Example #1
0
int main(int argc, char **argv)
{
	int i;

	char *srcfile;
	char *datfile;
	float b,e,k,a;
	int nv; float *v;

	/* Initialize */
	initargs(argc, argv);
	requestdoc(1);

	/* Get parameters */
	if (!getparstring("src", &srcfile)) err("must specify src= source file");
	if (!getparstring("dat", &datfile)) err("must specify dat= data file");
	if (!getparfloat("b", &b)) b=-INFINITY;
	if (!getparfloat("e", &e)) e=INFINITY;
	if (!getparfloat("k", &k)) k=0.01;
	if (!getparfloat("a", &a)) a=0;
	if ((nv=countparval("v"))) {
		v=malloc(nv*sizeof(float));
		getparfloat("v",v);
	}

	/* Print out parameters */
	printf("src=%s dat=%s b=%f e=%f k=%f a=%f v=",srcfile,datfile,b,e,k,a);
	for (i=0;i<nv;i++) printf("%f,",v[i]);
	printf("\n");

	return 0;
}
Example #2
0
int
main(int argc, char **argv)
{
	cwp_String key1,  key2;	/* x and y key header words	*/
	Value  val1,  val2;	/* ... their values		*/
	cwp_String type1, type2;/* ... their types		*/
	int index1, index2;	/* ... their indices in hdr.h	*/
	float x, y;		/* temps to hold current x & y 	*/
	cwp_String outpar;	/* name of par file		*/
	register int npairs;	/* number of pairs found	*/


	/* Hook up getpars */
	initargs(argc, argv);
	requestdoc(1);


	/* Prevent byte codes from spilling to screen */
	if (isatty(STDOUT)) err("must redirect or pipe binary output");


	/* Get parameters */
	if (!getparstring("key1", &key1))	key1 = "sx";
	if (!getparstring("key2", &key2))	key2 = "gx";

	type1 = hdtype(key1);
	type2 = hdtype(key2);

	index1 = getindex(key1);
	index2 = getindex(key2);


	/* Loop over traces */
	npairs = 0;
	while(gettr(&tr)) {

		gethval(&tr, index1, &val1);
		gethval(&tr, index2, &val2);

		x = vtof(type1, val1);
		y = vtof(type2, val2);

		efwrite(&x, FSIZE, 1, stdout);
		efwrite(&y, FSIZE, 1, stdout);

		++npairs;
	}


	/* Make parfile if needed */
	if (getparstring("outpar", &outpar))
		fprintf(efopen(outpar, "w"),
			"n=%d label1=%s label2=%s\n",
			npairs, key1, key2);

	return(CWP_Exit());
}
Example #3
0
int 
main(int argc, char **argv)
{
	/* Segy data constans */
	int ntr=0;		/* number of traces			*/
	char *outpar=NULL;	/* name of file holding output		*/
	FILE *outparfp=stdout;	/* ... its file pointer			*/

	initargs(argc, argv);
   	requestdoc(1);
	
	/* Get information from the first header */
	if (!gettr(&tr)) err("can't get first trace");
	if (!getparstring("outpar", &outpar))	outpar = "/dev/stdout" ;
	
	outparfp = efopen(outpar, "w");

        checkpars();
	/* Loop over traces getting a count */
	do {
		++ntr;
	} while(gettr(&tr));

	fprintf(outparfp, "%d", ntr);

	return(CWP_Exit());

}
Example #4
0
main(int argc, char **argv)
{
	String key;	/* header key word from segy.h		*/
	String type;	/* ... its type				*/
	int index;	/* ... its index in hdr.h		*/
	Value val;	/* ... its value			*/
	void absval(String type, Value *valp);


	/* Initialize */
	initargs(argc, argv);
	askdoc(1);


	/* Get key parameter */
	if (!getparstring("key", &key))	key = KEY;

	file2g(stdin);
	file2g(stdout);

	type = hdtype(key);
	index = getindex(key);

	while (gettr(&tr)) {
		gethval(&tr, index, &val);
		absval(type, &val);
		puthval(&tr, index, &val);
		puttr(&tr);
	}


	return EXIT_SUCCESS;
}
Example #5
0
int
main(int argc, char **argv)
{
	float fz[BUFSIZ];
	int iz=0,jz,nz=0;
	unsigned int z[BUFSIZ];
	char line[BUFSIZ],*lp, *outpar;
	FILE *infp=stdin,*outfp=stdout, *outparfp;

	unsigned int *uz = &(z[0]);

	/* Hook up getpar */
	initargs(argc, argv);
	requestdoc(1);

	/* Prevent floats from dumping on screen */
	switch(filestat(STDOUT)) {
	case BADFILETYPE:
		warn("stdout is illegal filetype");
		pagedoc();
	break;
	case TTY:
		warn("stdout can't be tty");
		pagedoc();
	break;
	default: /* rest are OK */
	break;
	}


	/* Get parameters and do set up */
	if (!getparstring("outpar", &outpar))  outpar = "/dev/tty" ;
	outparfp = efopen(outpar, "w");

	while (fgets(line,BUFSIZ,infp)!=NULL) {

		/* set pointer to beginning of line */
		lp = line;

		/* read hex digits from input line */
		for(iz=0;sscanf(lp,"%2x",&uz[iz])==1;iz++,nz++,lp+=2);

		/* convert to floats */
		for(jz=0;jz<iz;jz++)
			fz[jz] = 255-z[jz];

		/* write floats */
		fwrite(fz,sizeof(float),iz,outfp);
	}

	/* Make par file */
	fprintf(outparfp, "total number of values=%d\n",nz);

	return(CWP_Exit());
}
Example #6
0
main(int argc, char **argv)
{
	String output;
	bool asciiout = true;


	/* Initialize */
	initargs(argc, argv);
	askdoc(1);

	file2g(stdin);


	/* Argument count check */
	if (argc == 1)  err("must specify key(s) as command line arguments");


	/* Set and check output disposition (ascii or binary) */
	if (!getparstring("output", &output))   output = "ascii";
	if ((!STREQ(output, "ascii")) && (!STREQ(output, "binary")))
		err("output parameter=%s, must be ascii or binary", output);
	if (STREQ(output, "binary"))  asciiout = false;


	/* Loop over traces writing selected header field values */
	while (gettr(&tr)) {
		register int i;

		for (i = 1; i < argc; ++i) {
			String key = argv[i];
			Value val;

			/* discard command line parameter strings */
			if (STREQ(key, "output=ascii") ||
			    STREQ(key, "output=binary"))
				continue;

			gethdval(&tr, key, &val);
			if (asciiout) {  /* ascii output */
				printf("%6s=", key);
				printfval(hdtype(key), val);
				putchar('\t');
			} else {  /* binary output */
				float fval = vtof(hdtype(key), val);
				efwrite((char *) &fval, FSIZE, 1, stdout);
			}
		}

		if (asciiout)  printf("\n\n");
	}

	return EXIT_SUCCESS;
}
Example #7
0
int
main(int argc, char **argv)
{
	double sx, sy, gx, gy, factor;
	float mx, my;
        short unit;                                                           
	int degree;
	cwp_String outpar;
	register int npairs;


