	if (bp->b_bufsize > bp->b_kvasize)
		panic("cluster_rbuild: b_bufsize(%ld) > b_kvasize(%d)\n",
		    bp->b_bufsize, bp->b_kvasize);

	if (buf_mapped(bp)) {
		pmap_qenter(trunc_page((vm_offset_t) bp->b_data),
		    (vm_page_t *)bp->b_pages, bp->b_npages);
	}
	return (bp);
}
Example #26
0
static errcode_t e2fsck_get_journal(e2fsck_t ctx, journal_t **ret_journal)
{
	struct process_block_struct pb;
	struct ext2_super_block *sb = ctx->fs->super;
	struct ext2_super_block jsuper;
	struct problem_context	pctx;
	struct buffer_head 	*bh;
	struct inode		*j_inode = NULL;
	struct kdev_s		*dev_fs = NULL, *dev_journal;
	const char		*journal_name = 0;
	journal_t		*journal = NULL;
	errcode_t		retval = 0;
	io_manager		io_ptr = 0;
	unsigned long		start = 0;
	int			ext_journal = 0;
	int			tried_backup_jnl = 0;

	clear_problem_context(&pctx);

	journal = e2fsck_allocate_memory(ctx, sizeof(journal_t), "journal");
	if (!journal) {
		return EXT2_ET_NO_MEMORY;
	}

	dev_fs = e2fsck_allocate_memory(ctx, 2*sizeof(struct kdev_s), "kdev");
	if (!dev_fs) {
		retval = EXT2_ET_NO_MEMORY;
		goto errout;
	}
	dev_journal = dev_fs+1;

	dev_fs->k_ctx = dev_journal->k_ctx = ctx;
	dev_fs->k_dev = K_DEV_FS;
	dev_journal->k_dev = K_DEV_JOURNAL;

	journal->j_dev = dev_journal;
	journal->j_fs_dev = dev_fs;
	journal->j_inode = NULL;
	journal->j_blocksize = ctx->fs->blocksize;

	if (uuid_is_null(sb->s_journal_uuid)) {
		if (!sb->s_journal_inum) {
			retval = EXT2_ET_BAD_INODE_NUM;
			goto errout;
		}
		j_inode = e2fsck_allocate_memory(ctx, sizeof(*j_inode),
						 "journal inode");
		if (!j_inode) {
			retval = EXT2_ET_NO_MEMORY;
			goto errout;
		}

		j_inode->i_ctx = ctx;
		j_inode->i_ino = sb->s_journal_inum;

		if ((retval = ext2fs_read_inode(ctx->fs,
						sb->s_journal_inum,
						&j_inode->i_ext2))) {
		try_backup_journal:
			if (sb->s_jnl_backup_type != EXT3_JNL_BACKUP_BLOCKS ||
			    tried_backup_jnl)
				goto errout;
			memset(&j_inode->i_ext2, 0, sizeof(struct ext2_inode));
			memcpy(&j_inode->i_ext2.i_block[0], sb->s_jnl_blocks, 
			       EXT2_N_BLOCKS*4);
			j_inode->i_ext2.i_size = sb->s_jnl_blocks[16];
			j_inode->i_ext2.i_links_count = 1;
			j_inode->i_ext2.i_mode = LINUX_S_IFREG | 0600;
			e2fsck_use_inode_shortcuts(ctx, 1);
			ctx->stashed_ino = j_inode->i_ino;
			ctx->stashed_inode = &j_inode->i_ext2;
			tried_backup_jnl++;
		}
		if (!j_inode->i_ext2.i_links_count ||
		    !LINUX_S_ISREG(j_inode->i_ext2.i_mode)) {
			retval = EXT2_ET_NO_JOURNAL;
			goto try_backup_journal;
		}
		if (j_inode->i_ext2.i_size / journal->j_blocksize <
		    JFS_MIN_JOURNAL_BLOCKS) {
			retval = EXT2_ET_JOURNAL_TOO_SMALL;
			goto try_backup_journal;
		}
		pb.last_block = -1;
		retval = ext2fs_block_iterate2(ctx->fs, j_inode->i_ino,
					       BLOCK_FLAG_HOLE, 0, 
					       process_journal_block, &pb);
		if ((pb.last_block+1) * ctx->fs->blocksize < 
		    j_inode->i_ext2.i_size) {
			retval = EXT2_ET_JOURNAL_TOO_SMALL;
			goto try_backup_journal;
		}
		if (tried_backup_jnl && !(ctx->options & E2F_OPT_READONLY)) {
			retval = ext2fs_write_inode(ctx->fs, sb->s_journal_inum,
						    &j_inode->i_ext2);
			if (retval)
				goto errout;
		}

		journal->j_maxlen = j_inode->i_ext2.i_size / journal->j_blocksize;