	/* Initialize */
	initargs(argc, argv);
	requestdoc(1);

	if (!getparint("degree", &degree)) degree=0;

	npairs = 0;
	while (gettr(&tr)) {

		sx = tr.sx;
		sy = tr.sy;
		gx = tr.gx;
		gy = tr.gy;

                unit = tr.counit;
		
		/* If tr.scalco not set, use 1 as the value */
		factor = (!tr.scalco) ? 1 : tr.scalco;
		
                /* factor < 0 means divide; factor > 0 means to multiply */
                if (factor < 0) factor = -1/factor;

                /* if necessary, convert from seconds to degrees */
                if (unit == 2 && degree == 1) factor /= 3600;

                mx = (float) (0.5*(sx + gx) * factor);
                my = (float) (0.5*(sy + gy) * factor);

		efwrite(&mx, FSIZE, 1, stdout);
		efwrite(&my, FSIZE, 1, stdout);

		++npairs;
	}


	/* Make parfile if needed */
	if (getparstring("outpar", &outpar))
		fprintf(efopen(outpar, "w"), "n=%d\n", npairs);

	return(CWP_Exit());
}
Example #8
0
int
main(int argc, char **argv)
{
	char *outpar;		/* name of file holding output parfile	*/
	FILE *outparfp;		/* ... its file pointer			*/
	int n1;			/* number of floats per line		*/
	size_t n1read;		/* number of items read			*/
	size_t n2 = 0;		/* number of lines in input file 	*/
	float *z;		/* binary floats			*/

	/* Hook up getpar */
	initargs(argc, argv);
	requestdoc(1);

	/* Get parameters and do set up */
	if (!getparstring("outpar", &outpar))	outpar = "/dev/tty" ;
	outparfp = efopen(outpar, "w");
	MUSTGETPARINT("n1",&n1);

	z = ealloc1float(n1);

	/* Loop over data converting to ascii */
	while ((n1read = efread(z, FSIZE, n1, stdin))) {
		register int i1;

		if (n1read != n1)
			err("out of data in forming line #%d", n2+1);
		for (i1 = 0; i1 < n1; ++i1)
/* z2xyz.c:70: warning: format ‘%d’ expects type ‘int’, but argument 2 has type ‘size_t’ */
/* 			printf("%d %d %11.4e \n",n2,i1,z[i1]); */
#if __WORDSIZE == 64
			printf("%lu %d %11.4e \n",n2,i1,z[i1]);
#else
			printf("%u %d %11.4e \n",n2,i1,z[i1]);
#endif
		++n2;
	}


	/* Make par file */
/* z2xyz.c:76: warning: format ‘%d’ expects type ‘int’, but argument 3 has type ‘size_t’ */
/* 	fprintf(outparfp, "n2=%d\n", n2); */
#if __WORDSIZE == 64
	fprintf(outparfp, "n2=%lu\n", n2);
#else
	fprintf(outparfp, "n2=%u\n", n2);
#endif

	return(CWP_Exit());
}
Example #9
0
int
main (int argc, char **argv)
{
	int n1,n2,i2;
	float f1,f2,d1,d2,*x;
	char *label2="Trace",label[256];
	FILE *infp=stdin,*outfp=stdout;

	/* hook up getpar to handle the parameters */
	initargs(argc,argv);
	requestdoc(0);

	/* get optional parameters */
	if (!getparint("n1",&n1)) {
		if (efseeko(infp,(off_t) 0,SEEK_END)==-1)
			err("input file size is unknown; specify n1!\n");
		if ((n1=((int) (eftello(infp)/((off_t) sizeof(float)))))<=0)
			err("input file size is unknown; specify n1!\n");
		efseeko(infp,(off_t) 0,SEEK_SET);
	}

	if (!getparfloat("d1",&d1)) d1 = 1.0;
	if (!getparfloat("f1",&f1)) f1 = d1;
	if (!getparint("n2",&n2)) n2 = -1;
	if (!getparfloat("d2",&d2)) d2 = 1.0;
	if (!getparfloat("f2",&f2)) f2 = d2;
	getparstring("label2",&label2);

	/* allocate space */
	x = ealloc1float(n1);

	/* loop over 2nd dimension */
	for (i2=0; i2<n2 || n2<0; i2++) {

		/* read input array, watching for end of file */
		if (efread(x,sizeof(float),n1,infp)!=n1) break;
			
		/* make plot label */
		sprintf(label,"%s %0.4g",label2,f2+i2*d2);

		/* plot the array */
		prp1d(outfp,label,n1,d1,f1,x);
	}
	
	return(CWP_Exit());
}
Example #10
0
main(int argc, char **argv)
{
	String key;
	String type;
	int index;
	double a, c, b, d, i, j;
	int itr = 0;
	Value val;
	FILE *infp=stdin, *outfp=stdout; 


	/* Initialize */
	initargs(argc, argv);
	requestdoc(1);


	/* Get parameters */
	if (!getparstring("key", &key))	 key = "cdp";
	if (!getpardouble("a"  , &a))	 a = 0;
	if (!getpardouble("b"  , &b))	 b = 0;
	if (!getpardouble("c"  , &c))	 c = 0;
	if (!getpardouble("d"  , &d))	 d = 0;
	if (!getpardouble("j"  , &j))	 j = ULONG_MAX;

	type = hdtype(key);
	index = getindex(key);

	file2g(infp);
	file2g(outfp);

	while (gettr(&tr)) {
		i = (double) itr++ + d;
		setval(type, &val, a, b, c, i, j);
		puthval(&tr, index, &val);
		puttr(&tr);
	}


	return EXIT_SUCCESS;
}
Example #11
0
/* the main program */
int main (int argc, char **argv)
{
	double vp1,vp2,vs1,vs2,rho1,rho2;
	double eps1,eps2,delta1,delta2;
	double gamma1,gamma2,azimuth;
	float fangle,langle,dangle,angle;
	double *coeff,p=0;
	double sangle,cangle,sazi,cazi;
	float anglef,dummy;
	FILE *outparfp=NULL, *coeffp=NULL;
	int ibin,modei,modet,rort,iangle,iscale,index;
	char *outparfile=NULL,*coeffile=NULL;
	Stiff2D *spar1, *spar2;
	double **a,*rcond,*z;
	int *ipvt;

	/* allocate space for stiffness elements */
	spar1=(Stiff2D*)emalloc(sizeof(Stiff2D));
	spar2=(Stiff2D*)emalloc(sizeof(Stiff2D));

	/* allocate space for matrix system */
	a = alloc2double(6,6);
	coeff = alloc1double(6);
	ipvt=alloc1int(6);
	z = alloc1double(6);
	rcond=alloc1double(6);

	/* hook up getpar to handle the parameters */
	initargs(argc,argv);
	requestdoc(0);

	if (!getparint("ibin",&ibin)) ibin = 1;
	if (!getparint("modei",&modei)) modei = 0;
	if (!getparint("modet",&modet)) modet = 0;
	if (!getparint("rort",&rort)) rort = 1;
        if (!getparint("iscale",&iscale)) iscale = 0;
	if (!getparint("test",&test)) test = 1;
	if (!getparint("info",&info)) info = 0;

	if(modei != 0 && modei !=1 && modei !=2){
		fprintf(stderr," \n ERROR wrong incidence mode \n");
		return (-1);	/* wrong mode */
	}

	if(modet != 0 && modet !=1 && modet !=2){
		fprintf(stderr," \n ERROR wrong scattering mode \n");
		return (-1);	/* wrong mode */
	}

        if(rort != 0 && rort !=1){
                fprintf(stderr," ERROR wrong rort parameter \n");
                return (-1);    /* wrong mode */
        }

        if(iscale != 0 && iscale !=1 && iscale !=2 && iscale!=3 ){
                fprintf(stderr," ERROR wrong iscale parameter \n");
                return (-1);    /* wrong mode */
        }


	if (!getparfloat("fangle",&fangle)) fangle = 0.0;
	if (!getparfloat("langle",&langle)) langle = 45.0;
	if (!getparfloat("dangle",&dangle)) dangle = 1.0;

	if (!getpardouble("azimuth",&azimuth)) azimuth = 0.;
	if (!getpardouble("vp1",&vp1)) vp1 = 2.0;
	if (!getpardouble("vp2",&vp2)) vp2 = 2.0;
	if (!getpardouble("vs1",&vs1)) vs1 = 1.0;
	if (!getpardouble("vs2",&vs2)) vs2 = 1.0;
	if (!getpardouble("rho1",&rho1)) rho1 = 2.7;
	if (!getpardouble("rho2",&rho2)) rho2 = 2.7;

	if (!getpardouble("eps1",&eps1)) eps1 = 0.;
	if (!getpardouble("eps2",&eps2)) eps2 = 0.;

	if (!getpardouble("delta1",&delta1)) delta1 = 0.;
	if (!getpardouble("delta2",&delta2)) delta2 = 0.;
	if (!getpardouble("gamma1",&gamma1)) gamma1 = 0.;
	if (!getpardouble("gamma2",&gamma2)) gamma2 = 0.;

	if (getparstring("outparfile",&outparfile)) {
                 outparfp = efopen(outparfile,"w");
        } else {
                 outparfp = efopen("outpar","w");
        }

	if (getparstring("coeffile",&coeffile)) {
                 coeffp = efopen(coeffile,"w");
        } else {
                 coeffp = efopen("coeff.data","w");
        }


	/******   some debugging information ******************/
	if(info){
		ddprint(azimuth);
		ddprint(vp1); ddprint(vs1); ddprint(rho1);
		ddprint(eps1); ddprint(delta1); ddprint(gamma1);

		ddprint(vp2); ddprint(vs2); ddprint(rho2);
		ddprint(eps2); ddprint(delta2); ddprint(gamma2);
	}


	/* convert into rad */
	azimuth=azimuth*PI /180.;
	sazi=sin(azimuth);
	cazi=cos(azimuth);

	/******   convertion into cij's ************************/
	if (!thom2stiffTI(vp1,vs1,eps1,delta1,gamma1,PI/2.,spar1,1) ){
		fprintf(stderr," \n ERROR in thom2stiffTI (1) \n");
		return (-1);
	}

	if (!thom2stiffTI(vp2,vs2,eps2,delta2,gamma2,PI/2.,spar2,1) ){
		fprintf(stderr,"\n ERROR in thom2stiffTI (2) \n");
		return (-1);
	}

	/*****    more debugging output ************************/
	
	if(info){
		diprint(modei);
		diprint(modet);
		diprint(rort);
		ddprint(spar1->a1111);
		ddprint(spar1->a3333);
		ddprint(spar1->a1133);
		ddprint(spar1->a1313);
		ddprint(spar1->a2323);
		ddprint(spar1->a1212);

		ddprint(spar2->a1111);
		ddprint(spar2->a3333);
		ddprint(spar2->a1133);
		ddprint(spar2->a1313);
		ddprint(spar2->a2323);
		ddprint(spar2->a1212);
	}

	/********  find generated wave type-index     ************/
	/* reflect_P (0) reflect_S (1) transm_P (2) transm_S (3) */

	if(modet == 0 && rort==1)
		index = 0;
	else if(modet == 1 && rort==1)
		index = 1;
	else if(modet == 2 && rort==1)
		index = 2;
	else if(modet == 0 && rort==0)
		index = 3;
	else if(modet == 1 && rort==0)
		index = 4;
	else if(modet == 2 && rort==0)
		index = 5;
	else {
		fprintf(stderr,"\n ERROR wrong (index) \n ");
		return (-1);
	}


	/***************** LOOP OVER ANGLES ************************/
	for(angle=fangle,iangle=0;angle<=langle;angle+=dangle){
		
		if(info) ddprint(angle);
	
		sangle=(double) angle*PI/180;
		cangle=cos(sangle);
		sangle=sin(sangle);


		/* get horizontal slowness */
		if(p_hor3DTIH(spar1,modei,sangle,cangle,sazi,cazi,&p)!=1){
			fprintf(stderr,"\n ERROR in p_hor3DTIH \n ");
			return (-1);
		}

		/* compute reflection/transmission coefficient */
		if(graebner3D(spar1,spar2,rho1,rho2,modei,modet,rort,
		   sazi,cazi,p,coeff,a,ipvt,z,rcond)!=1){
			fprintf(stderr,"\n ERROR in p_hor3DTIH \n ");
			return (-1);
		}

		++iangle;

                if(iscale==0)
                     anglef=(float) angle;
                else if(iscale==1)
                     anglef=(float) angle*PI/180.;
                else if(iscale==2)
                     anglef=(float) p;
                else if(iscale==3) 
                     anglef=(float) sangle*sangle;
                  
                dummy= (float)coeff[index];
                  

                /* Binary output for x_t */
                if(ibin==1){

                        fwrite(&anglef,sizeof(float),1,coeffp);
                        fwrite(&dummy,sizeof(float),1,coeffp);