#ifdef USE_INODE_IO
		retval = ext2fs_inode_io_intern2(ctx->fs, sb->s_journal_inum,
						 &j_inode->i_ext2,
						 &journal_name);
		if (retval)
			goto errout;

		io_ptr = inode_io_manager;
#else
		journal->j_inode = j_inode;
		ctx->journal_io = ctx->fs->io;
		if ((retval = journal_bmap(journal, 0, &start)) != 0)
			goto errout;
#endif
	} else {
		ext_journal = 1;
		if (!ctx->journal_name) {
			char uuid[37];

			uuid_unparse(sb->s_journal_uuid, uuid);
			ctx->journal_name = blkid_get_devname(ctx->blkid,
							      "UUID", uuid);
			if (!ctx->journal_name)
				ctx->journal_name = blkid_devno_to_devname(sb->s_journal_dev);
		}
		journal_name = ctx->journal_name;

		if (!journal_name) {
			fix_problem(ctx, PR_0_CANT_FIND_JOURNAL, &pctx);
			retval = EXT2_ET_LOAD_EXT_JOURNAL;
			goto errout;
		}

		jfs_debug(1, "Using journal file %s\n", journal_name);
		io_ptr = unix_io_manager;
	}

#if 0
	test_io_backing_manager = io_ptr;
	io_ptr = test_io_manager;
#endif
#ifndef USE_INODE_IO
	if (ext_journal)
#endif
		retval = io_ptr->open(journal_name, IO_FLAG_RW,
				      &ctx->journal_io);
	if (retval)
		goto errout;

	io_channel_set_blksize(ctx->journal_io, ctx->fs->blocksize);

	if (ext_journal) {
		if (ctx->fs->blocksize == 1024)
			start = 1;
		bh = getblk(dev_journal, start, ctx->fs->blocksize);
		if (!bh) {
			retval = EXT2_ET_NO_MEMORY;
			goto errout;
		}
		ll_rw_block(READ, 1, &bh);
		if ((retval = bh->b_err) != 0) {
			brelse(bh);
			goto errout;
		}
		memcpy(&jsuper, start ? bh->b_data :  bh->b_data + 1024,
		       sizeof(jsuper));
		brelse(bh);
#ifdef EXT2FS_ENABLE_SWAPFS
		if (jsuper.s_magic == ext2fs_swab16(EXT2_SUPER_MAGIC)) 
			ext2fs_swap_super(&jsuper);
#endif
		if (jsuper.s_magic != EXT2_SUPER_MAGIC ||
		    !(jsuper.s_feature_incompat & EXT3_FEATURE_INCOMPAT_JOURNAL_DEV)) {
			fix_problem(ctx, PR_0_EXT_JOURNAL_BAD_SUPER, &pctx);
			retval = EXT2_ET_LOAD_EXT_JOURNAL;
			goto errout;
		}
		/* Make sure the journal UUID is correct */
		if (memcmp(jsuper.s_uuid, ctx->fs->super->s_journal_uuid,
			   sizeof(jsuper.s_uuid))) {
			fix_problem(ctx, PR_0_JOURNAL_BAD_UUID, &pctx);
			retval = EXT2_ET_LOAD_EXT_JOURNAL;
			goto errout;
		}

		journal->j_maxlen = jsuper.s_blocks_count;
		start++;
	}

	if (!(bh = getblk(dev_journal, start, journal->j_blocksize))) {
		retval = EXT2_ET_NO_MEMORY;
		goto errout;
	}

	journal->j_sb_buffer = bh;
	journal->j_superblock = (journal_superblock_t *)bh->b_data;

#ifdef USE_INODE_IO
	if (j_inode)
		ext2fs_free_mem(&j_inode);
#endif

	*ret_journal = journal;
	e2fsck_use_inode_shortcuts(ctx, 0);
	return 0;

errout:
	e2fsck_use_inode_shortcuts(ctx, 0);
	if (dev_fs)
		ext2fs_free_mem(&dev_fs);
	if (j_inode)
		ext2fs_free_mem(&j_inode);
	if (journal)
		ext2fs_free_mem(&journal);
	return retval;
}
Example #27
0
/*
 * Write a superblock and associated information back to disk.
 */
int
ffs_sbupdate(struct ufsmount *mp, int waitfor)
{
	struct fs *dfs, *fs = mp->um_fs;
	struct buf *bp;
	int blks;
	caddr_t space;
	int i, size, error, allerror = 0;

	/*
	 * First write back the summary information.
	 */
	blks = howmany(fs->fs_cssize, fs->fs_fsize);
	space = (caddr_t)fs->fs_csp;
	for (i = 0; i < blks; i += fs->fs_frag) {
		size = fs->fs_bsize;
		if (i + fs->fs_frag > blks)
			size = (blks - i) * fs->fs_fsize;
		bp = getblk(mp->um_devvp, fsbtodb(fs, fs->fs_csaddr + i),
			    size, 0, 0);
		memcpy(bp->b_data, space, size);
		space += size;
		if (waitfor != MNT_WAIT)
			bawrite(bp);
		else if ((error = bwrite(bp)))
			allerror = error;
	}

	/*
	 * Now write back the superblock itself. If any errors occurred
	 * up to this point, then fail so that the superblock avoids
	 * being written out as clean.
	 */
	if (allerror) {
		return (allerror);
	}

	bp = getblk(mp->um_devvp,
	    fs->fs_sblockloc >> (fs->fs_fshift - fs->fs_fsbtodb),
	    (int)fs->fs_sbsize, 0, 0);
	fs->fs_fmod = 0;
	fs->fs_time = time_second;
	memcpy(bp->b_data, fs, fs->fs_sbsize);
	/* Restore compatibility to old file systems.		   XXX */
	dfs = (struct fs *)bp->b_data;				/* XXX */
	if (fs->fs_postblformat == FS_42POSTBLFMT)		/* XXX */
		dfs->fs_nrpos = -1;				/* XXX */
	if (fs->fs_inodefmt < FS_44INODEFMT) {			/* XXX */
		int32_t *lp, tmp;				/* XXX */
								/* XXX */
		lp = (int32_t *)&dfs->fs_qbmask;		/* XXX */
		tmp = lp[4];					/* XXX */
		for (i = 4; i > 0; i--)				/* XXX */
			lp[i] = lp[i-1];			/* XXX */
		lp[0] = tmp;					/* XXX */
	}							/* XXX */
	dfs->fs_maxfilesize = mp->um_savedmaxfilesize;		/* XXX */

	ffs1_compat_write(dfs, mp);

	if (waitfor != MNT_WAIT)
		bawrite(bp);
	else if ((error = bwrite(bp)))
		allerror = error;

	return (allerror);
}
Example #28
0
//
// set up start journal block and journal size
// make journal unreplayable by kernel replay routine
//
void reset_journal (struct super_block * s)
{
    int i ;
    struct buffer_head *bh ;
    int done = 0;
    int len;
    int start;

    /* first block of journal */
    s->u.reiserfs_sb.s_rs->s_journal_block = get_journal_start (s);
    start = s->u.reiserfs_sb.s_rs->s_journal_block;

    /* journal size */
    s->u.reiserfs_sb.s_rs->s_orig_journal_size = get_journal_size (s);
    len = s->u.reiserfs_sb.s_rs->s_orig_journal_size + 1;

    printf ("Resetting journal - "); fflush (stdout);

    for (i = 0 ; i < len ; i++) {
	print_how_far (&done, len);
	bh = getblk (s->s_dev, start + i, s->s_blocksize) ;
	memset(bh->b_data, 0, s->s_blocksize) ;
	mark_buffer_dirty(bh,0) ;
	mark_buffer_uptodate(bh,0) ;
	bwrite (bh);
	brelse(bh) ;
    }
    printf ("\n"); fflush (stdout);
    
#if 0 /* need better way to make journal unreplayable */


    /* have journal_read to replay nothing: look for first non-desc
       block and set j_first_unflushed_offset to it */
    {   
	int offset;
	struct buffer_head * bh, *jh_bh;
	struct reiserfs_journal_header * j_head;
	struct reiserfs_journal_desc * desc;


	jh_bh = bread (s->s_dev, s->u.reiserfs_sb.s_rs->s_journal_block + s->u.reiserfs_sb.s_rs->s_orig_journal_size,
		       s->s_blocksize);
	j_head = (struct reiserfs_journal_header *)(jh_bh->b_data);

	for (offset = 0; offset < s->u.reiserfs_sb.s_rs->s_orig_journal_size; offset ++) {
	    bh = bread (s->s_dev, s->u.reiserfs_sb.s_rs->s_journal_block + offset, s->s_blocksize);
	    desc = (struct reiserfs_journal_desc *)((bh)->b_data);
	    if (memcmp(desc->j_magic, JOURNAL_DESC_MAGIC, 8)) {
		/* not desc block found */
		j_head->j_first_unflushed_offset = offset;
		brelse (bh);
		break;
	    }
	    brelse (bh);
	}

	mark_buffer_uptodate (jh_bh, 1);
	mark_buffer_dirty (jh_bh, 1);
	bwrite (jh_bh);
	brelse (jh_bh);
    }
#endif
}
Example #29
0
void
pass5(void)
{
	int c, blk, frags, basesize, sumsize, mapsize, cssize;
	int inomapsize, blkmapsize;
	struct fs *fs = sblock;
	daddr_t dbase, dmax;
	daddr_t d;
	long i, j, k;
	struct csum *cs;
	struct csum_total cstotal;
	struct inodesc idesc[4];
	char buf[MAXBSIZE];
	struct cg *newcg = (struct cg *)buf;
	struct ocg *ocg = (struct ocg *)buf;
	struct cg *cg = cgrp, *ncg;
	struct inostat *info;
	u_int32_t ncgsize;

	inoinfo(WINO)->ino_state = USTATE;
	memset(newcg, 0, (size_t)fs->fs_cgsize);
	newcg->cg_niblk = fs->fs_ipg;
	if (cvtlevel >= 3) {
		if (fs->fs_maxcontig < 2 && fs->fs_contigsumsize > 0) {
			if (preen)
				pwarn("DELETING CLUSTERING MAPS\n");
			if (preen || reply("DELETE CLUSTERING MAPS")) {
				fs->fs_contigsumsize = 0;
				doinglevel1 = 1;
				sbdirty();
			}
		}
		if (fs->fs_maxcontig > 1) {
			const char *doit = NULL;