                /* ASCII output  */
                } else if(ibin==0){

                        fprintf(coeffp,"%f      %f\n",anglef,dummy);
		}
	}

	/*********  No of output pairs for plotting ********/
	if(ibin) fprintf(outparfp,"%i\n",iangle);

	return 1;
}
int main (int argc, char **argv)
{
	FILE *fp_in, *fp_out;
	char *fin, *fout, *ptr, fbegin[100], fend[100], fins[100], fin2[100], numb1[100];
	float *indata, *outdata, *rtrace, fz, fx;
	float dt, dx, t0, x0, xmin, xmax, sclsxgx, dt2, dx2, t02, x02, xmin2, xmax2, sclsxgx2, dxrcv, dzrcv;
	int nshots, nt, nx, ntraces, nshots2, nt2, nx2, ntraces2, ix, it, is, ir, pos, ifile, file_det, nxs, nzs;
	int xcount, numb, dnumb, ret, nzmax, verbose;
	segy *hdr_in, *hdr_out;

	initargs(argc, argv);
	requestdoc(1);

	if (!getparstring("file_in", &fin)) fin = NULL;
    if (!getparstring("file_out", &fout)) fout = "out.su";
	if (!getparint("numb", &numb)) numb=0;
	if (!getparint("dnumb", &dnumb)) dnumb=0;
	if (!getparint("nzmax", &nzmax)) nzmax=0;
	if (!getparint("verbose", &verbose)) verbose=0;
	if (fin == NULL) verr("Incorrect downgoing input");

	if (dnumb < 1) dnumb = 1;

	sprintf(numb1,"%d",numb);

	ptr  = strstr(fin,numb1);
    pos = ptr - fin + 1;

    sprintf(fbegin,"%*.*s", pos-1, pos-1, fin);
   	sprintf(fend,"%s", fin+pos);

	file_det = 1;
	nzs=0;

	while (file_det) {
        sprintf(fins,"%d",nzs*dnumb+numb);
        sprintf(fin,"%s%s%s",fbegin,fins,fend);
        fp_in = fopen(fin, "r");
        if (fp_in == NULL) {
            if (nzs == 0) {
                verr("error on opening basefile=%s", fin);
            }
            else if (nzs == 1) {
                vmess("1 file detected");
            }
            else {
                vmess("%d files detected",nzs);
                file_det = 0;
                break;
            }
        }
        fclose(fp_in);
        nzs++;
		if (nzmax!=0 && nzs == nzmax) {
			vmess("%d files detected",nzs);
            file_det = 0;
            break;
		}
    }

	sprintf(fins,"%d",numb);
    sprintf(fin2,"%s%s%s",fbegin,fins,fend);
	nshots = 0;
    getFileInfo(fin2, &nt, &nx, &nshots, &dt, &dx, &t0, &x0, &xmin, &xmax, &sclsxgx, &ntraces);

	sprintf(fins,"%d",numb+dnumb);
    sprintf(fin2,"%s%s%s",fbegin,fins,fend);
    nshots = 0;
    getFileInfo(fin2, &nt2, &nx2, &nshots2, &dt2, &dx2, &t02, &x02, &xmin2, &xmax2, &sclsxgx2, &ntraces2);

	dxrcv=dx*1000;
	dzrcv=t02-t0;

	if (nshots==0) nshots=1;
	nxs = ntraces;

	// ngath zijn het aantal schoten
	hdr_out     = (segy *)calloc(nxs,sizeof(segy));	
	outdata		= (float *)calloc(nxs*nzs,sizeof(float));
	hdr_in      = (segy *)calloc(nxs,sizeof(segy));
    indata    	= (float *)calloc(nxs,sizeof(float));

	readSnapData(fin2, &indata[0], &hdr_in[0], nshots, nxs, nt, 0, nxs, 0, nt);
	nshots 	= hdr_in[nxs-1].fldr;
	nxs		= hdr_in[nxs-1].tracf;

	for (ir = 0; ir < nzs; ir++) {
		if (verbose) vmess("Depth:%d out of %d",ir+1,nzs);
		sprintf(fins,"%d",ir*dnumb+numb);
        sprintf(fin2,"%s%s%s",fbegin,fins,fend);
        fp_in = fopen(fin2, "r");
		if (fp_in == NULL) {
			verr("Error opening file");
		}
		fclose(fp_in);
		readSnapData(fin2, &indata[0], &hdr_in[0], nshots, nxs, nt, 0, nxs, 0, nt);
		if (ir==0) fz=hdr_in[0].f1; fx=hdr_in[0].f2;
		if (ir==1) dzrcv=hdr_in[0].f1-fz;
		for (is = 0; is < nxs; is++) {
			for (it = 0; it < nshots; it++) {
				outdata[it*nxs*nzs+is*nzs+ir] = indata[it*nxs+is];
			}
		}
	}
	free(indata);

	fp_out = fopen(fout, "w+");

	for (is = 0; is < nshots; is++) {
		for (ix = 0; ix < nxs; ix++) {
           	hdr_out[ix].fldr	= is+1;
           	hdr_out[ix].tracl	= is*nxs+ix+1;
           	hdr_out[ix].tracf	= ix+1;
			hdr_out[ix].scalco  = -1000;
   			hdr_out[ix].scalel	= -1000;
			hdr_out[ix].sdepth	= hdr_in[0].sdepth;
			hdr_out[ix].trid	= 1;
			hdr_out[ix].ns		= nzs;
			hdr_out[ix].trwf	= nxs;
			hdr_out[ix].ntr		= hdr_out[ix].fldr*hdr_out[ix].trwf;
			hdr_out[ix].f1		= fz;
			hdr_out[ix].f2		= fx;
			hdr_out[ix].dt      = dt*(1E6);
			hdr_out[ix].d1      = dzrcv;
           	hdr_out[ix].d2      = dxrcv;
			hdr_out[ix].sx      = (int)roundf(fx + (ix*hdr_out[ix].d2));
			hdr_out[ix].gx      = (int)roundf(fx + (ix*hdr_out[ix].d2));
           	hdr_out[ix].offset	= (hdr_out[ix].gx - hdr_out[ix].sx)/1000.0;
		}
		ret = writeData(fp_out, &outdata[is*nxs*nzs], hdr_out, nzs, nxs);
		if (ret < 0 ) verr("error on writing output file.");
	}
	
	fclose(fp_out);
	return 0;
}
Example #13
0
int main(int argc, char **argv)
{
	char *plotcmd;		/* build pswigb command for popen	*/
	float *trbuf;		/* trace buffer				*/
	FILE *plotfp;		/* fp for plot data			*/
	int nt;			/* number of samples on trace	  	*/
	int ntr;		/* number of traces			*/
	int verbose;		/* verbose flag				*/
	float d1;		/* time/depth sample rate		*/
	float d2;		/* trace/dx sample rate			*/
	float f1;		/* tmin/zmin			   	*/
	float f2;		/* tracemin/xmin			*/
	cwp_Bool seismic;	/* is this seismic data?		*/
	cwp_Bool have_ntr=cwp_false;/* is ntr known from header or user?	*/
	char *tmpdir;		/* directory path for tmp files		*/
	cwp_Bool istmpdir=cwp_false;/* true for user given path		*/

	char *cwproot;		/* value of CWPROOT environment variable*/
	char *bindir;		/* directory path for tmp files		*/

	/* Support for irregularly spaced data */
	cwp_String key;		/* header key word with x2 information  */
	cwp_String type1=NULL;	/* ... its type				*/
	int index1=0;		/* ... its index			*/
	Value val;		/* value of key				*/
	Value scale;		/* Value of scaler			*/
	cwp_String type2=NULL;	/* ... its type				*/
	int index2=0;		/* ... its index			*/
	cwp_Bool isDepth=cwp_false;	/* Is this key a type of depth?		*/
	cwp_Bool isCoord=cwp_false;	/* Is this key a type of coordinate?	*/
	cwp_Bool irregular=cwp_false;  /* if true, reading x2 from header	*/ 
	cwp_String x2string;	/* string of x2 values			*/
	off_t x2len;		/* ... its length 			*/
	cwp_String style;	/* style parameter			*/


	/* Initialize */
	initargs(argc, argv);
	requestdoc(1);
	
	/* Get info from first trace */
	if (!gettr(&tr)) err("can't get first trace");
	seismic = ISSEISMIC(tr.trid); 
	nt = tr.ns;
	ntr = tr.ntr;
	if (ntr) have_ntr = cwp_true; 

	if (!getparint("verbose", &verbose))    verbose=0;
	if (!getparfloat("d1", &d1)) {
		if      (tr.d1)  d1 = tr.d1;
		else if (tr.dt)  d1 = ((double) tr.dt)/1000000.0;
		else {
			if (seismic) {
				d1 = 0.004;
				warn("tr.dt not set, assuming dt=0.004");
			} else { /* non-seismic data */
				d1 = 1.0;
				warn("tr.d1 not set, assuming d1=1.0");
			}
		}
	}


	if (!getparfloat("f1", &f1)) {
		if      (tr.f1)     f1 = tr.f1;
		else if (tr.delrt)  f1 = (float) tr.delrt/1000.0;
		else		f1 = 0.0;
	}

	/* Get or set ntr */
	if (getparint("n2", &ntr) || getparint("ntr", &ntr)) have_ntr = cwp_true;
	if (!getparfloat("d2", &d2)) d2 = (tr.d2) ? tr.d2 : 1.0;


	if (!getparfloat("f2", &f2)) {
		if	(tr.f2)	f2 = tr.f2;
		else if (tr.tracr)  f2 = (float) tr.tracr;
		else if (tr.tracl)  f2 = (float) tr.tracl;
		else if (seismic)   f2 = 1.0;
		else		    f2 = 0.0;
	}

	if (!getparstring("style", &style)) style = "seismic";
	 	
	if (getparstring("key", &key)) {
		type1 = hdtype(key);
		if ( (index1 = getindex(key)) == -1 )
			err("%s: keyword not in segy.h: '%s'", __FILE__, key);
		irregular = cwp_true;
		isDepth = IS_DEPTH(key);
		isCoord = IS_COORD(key);
		if (isDepth) {
		   index2 = getindex("scalel");
		   type2 = hdtype("scalel");
		} else if (isCoord) {
		   index2 = getindex("scalco");
		   type2 = hdtype("scalco");
		}
	}


	/* Look for user-supplied tmpdir */
	if (!getparstring("tmpdir",&tmpdir) &&
	    !(tmpdir = getenv("CWP_TMPDIR"))) tmpdir="";
	if (!STREQ(tmpdir, "") && access(tmpdir, WRITE_OK))
		err("you can't write in %s (or it doesn't exist)", tmpdir);

	/* See if CWPBIN environment variable is not set */
	if (!(bindir = getenv("CWPBIN"))) { /* construct bindir from CWPROOT */

		bindir = (char *) emalloc(BUFSIZ);

		/* Get value of CWPROOT environment variable */
		if (!(cwproot = getenv("CWPROOT"))) cwproot ="" ;
		if (STREQ(cwproot, "")) {
			warn("CWPROOT environment variable is not set! ");
			err("Set CWPROOT in shell environment as per instructions in CWP/SU Installation README files");
		}
		/* then bindir = $CWPROOT/bin */
		sprintf(bindir, "%s/bin", cwproot);
	}
	strcat(bindir,"/");   /* put / at the end of bindir */


	/* Allocate trace buffer */
	trbuf = ealloc1float(nt);


	if (!have_ntr || irregular ) { /* count traces */
		if (verbose) {
			if (irregular) {
				warn("trace spacing from header field %s",key);
				warn("... getting positions");

			} else {
				warn("n2 not getparred and "
				     "ntr header field not set");
				warn("....  counting traces");
			}
		}

		/* Create temporary "file" to hold data */
		if (STREQ(tmpdir,"")) {
			datafp = etmpfile();
			if (irregular) x2fp = etmpfile();
			if (verbose) warn("using tmpfile() call");
		} else { /* user-supplied tmpdir */
			char directory[BUFSIZ];
			strcpy(directory, tmpdir);
			strcpy(datafile, temporary_filename(directory));
			strcpy(x2file, temporary_filename(directory));
			/* Handle user interrupts */
			signal(SIGINT, (void (*) (int)) closefiles);
			signal(SIGQUIT, (void (*) (int)) closefiles);
			signal(SIGHUP,  (void (*) (int)) closefiles);
			signal(SIGTERM, (void (*) (int)) closefiles);
			datafp = efopen(datafile, "w+");
			if (irregular) x2fp = efopen(x2file, "w+");
			istmpdir=cwp_true;		
			if (verbose)
			      warn("putting temporary files in %s", directory);
		}

		/* Loop over input data and read to temporary file */
		ntr = 0;
		if(irregular ) {
		     float x,xmin=FLT_MAX,xmax=-FLT_MAX;

		     fprintf(x2fp,"x2=");
		     do {
			if(ntr) fprintf(x2fp,",");
			++ntr;
			gethval(&tr,index1,&val);
			if (isDepth || isCoord) {
			   gethval(&tr,index2,&scale);
			   x = (float) (vtod(type1,val) *
				 pow(10.0,vtod(type2,scale)));
			} else
			   x = vtof(type1,val);
			fprintf(x2fp,"%g",x);
			xmin = MIN(xmin,x);
			xmax = MAX(xmax,x);
			if (isDepth && STREQ(style,"vsp")) {
				int i;
				for (i = 0; i < nt; ++i) tr.data[i] *= -1.0;
			}
			efwrite(tr.data, FSIZE, nt, datafp);
		     } while (gettr(&tr));