			if (fs->fs_contigsumsize < 1) {
				doit = "CREAT";
			} else if (fs->fs_contigsumsize < fs->fs_maxcontig &&
				   fs->fs_contigsumsize < FS_MAXCONTIG) {
				doit = "EXPAND";
			}
			if (doit) {
				i = fs->fs_contigsumsize;
				fs->fs_contigsumsize =
				    MIN(fs->fs_maxcontig, FS_MAXCONTIG);
				if (CGSIZE(fs) > fs->fs_bsize) {
					pwarn("CANNOT %s CLUSTER MAPS\n", doit);
					fs->fs_contigsumsize = i;
				} else if (preen ||
				    reply("CREATE CLUSTER MAPS")) {
					if (preen)
						pwarn("%sING CLUSTER MAPS\n",
						    doit);
					ncgsize = fragroundup(fs, CGSIZE(fs));
					ncg = realloc(cgrp, ncgsize);
					if (ncg == NULL)
						errexit(
						"cannot reallocate cg space");
					cg = cgrp = ncg;
					fs->fs_cgsize = ncgsize;
					doinglevel1 = 1;
					sbdirty();
				}
			}
		}
	}
	basesize = &newcg->cg_space[0] - (u_char *)(&newcg->cg_firstfield);
	cssize = (u_char *)&cstotal.cs_spare[0] - (u_char *)&cstotal.cs_ndir;
	sumsize = 0;
	if (is_ufs2) {
		newcg->cg_iusedoff = basesize;
	} else {
		/*
		 * We reserve the space for the old rotation summary
		 * tables for the benefit of old kernels, but do not
		 * maintain them in modern kernels. In time, they can
		 * go away.
		 */
		newcg->cg_old_btotoff = basesize;
		newcg->cg_old_boff = newcg->cg_old_btotoff +
		    fs->fs_old_cpg * sizeof(int32_t);
		newcg->cg_iusedoff = newcg->cg_old_boff +
		    fs->fs_old_cpg * fs->fs_old_nrpos * sizeof(u_int16_t);
		memset(&newcg->cg_space[0], 0, newcg->cg_iusedoff - basesize);
	}
	inomapsize = howmany(fs->fs_ipg, CHAR_BIT);
	newcg->cg_freeoff = newcg->cg_iusedoff + inomapsize;
	blkmapsize = howmany(fs->fs_fpg, CHAR_BIT);
	newcg->cg_nextfreeoff = newcg->cg_freeoff + blkmapsize;
	if (fs->fs_contigsumsize > 0) {
		newcg->cg_clustersumoff = newcg->cg_nextfreeoff -
		    sizeof(u_int32_t);
		if (isappleufs) {
			/* Apple PR2216969 gives rationale for this change.
			 * I believe they were mistaken, but we need to
			 * duplicate it for compatibility.  -- [email protected]
			 */
			newcg->cg_clustersumoff += sizeof(u_int32_t);
		}
		newcg->cg_clustersumoff =
		    roundup(newcg->cg_clustersumoff, sizeof(u_int32_t));
		newcg->cg_clusteroff = newcg->cg_clustersumoff +
		    (fs->fs_contigsumsize + 1) * sizeof(u_int32_t);
		newcg->cg_nextfreeoff = newcg->cg_clusteroff +
		    howmany(fragstoblks(fs, fs->fs_fpg), CHAR_BIT);
	}
	newcg->cg_magic = CG_MAGIC;
	mapsize = newcg->cg_nextfreeoff - newcg->cg_iusedoff;
	if (!is_ufs2 && ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)) {
		switch ((int)fs->fs_old_postblformat) {

		case FS_42POSTBLFMT:
			basesize = (char *)(&ocg->cg_btot[0]) -
			    (char *)(&ocg->cg_firstfield);
			sumsize = &ocg->cg_iused[0] - (u_int8_t *)(&ocg->cg_btot[0]);
			mapsize = &ocg->cg_free[howmany(fs->fs_fpg, NBBY)] -
			    (u_char *)&ocg->cg_iused[0];
			blkmapsize = howmany(fs->fs_fpg, NBBY);
			inomapsize = &ocg->cg_free[0] - (u_char *)&ocg->cg_iused[0];
			ocg->cg_magic = CG_MAGIC;
			newcg->cg_magic = 0;
			break;

		case FS_DYNAMICPOSTBLFMT:
			sumsize = newcg->cg_iusedoff - newcg->cg_old_btotoff;
			break;