		     /* Flip vertical axis if style = vsp */
		     if (isDepth && STREQ(style,"vsp")) {
			fprintf(x2fp," x2beg=%g x2end=%g",xmax,xmin);
			style = "normal";
		     }

		     if(xmin==xmax) {
			warn("values in header %s all equal,",key);
			warn("using f2=%f d2=%f",f2,d2);
			irregular=cwp_false;
			have_ntr=cwp_false;
			efclose(x2fp);
			if (istmpdir) eremove(x2file);
		     }

		} else {
			do {
				++ntr;
				efwrite(tr.data, FSIZE, nt, datafp);
			} while (gettr(&tr));
			/* Save naive user */
			if (STREQ(style,"vsp")) {
				style = "normal";
				warn("style=vsp requires key= to be set");
			}
		}


	}

	/* Set up pswigb command line */
	if (irregular ) {
		x2len = (off_t) eftell( x2fp );
		x2string = (char *) emalloc( ++x2len );
		rewind(x2fp);
		fread(x2string,sizeof(char),x2len,x2fp);
		plotcmd = (char *) emalloc(x2len+BUFSIZ);
		if (STREQ(style,"vsp")) {
			style = "normal";
		}
		sprintf(plotcmd, "%spswigb n1=%d d1=%f f1=%f %s style=%s", bindir,
			   nt, d1, f1, x2string, style);
		free(x2string);
	} else {
		if (STREQ(style,"vsp")) {
			style = "normal";
		}
		plotcmd = (char *) emalloc(BUFSIZ);
		sprintf(plotcmd,
			"%spswigb n1=%d n2=%d d1=%f d2=%f f1=%f f2=%f style=%s", bindir,
			   nt, ntr, d1, d2, f1, f2, style);
	}


	for (--argc, ++argv; argc; --argc, ++argv) {
		if (strncmp(*argv, "d1=", 3) && /* skip those already set */
		    strncmp(*argv, "d2=", 3) &&
		    strncmp(*argv, "f1=", 3) &&
		    strncmp(*argv, "f2=", 3) &&
		    strncmp(*argv, "style=", 6)){
		    
			strcat(plotcmd, " ");   /* put a space between args */
			strcat(plotcmd, "\"");  /* user quotes are stripped */
			strcat(plotcmd, *argv); /* add the arg */
			strcat(plotcmd, "\"");  /* user quotes are stripped */
		}
	}


	/* Open pipe to pswigb and send the traces */
	plotfp = epopen(plotcmd, "w");
	free(plotcmd);

	if (!have_ntr || irregular) { /* send out stored traces one by one */
		rewind(datafp);
		{ register int itr;
			for (itr = 0; itr < ntr; ++itr) {
				efread (trbuf, FSIZE, nt, datafp);
				efwrite(trbuf, FSIZE, nt, plotfp);
			}
		}
	} else { /* just pump out traces and let pswigb do the work */
		do {
			efwrite(tr.data, FSIZE, nt, plotfp);
		} while (gettr(&tr));
	}


	/* Clean up */
	epclose(plotfp);
	if (!have_ntr) {
		efclose(datafp);
		if (istmpdir) eremove(datafile);
	}
	if (irregular) {
		efclose(x2fp);
		if (istmpdir) eremove(x2file);
	}

	return EXIT_SUCCESS;
}
Example #14
0
int
main(int argc, char **argv)
{
	cwp_String key1,key2,key3;	/* panel/trace/flag key		*/
	cwp_String type1,type2,type3;	/* type for panel/trace/flag key*/
	int index1,index2,index3;	/* indexes for key1/2/3		*/
	Value val1,val2,val3;		/* value of key1/2/3		*/
	double dval1=0.0,dval2=0.0,dval3=0.0;	/* value of key1/2/3	*/
	double c;			/* trace key spacing		*/
	double dmin,dmax,dx;		/* trace key start/end/spacing	*/
	double panelno=0.0,traceno=0.0;
	int nt;				/* number of samples per trace	*/
	int isgn;			/* sort order			*/
	int iflag;			/* internal flag:		*/
					/* -1	exit			*/
					/* 0	regular mode		*/
					/* 1	first time		*/
					/* 2	trace out of range	*/

	/* initialize */
	initargs(argc, argv);
	requestdoc(1);

	/* get parameters */
	if (!getparstring("key1", &key1)) key1 = "ep";
	if (!getparstring("key2", &key2)) key2 = "tracf";
	if (!getparstring("key3", &key3)) key3 = "trid";
	if (!getpardouble("val3", &dval3)) dval3 = 2.;
	if (!getpardouble("d", &dx)) dx = 1.;
	if (!getpardouble("min", &dmin)) err("need lower panel boundary MIN");
	if (!getpardouble("max", &dmax)) err("need upper panel boundary MAX");
        checkpars();

	/* check parameters */
	if (dx==0) err("trace spacing d cannot be zero");
	if (dmax<dmin) err("max needs to be greater than min");

	if (dx<0) {
		isgn = -1;
	} else {
		isgn = 1;
	}

	/* get types and index values */
	type1  = hdtype(key1);
	type2  = hdtype(key2);
	type3  = hdtype(key3);
	index1 = getindex(key1);
	index2 = getindex(key2);
	index3 = getindex(key3);

	/* loop over traces */
	iflag = 1;
	while (iflag>=0) {

		if (gettr(&tr)) {
			/* get header values */
			gethval(&tr, index1, &val1);
			gethval(&tr, index2, &val2);
			dval1 = vtod(type1, val1);
			dval2 = vtod(type2, val2);
			/* Initialize zero trace */
			nt = tr.ns;
			memset( (void *) nulltr.data, 0, nt*FSIZE);
			if ( iflag==1 ) {
				panelno = dval1;
				traceno = dmin - dx;
			}
			iflag = 0;
			if ( dval2<dmin || dval2>dmax ) iflag = 2;
/*	fprintf(stderr,"if=%d, dmin=%8.0f, dmax=%8.0f\n",iflag,dmin,dmax);*/
		} else {
			iflag = -1;	/* exit flag */
		}
/*	fprintf(stderr,"if=%d, dval1=%8.0f, dval2=%8.0f\n",iflag,dval1,dval2);*/

		/* if new panel or last trace --> finish the previous panel */
		if ( panelno!=dval1 || iflag==-1 ) {
/*	fprintf(stderr,"finish previous\n");*/
			for (c=traceno+dx; isgn*c<=isgn*dmax; c=c+dx) {
					assgnval(type2, &val2, c);
					puthval(&nulltr, index2, &val2);
					assgnval(type3, &val3, dval3);
					puthval(&nulltr, index3, &val3);
					puttr(&nulltr);
			}
			traceno = dmin - dx;	/* reset to pad present panel */

			panelno = dval1; /* added by Ted Stieglitz 28Nov2012*/

		}

		/* if trace within boundaries --> pad the present panel */
		if ( iflag==0 ) {
/*	fprintf(stderr,"pad present, trn=%5.0f,dval2=%5.0f\n",traceno,dval2);*/
			memcpy( (void *) &nulltr, (const void *) &tr, 240);
			for (c=traceno+dx; isgn*c<isgn*dval2; c=c+dx) {
					assgnval(type2, &val2, c);
					puthval(&nulltr, index2, &val2);
					assgnval(type3, &val3, dval3);
					puthval(&nulltr, index3, &val3);
					puttr(&nulltr);
			}
		}

		/* write the present trace and save header indices */
		if ( iflag==0 ) {
			puttr(&tr);
			panelno = dval1;
			traceno = dval2;
		}

	}

	return(CWP_Exit());
}
Example #15
0
int
main(int argc, char **argv)
{
	char *key=NULL;		/* header key word from segy.h		*/
	char *type=NULL;	/* ... its type				*/
	int index;		/* ... its index			*/
	Value val;		/* ... its value			*/
	float fval;		/* ... its value cast to float		*/

	float *xshift=NULL;	/* array of key shift curve values	*/
	float *tshift=NULL;	/* ...		shift curve time values */

	int nxshift;		/* number of key shift values		*/
	int ntshift;		/* ...		shift time values 	*/

	int nxtshift;		/* number of shift values 		*/

	int it;			/* sample counter			*/
	int itr;		/* trace counter			*/
	int nt;			/* number of time samples 		*/
	int ntr=0;		/* number of traces			*/
	int *inshift=NULL;	/* array of (integer) time shift values
				   used for positioning shifted trace in
				   data[][]				*/

	float dt;		/* time sampling interval		*/

	cwp_String xfile="";	/* file containing positions by key	*/
	FILE *xfilep=NULL;	/* ... its file pointer			*/
	cwp_String tfile="";	/* file containing times	 	*/
	FILE *tfilep=NULL;	/* ... its file pointer			*/

	int verbose;		/* flag for printing information	*/
	char *tmpdir=NULL;	/* directory path for tmp files		*/
	cwp_Bool istmpdir=cwp_false;/* true for user-given path		*/

	int median;		/* flag for median filter		*/
	int nmed;		/* no. of traces to median filter	*/
	int nmix;		/* number of traces to mix over		*/
	int imix;		/* mixing counter			*/
	float *mix=NULL;	/* array of mix values			*/
	int sign;		/* flag for up/down shift		*/
	int shiftmin=0;		/* minimum time shift (in samples)	*/
	int shiftmax=0;		/* maximum time shift (in samples)	*/
	int ntdshift;		/* nt + shiftmax			*/

	size_t mixbytes;	/* size of mixing array			*/
	size_t databytes;	/* size of data array			*/
	size_t shiftbytes;	/* size of data array			*/
	float *temp=NULL;	/* temporary array			*/
	float *dtemp=NULL;	/* temporary array			*/
	float *stemp=NULL;	/* rwh median sort array		*/
	float **data=NULL;	/* mixing array 			*/
	int subtract;		/* flag for subtracting shifted data	*/

	/* rwh extra pointers for median sort */
	int first;		/* start pointer in ring buffer */
	int middle;		/* middle pointer in ring buffer */
	int last;		/* last pointer in ring buffer */
	int halfwidth;		/* mid point */
	int trcount;		/* pointer to current start trace number */
	float tmp;		/* temp storage for bubble sort */
	int rindex;		/* wrap around index for ring buffer */
	int jmix;		/* internal pointer for bubble sort */
	

	/* Initialize */
	initargs(argc, argv);
	requestdoc(1);

	/* Get parameters */
	if (!(getparstring("xfile",&xfile) && getparstring("tfile",&tfile))) {
		if (!(nxshift = countparval("xshift")))
			err("must give xshift= vector");
		if (!(ntshift = countparval("tshift")))
			err("must give tshift= vector");
		if (nxshift != ntshift)
			err("lengths of xshift, tshift must be the same");
		xshift = ealloc1float(nxshift);	getparfloat("xshift", xshift);
		tshift = ealloc1float(nxshift);	getparfloat("tshift", tshift);
	} else {
		MUSTGETPARINT("nshift",&nxtshift);
		nxshift = nxtshift;
		xshift = ealloc1float(nxtshift);
		tshift = ealloc1float(nxtshift);

		if((xfilep=fopen(xfile,"r"))==NULL)
			err("cannot open xfile=%s\n",xfile);
		if (fread(xshift,sizeof(float),nxtshift,xfilep)!=nxtshift)
			err("error reading xfile=%s\n",xfile);
		fclose(xfilep);

		if((tfilep=fopen(tfile,"r"))==NULL)
			err("cannot open tfile=%s\n",tfile);
		if (fread(tshift,sizeof(float),nxtshift,tfilep)!=nxtshift)
			err("error reading tfile=%s\n",tfile);
		fclose(tfilep);
	}
	if (!getparstring("key", &key))		key = "tracl";

	/* Get key type and index */
	type = hdtype(key);
	index = getindex(key);   

	/* Get mix weighting values values */
	if ((nmix = countparval("mix"))!=0) {
		mix = ealloc1float(nmix);
		getparfloat("mix",mix);
		/* rwh check nmix is odd */
		if (nmix%2==0) {
			err("number of mixing coefficients must be odd");
		}		
	} else {
		nmix = 5;
		mix = ealloc1float(nmix);
		mix[0] = VAL0;
		mix[1] = VAL1;
		mix[2] = VAL2;
		mix[3] = VAL3;
		mix[4] = VAL4;
	}
	
	/* Get remaning parameters */
	if (!getparint("median",&median))	median = 0;
	if (!getparint("nmed",&nmed) && median)	nmed = 5;
	if (!getparint("sign",&sign))		sign = -1;
	if (!getparint("subtract",&subtract))	subtract = 1;
	if (!getparint("verbose", &verbose))	verbose = 0;

	/* rwh check nmed is odd */
	if (median && nmed%2==0) {
		nmed=nmed+1;
		warn("increased nmed by 1 to ensure it is odd");
	}

	/* Look for user-supplied tmpdir */
	if (!getparstring("tmpdir",&tmpdir) &&
	    !(tmpdir = getenv("CWP_TMPDIR"))) tmpdir="";
	if (!STREQ(tmpdir, "") && access(tmpdir, WRITE_OK))
		err("you can't write in %s (or it doesn't exist)", tmpdir);

	/* rwh fix for median filter if median true set nmix=nmed */
	if (!median) {
		/* Divide mixing weights by number of traces to mix */
		for (imix = 0; imix < nmix; ++imix)
			mix[imix]=mix[imix]/((float) nmix);
	} else {
		nmix=nmed;
	}