		default:
			errexit("UNKNOWN ROTATIONAL TABLE FORMAT %d",
			    fs->fs_old_postblformat);
		}
	}
	memset(&idesc[0], 0, sizeof idesc);
	for (i = 0; i < 4; i++) {
		idesc[i].id_type = ADDR;
		if (!is_ufs2 && doinglevel2)
			idesc[i].id_fix = FIX;
	}
	memset(&cstotal, 0, sizeof(struct csum_total));
	dmax = blknum(fs, fs->fs_size + fs->fs_frag - 1);
	for (d = fs->fs_size; d < dmax; d++)
		setbmap(d);
	for (c = 0; c < fs->fs_ncg; c++) {
		if (got_siginfo) {
			fprintf(stderr,
			    "%s: phase 5: cyl group %d of %d (%d%%)\n",
			    cdevname(), c, fs->fs_ncg,
			    c * 100 / fs->fs_ncg);
			got_siginfo = 0;
		}
#ifdef PROGRESS
		progress_bar(cdevname(), preen ? NULL : "phase 5",
			    c, fs->fs_ncg);
#endif /* PROGRESS */
		getblk(&cgblk, cgtod(fs, c), fs->fs_cgsize);
		memcpy(cg, cgblk.b_un.b_cg, fs->fs_cgsize);
		if((doswap && !needswap) || (!doswap && needswap))
			ffs_cg_swap(cgblk.b_un.b_cg, cg, sblock);
		if (!doinglevel1 && !cg_chkmagic(cg, 0))
			pfatal("CG %d: PASS5: BAD MAGIC NUMBER\n", c);
		if(doswap)
			cgdirty();
		/*
		 * While we have the disk head where we want it,
		 * write back the superblock to the spare at this
		 * cylinder group.
		 */
		if ((cvtlevel && sblk.b_dirty) || doswap) {
			bwrite(fswritefd, sblk.b_un.b_buf,
			    fsbtodb(sblock, cgsblock(sblock, c)),
			    sblock->fs_sbsize);
		} else {
			/*
			 * Read in the current alternate superblock,
			 * and compare it to the master.  If it's
			 * wrong, fix it up.
			 */
			getblk(&asblk, cgsblock(sblock, c), sblock->fs_sbsize);
			if (asblk.b_errs)
				pfatal("CG %d: UNABLE TO READ ALTERNATE "
				    "SUPERBLK\n", c);
			else {
				memmove(altsblock, asblk.b_un.b_fs,
				    sblock->fs_sbsize);
				if (needswap)
					ffs_sb_swap(asblk.b_un.b_fs, altsblock);
			}
			sb_oldfscompat_write(sblock, sblocksave);
			if ((asblk.b_errs || cmpsblks(sblock, altsblock)) &&
			     dofix(&idesc[3],
				   "ALTERNATE SUPERBLK(S) ARE INCORRECT")) {
				bwrite(fswritefd, sblk.b_un.b_buf,
				    fsbtodb(sblock, cgsblock(sblock, c)),
				    sblock->fs_sbsize);
			}
			sb_oldfscompat_read(sblock, 0);
		}
		dbase = cgbase(fs, c);
		dmax = dbase + fs->fs_fpg;
		if (dmax > fs->fs_size)
			dmax = fs->fs_size;
		if (is_ufs2 || (fs->fs_old_flags & FS_FLAGS_UPDATED))
			newcg->cg_time = cg->cg_time;
		newcg->cg_old_time = cg->cg_old_time;
		newcg->cg_cgx = c;
		newcg->cg_ndblk = dmax - dbase;
		if (!is_ufs2) {
			if (c == fs->fs_ncg - 1) {
				/* Avoid fighting old fsck for this value.  Its never used
				 * outside of this check anyway.
				 */
				if ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0)
					newcg->cg_old_ncyl = fs->fs_old_ncyl % fs->fs_old_cpg;
				else
					newcg->cg_old_ncyl = howmany(newcg->cg_ndblk,
					    fs->fs_fpg / fs->fs_old_cpg);
			} else
				newcg->cg_old_ncyl = fs->fs_old_cpg;
			newcg->cg_old_niblk = fs->fs_ipg;
			newcg->cg_niblk = 0;
		}
		if (fs->fs_contigsumsize > 0)
			newcg->cg_nclusterblks = newcg->cg_ndblk / fs->fs_frag;
		newcg->cg_cs.cs_ndir = 0;
		newcg->cg_cs.cs_nffree = 0;
		newcg->cg_cs.cs_nbfree = 0;
		newcg->cg_cs.cs_nifree = fs->fs_ipg;
		if (cg->cg_rotor >= 0 && cg->cg_rotor < newcg->cg_ndblk)
			newcg->cg_rotor = cg->cg_rotor;
		else
			newcg->cg_rotor = 0;
		if (cg->cg_frotor >= 0 && cg->cg_frotor < newcg->cg_ndblk)
			newcg->cg_frotor = cg->cg_frotor;
		else
			newcg->cg_frotor = 0;
		if (cg->cg_irotor >= 0 && cg->cg_irotor < fs->fs_ipg)
			newcg->cg_irotor = cg->cg_irotor;
		else
			newcg->cg_irotor = 0;
		if (!is_ufs2) {
			newcg->cg_initediblk = 0;
		} else {
			if ((unsigned)cg->cg_initediblk > fs->fs_ipg)
				newcg->cg_initediblk = fs->fs_ipg;
			else
				newcg->cg_initediblk = cg->cg_initediblk;
		}
		memset(&newcg->cg_frsum[0], 0, sizeof newcg->cg_frsum);
		memset(&old_cg_blktot(newcg, 0)[0], 0, (size_t)(sumsize));
		memset(cg_inosused(newcg, 0), 0, (size_t)(mapsize));
		if (!is_ufs2 && ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0) &&
		    fs->fs_old_postblformat == FS_42POSTBLFMT)
			ocg->cg_magic = CG_MAGIC;
		j = fs->fs_ipg * c;
		for (i = 0; i < fs->fs_ipg; j++, i++) {
			info = inoinfo(j);
			switch (info->ino_state) {

			case USTATE:
				break;

			case DSTATE:
			case DCLEAR:
			case DFOUND:
				newcg->cg_cs.cs_ndir++;
				/* fall through */

			case FSTATE:
			case FCLEAR:
				newcg->cg_cs.cs_nifree--;
				setbit(cg_inosused(newcg, 0), i);
				break;

			default:
				if (j < ROOTINO)
					break;
				errexit("BAD STATE %d FOR INODE I=%ld",
				    info->ino_state, (long)j);
			}
		}
		if (c == 0)
			for (i = 0; i < ROOTINO; i++) {
				setbit(cg_inosused(newcg, 0), i);
				newcg->cg_cs.cs_nifree--;
			}
		for (i = 0, d = dbase;
		     d < dmax;
		     d += fs->fs_frag, i += fs->fs_frag) {
			frags = 0;
			for (j = 0; j < fs->fs_frag; j++) {
				if (testbmap(d + j))
					continue;
				setbit(cg_blksfree(newcg, 0), i + j);
				frags++;
			}
			if (frags == fs->fs_frag) {
				newcg->cg_cs.cs_nbfree++;
				if (sumsize) {
					j = old_cbtocylno(fs, i);
					old_cg_blktot(newcg, 0)[j]++;
					old_cg_blks(fs, newcg, j, 0)[old_cbtorpos(fs, i)]++;
				}
				if (fs->fs_contigsumsize > 0)
					setbit(cg_clustersfree(newcg, 0),
					    fragstoblks(fs, i));
			} else if (frags > 0) {
				newcg->cg_cs.cs_nffree += frags;
				blk = blkmap(fs, cg_blksfree(newcg, 0), i);
				ffs_fragacct(fs, blk, newcg->cg_frsum, 1, 0);
			}
		}
		if (fs->fs_contigsumsize > 0) {
			int32_t *sump = cg_clustersum(newcg, 0);
			u_char *mapp = cg_clustersfree(newcg, 0);
			int map = *mapp++;
			int bit = 1;
			int run = 0;

			for (i = 0; i < newcg->cg_nclusterblks; i++) {
				if ((map & bit) != 0) {
					run++;
				} else if (run != 0) {
					if (run > fs->fs_contigsumsize)
						run = fs->fs_contigsumsize;
					sump[run]++;
					run = 0;
				}
				if ((i & (NBBY - 1)) != (NBBY - 1)) {
					bit <<= 1;
				} else {
					map = *mapp++;
					bit = 1;
				}
			}
			if (run != 0) {
				if (run > fs->fs_contigsumsize)
					run = fs->fs_contigsumsize;
				sump[run]++;
			}
		}
		cstotal.cs_nffree += newcg->cg_cs.cs_nffree;
		cstotal.cs_nbfree += newcg->cg_cs.cs_nbfree;
		cstotal.cs_nifree += newcg->cg_cs.cs_nifree;
		cstotal.cs_ndir += newcg->cg_cs.cs_ndir;
		cs = &fs->fs_cs(fs, c);
		if (memcmp(&newcg->cg_cs, cs, sizeof *cs) != 0) {
			if (debug) {
				printf("cg %d: nffree: %d/%d nbfree %d/%d"
					" nifree %d/%d ndir %d/%d\n",
					c, cs->cs_nffree,newcg->cg_cs.cs_nffree,
					cs->cs_nbfree,newcg->cg_cs.cs_nbfree,
					cs->cs_nifree,newcg->cg_cs.cs_nifree,
					cs->cs_ndir,newcg->cg_cs.cs_ndir);
			}
			if (dofix(&idesc[0], "FREE BLK COUNT(S) WRONG IN SUPERBLK")) {
				memmove(cs, &newcg->cg_cs, sizeof *cs);
				sbdirty();
			} else
				markclean = 0;
		}
		if (doinglevel1) {
			memmove(cg, newcg, (size_t)fs->fs_cgsize);
			cgdirty();
			continue;
		}
		if ((memcmp(newcg, cg, basesize) != 0) ||
		    (memcmp(&old_cg_blktot(newcg, 0)[0],
		        &old_cg_blktot(cg, 0)[0], sumsize) != 0)) {
		 	if (dofix(&idesc[2], "SUMMARY INFORMATION BAD")) {
				memmove(cg, newcg, (size_t)basesize);
				memmove(&old_cg_blktot(cg, 0)[0],
			       &old_cg_blktot(newcg, 0)[0], (size_t)sumsize);
				cgdirty();
			} else
				markclean = 0;
		}
		if (usedsoftdep) {
			for (i = 0; i < inomapsize; i++) {
				j = cg_inosused(newcg, 0)[i];
				if ((cg_inosused(cg, 0)[i] & j) == j)
					continue;
				for (k = 0; k < NBBY; k++) {
					if ((j & (1 << k)) == 0)
						continue;
					if (cg_inosused(cg, 0)[i] & (1 << k))
						continue;
					pwarn("ALLOCATED INODE %ld "
					    "MARKED FREE\n",
					    c * fs->fs_ipg + i * 8 + k);
				}
			}
			for (i = 0; i < blkmapsize; i++) {
				j = cg_blksfree(cg, 0)[i];
				if ((cg_blksfree(newcg, 0)[i] & j) == j)
					continue;
				for (k = 0; k < NBBY; k++) {
					if ((j & (1 << k)) == 0)
						continue;
					if (cg_inosused(cg, 0)[i] & (1 << k))
						continue;
					pwarn("ALLOCATED FRAG %ld "
					    "MARKED FREE\n",
					    c * fs->fs_fpg + i * 8 + k);
				}
			}
		}
		if (memcmp(cg_inosused(newcg, 0), cg_inosused(cg, 0), mapsize)
		    != 0 && dofix(&idesc[1], "BLK(S) MISSING IN BIT MAPS")) {
			memmove(cg_inosused(cg, 0), cg_inosused(newcg, 0),
			    (size_t)mapsize);
                        cgdirty();
                }
	}
	if (memcmp(&cstotal, &fs->fs_cstotal, cssize) != 0) {
		if (debug) {
			printf("total: nffree: %lld/%lld nbfree %lld/%lld"
				" nifree %lld/%lld ndir %lld/%lld\n",
				(long long int)fs->fs_cstotal.cs_nffree,
				(long long int)cstotal.cs_nffree,
				(long long int)fs->fs_cstotal.cs_nbfree,
				(long long int)cstotal.cs_nbfree,
				(long long int)fs->fs_cstotal.cs_nifree,
				(long long int)cstotal.cs_nifree,
				(long long int)fs->fs_cstotal.cs_ndir,
				(long long int)cstotal.cs_ndir);
		}
		if (dofix(&idesc[0], "FREE BLK COUNT(S) WRONG IN SUPERBLK")) {
			memmove(&fs->fs_cstotal, &cstotal, sizeof cstotal);
			fs->fs_ronly = 0;
			fs->fs_fmod = 0;
			sbdirty();
		} else
			markclean = 0;
	}
#ifdef PROGRESS
	if (!preen)
		progress_done();
#endif /* PROGRESS */
}
Example #30
0
/*
 * Balloc defines the structure of filesystem storage
 * by allocating the physical blocks on a device given
 * the inode and the logical block number in a file.
 */
int
ext2_balloc(struct inode *ip, e2fs_lbn_t lbn, int size, struct ucred *cred,
    struct buf **bpp, int flags)
{
	struct m_ext2fs *fs;
	struct ext2mount *ump;
	struct buf *bp, *nbp;
	struct vnode *vp = ITOV(ip);
	struct indir indirs[EXT2_NIADDR + 2];
	e4fs_daddr_t nb, newb;
	e2fs_daddr_t *bap, pref;
	int osize, nsize, num, i, error;

	*bpp = NULL;
	if (lbn < 0)
		return (EFBIG);
	fs = ip->i_e2fs;
	ump = ip->i_ump;

	/*
	 * check if this is a sequential block allocation.
	 * If so, increment next_alloc fields to allow ext2_blkpref
	 * to make a good guess
	 */
	if (lbn == ip->i_next_alloc_block + 1) {
		ip->i_next_alloc_block++;
		ip->i_next_alloc_goal++;
	}

	if (ip->i_flag & IN_E4EXTENTS)
		return (ext2_ext_balloc(ip, lbn, size, cred, bpp, flags));

	/*
	 * The first EXT2_NDADDR blocks are direct blocks
	 */
	if (lbn < EXT2_NDADDR) {
		nb = ip->i_db[lbn];
		/*
		 * no new block is to be allocated, and no need to expand
		 * the file
		 */
		if (nb != 0 && ip->i_size >= (lbn + 1) * fs->e2fs_bsize) {
			error = bread(vp, lbn, fs->e2fs_bsize, NOCRED, &bp);
			if (error) {
				brelse(bp);
				return (error);
			}
			bp->b_blkno = fsbtodb(fs, nb);
			*bpp = bp;
			return (0);
		}
		if (nb != 0) {
			/*
			 * Consider need to reallocate a fragment.
			 */
			osize = fragroundup(fs, blkoff(fs, ip->i_size));
			nsize = fragroundup(fs, size);
			if (nsize <= osize) {
				error = bread(vp, lbn, osize, NOCRED, &bp);
				if (error) {
					brelse(bp);
					return (error);
				}
				bp->b_blkno = fsbtodb(fs, nb);
			} else {
				/*
				 * Godmar thinks: this shouldn't happen w/o
				 * fragments
				 */
				printf("nsize %d(%d) > osize %d(%d) nb %d\n",
				    (int)nsize, (int)size, (int)osize,
				    (int)ip->i_size, (int)nb);
				panic(
				    "ext2_balloc: Something is terribly wrong");
/*
 * please note there haven't been any changes from here on -
 * FFS seems to work.
 */
			}
		} else {
			if (ip->i_size < (lbn + 1) * fs->e2fs_bsize)
				nsize = fragroundup(fs, size);
			else
				nsize = fs->e2fs_bsize;
			EXT2_LOCK(ump);
			error = ext2_alloc(ip, lbn,
			    ext2_blkpref(ip, lbn, (int)lbn, &ip->i_db[0], 0),
			    nsize, cred, &newb);
			if (error)
				return (error);
			/*
			 * If the newly allocated block exceeds 32-bit limit,
			 * we can not use it in file block maps.
			 */
			if (newb > UINT_MAX)
				return (EFBIG);
			bp = getblk(vp, lbn, nsize, 0, 0, 0);
			bp->b_blkno = fsbtodb(fs, newb);
			if (flags & BA_CLRBUF)
				vfs_bio_clrbuf(bp);
		}
		ip->i_db[lbn] = dbtofsb(fs, bp->b_blkno);
		ip->i_flag |= IN_CHANGE | IN_UPDATE;
		*bpp = bp;
		return (0);
	}
	/*
	 * Determine the number of levels of indirection.
	 */
	pref = 0;
	if ((error = ext2_getlbns(vp, lbn, indirs, &num)) != 0)
		return (error);
#ifdef INVARIANTS
	if (num < 1)
		panic("ext2_balloc: ext2_getlbns returned indirect block");
#endif
	/*
	 * Fetch the first indirect block allocating if necessary.
	 */
	--num;
	nb = ip->i_ib[indirs[0].in_off];
	if (nb == 0) {
		EXT2_LOCK(ump);
		pref = ext2_blkpref(ip, lbn, indirs[0].in_off +
		    EXT2_NDIR_BLOCKS, &ip->i_db[0], 0);
		if ((error = ext2_alloc(ip, lbn, pref, fs->e2fs_bsize, cred,
		    &newb)))
			return (error);
		if (newb > UINT_MAX)
			return (EFBIG);
		nb = newb;
		bp = getblk(vp, indirs[1].in_lbn, fs->e2fs_bsize, 0, 0, 0);
		bp->b_blkno = fsbtodb(fs, newb);
		vfs_bio_clrbuf(bp);
		/*
		 * Write synchronously so that indirect blocks
		 * never point at garbage.
		 */
		if ((error = bwrite(bp)) != 0) {
			ext2_blkfree(ip, nb, fs->e2fs_bsize);
			return (error);
		}
		ip->i_ib[indirs[0].in_off] = newb;
		ip->i_flag |= IN_CHANGE | IN_UPDATE;
	}
	/*
	 * Fetch through the indirect blocks, allocating as necessary.
	 */
	for (i = 1;;) {
		error = bread(vp,
		    indirs[i].in_lbn, (int)fs->e2fs_bsize, NOCRED, &bp);
		if (error) {
			brelse(bp);
			return (error);
		}
		bap = (e2fs_daddr_t *)bp->b_data;
		nb = bap[indirs[i].in_off];
		if (i == num)
			break;
		i += 1;
		if (nb != 0) {
			bqrelse(bp);
			continue;
		}
		EXT2_LOCK(ump);
		if (pref == 0)
			pref = ext2_blkpref(ip, lbn, indirs[i].in_off, bap,
			    bp->b_lblkno);
		error = ext2_alloc(ip, lbn, pref, (int)fs->e2fs_bsize, cred, &newb);
		if (error) {
			brelse(bp);
			return (error);
		}
		if (newb > UINT_MAX)
			return (EFBIG);
		nb = newb;
		nbp = getblk(vp, indirs[i].in_lbn, fs->e2fs_bsize, 0, 0, 0);
		nbp->b_blkno = fsbtodb(fs, nb);
		vfs_bio_clrbuf(nbp);
		/*
		 * Write synchronously so that indirect blocks
		 * never point at garbage.
		 */
		if ((error = bwrite(nbp)) != 0) {
			ext2_blkfree(ip, nb, fs->e2fs_bsize);
			EXT2_UNLOCK(ump);
			brelse(bp);
			return (error);
		}
		bap[indirs[i - 1].in_off] = nb;
		/*
		 * If required, write synchronously, otherwise use
		 * delayed write.
		 */
		if (flags & IO_SYNC) {
			bwrite(bp);
		} else {
			if (bp->b_bufsize == fs->e2fs_bsize)
				bp->b_flags |= B_CLUSTEROK;
			bdwrite(bp);
		}
	}
	/*
	 * Get the data block, allocating if necessary.
	 */
	if (nb == 0) {
		EXT2_LOCK(ump);
		pref = ext2_blkpref(ip, lbn, indirs[i].in_off, &bap[0],
		    bp->b_lblkno);
		if ((error = ext2_alloc(ip,
		    lbn, pref, (int)fs->e2fs_bsize, cred, &newb)) != 0) {
			brelse(bp);
			return (error);
		}
		if (newb > UINT_MAX)
			return (EFBIG);
		nb = newb;
		nbp = getblk(vp, lbn, fs->e2fs_bsize, 0, 0, 0);
		nbp->b_blkno = fsbtodb(fs, nb);
		if (flags & BA_CLRBUF)
			vfs_bio_clrbuf(nbp);
		bap[indirs[i].in_off] = nb;
		/*
		 * If required, write synchronously, otherwise use
		 * delayed write.
		 */
		if (flags & IO_SYNC) {
			bwrite(bp);
		} else {
			if (bp->b_bufsize == fs->e2fs_bsize)
				bp->b_flags |= B_CLUSTEROK;
			bdwrite(bp);
		}
		*bpp = nbp;
		return (0);
	}
	brelse(bp);
	if (flags & BA_CLRBUF) {
		int seqcount = (flags & BA_SEQMASK) >> BA_SEQSHIFT;

		if (seqcount && (vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) {
			error = cluster_read(vp, ip->i_size, lbn,
			    (int)fs->e2fs_bsize, NOCRED,
			    MAXBSIZE, seqcount, 0, &nbp);
		} else {
			error = bread(vp, lbn, (int)fs->e2fs_bsize, NOCRED, &nbp);
		}
		if (error) {
			brelse(nbp);
			return (error);
		}
	} else {