	/* Get info from first trace */
	if (!gettr(&tr)) err("can't read first trace");
	if (!tr.dt) err("dt header field must be set");
	dt   = ((double) tr.dt)/1000000.0;
	nt = (int) tr.ns;
	databytes = FSIZE*nt;

	/* Tempfiles */
	if (STREQ(tmpdir,"")) {
		tracefp = etmpfile();
		headerfp = etmpfile();
		if (verbose) warn("using tmpfile() call");
	} else { /* user-supplied tmpdir */
		char directory[BUFSIZ];
		strcpy(directory, tmpdir);
		strcpy(tracefile, temporary_filename(directory));
		strcpy(headerfile, temporary_filename(directory));
		/* Trap signals so can remove temp files */
		signal(SIGINT,  (void (*) (int)) closefiles);
		signal(SIGQUIT, (void (*) (int)) closefiles);
		signal(SIGHUP,  (void (*) (int)) closefiles);
		signal(SIGTERM, (void (*) (int)) closefiles);
		tracefp = efopen(tracefile, "w+");
		headerfp = efopen(headerfile, "w+");
      		istmpdir=cwp_true;		
		if (verbose) warn("putting temporary files in %s", directory);
	}

	/* Read headers and data while getting a count */
	do {
		++ntr;
		efwrite(&tr, 1, HDRBYTES, headerfp);
		efwrite(tr.data, 1, databytes, tracefp);   

	} while (gettr(&tr));
	rewind(headerfp);
	rewind(tracefp);
	
	/* Allocate space for inshift vector */
	inshift = ealloc1int(ntr);

	/* Loop over headers */
 	for (itr=0; itr<ntr; ++itr) {
		float tmin=tr.delrt/1000.0;
		float t;

		/* Read header values */
		efread(&tr, 1, HDRBYTES, headerfp);

		/* Get value of key and convert to float */
		gethval(&tr, index, &val);
		fval = vtof(type,val);

		/* Linearly interpolate between (xshift,tshift) values */
		intlin(nxshift,xshift,tshift,tmin,tshift[nxshift-1],1,&fval,&t);
		
		/* allow for fractional shifts -> requires interpolation */ 
		inshift[itr] = NINT((t - tmin)/dt);
		
		/* Find minimum and maximum shifts */
		if (itr==0) {
			 shiftmax=inshift[0];
			 shiftmin=inshift[0];
		} else {
			shiftmax = MAX(inshift[itr],shiftmax);
			shiftmin = MIN(inshift[itr],shiftmin);
		}
	}
	rewind(headerfp);
	rewind(tracefp);

	if (verbose) {
		for (itr=0;itr<ntr;itr++)
			warn("inshift[%d]=%d",itr,inshift[itr]);
	}

	/* Compute databytes per trace and bytes in mixing panel */
	ntdshift = nt + shiftmax;
	shiftbytes = FSIZE*ntdshift;
	mixbytes = shiftbytes*nmix;
	if (verbose) {
		warn("nt=%d  shiftmax=%d  shiftmin=%d",nt,shiftmax,shiftmin);
		warn("ntdshift=%d  shiftbytes=%d  mixbytes=%d",
						ntdshift,shiftbytes,mixbytes);
	}
	
	/* Allocate space and zero  data array */
	data = ealloc2float(ntdshift,nmix);
	temp = ealloc1float(ntdshift);
	dtemp = ealloc1float(nt);
	memset( (void *) data[0], 0, mixbytes);

	/* rwh array for out of place bubble sort (so we do not corrupt order in ring buffer */ 
	stemp = ealloc1float(nmix);

	/* rwh first preload ring buffer symmetrically (now you know why nmix must be odd) */
	trcount=-1;
	halfwidth=(nmix-1)/2+1;
	first = 0;
	last  = nmix-1;
	middle = (nmix-1)/2;

	for (itr=0; itr<halfwidth; itr++) {
		efread(tr.data, 1, databytes, tracefp);
		trcount++;
		for(it=0; it<nt; ++it) {
			/* sign to account for positive or negative shift */
			/* tr.data needs to be interpolated for non-integer shifts */
			data[middle-itr][it + shiftmax + sign*inshift[itr]] = tr.data[it];
			data[middle+itr][it + shiftmax + sign*inshift[itr]] = tr.data[it];
		}
	}
	
	/* Loop over traces performing median filtering  */
 	for (itr=0; itr<ntr; ++itr) {

		/* paste header and data on output trace */
		efread(&tr, 1, HDRBYTES, headerfp);

		/* Zero out temp and dtemp */
		memset((void *) temp, 0, shiftbytes);
		memset((void *) dtemp, 0, databytes);

		/* Loop over time samples */
		for (it=0; it<nt; ++it) {

			/* Weighted moving average (mix) ? */
			if (!median) {
				for(imix=0; imix<nmix; ++imix) {
					temp[it] += data[imix][it] * mix[imix];
				}
			} else {
			
			/* inlcude median stack */
			/* rwh do bubble sort and choose median value */
				for(imix=0; imix<nmix; ++imix) {
					stemp[imix]=data[imix][it];
				}
				for (imix=0; imix<nmix-1; imix++) {
					for (jmix=0; jmix<nmix-1-imix; jmix++) {
						if (stemp[jmix+1] < stemp[jmix]) {
							tmp = stemp[jmix];
							stemp[jmix] = stemp[jmix+1];
							stemp[jmix+1] = tmp;
						}
					}
				}
				temp[it] = stemp[middle];
			}

			/* shift back mixed data and put into dtemp */
			if (subtract) {
				if ((it - shiftmax - sign*inshift[itr])>=0)
					dtemp[it - shiftmax - sign*inshift[itr]] = data[middle][it]-temp[it];
			} else {
				if ((it - shiftmax)>=0)
				dtemp[it - shiftmax - sign*inshift[itr]] = temp[it];
			}
		}
		memcpy((void *) tr.data,(const void *) dtemp,databytes);
			
		/* Bump rows of data[][] over by 1 to free first row for next tr.data */
		for (imix=nmix-1; 0<imix; --imix)
			memcpy((void *) data[imix],(const void *) data[imix-1],shiftbytes);
			/*for (it=0; it<nt; ++it)
				data[imix][it] = data[imix-1][it];*/

		/* Write output trace */
		tr.ns = nt;
		puttr(&tr);

		/* read next trace into buffer */
		if (trcount < ntr) {
			efread(tr.data, 1, databytes, tracefp);
			trcount++;

			/* read tr.data into first row of mixing array */
			/* WMH: changed ntdshift to nt */
			for(it=0; it<nt; ++it) {
				/* sign to account for positive or negative shift */
				/* tr.data needs to be interpolated for non-integer shifts */
				data[0][it + shiftmax + sign*inshift[trcount]] = tr.data[it];
			}
		} else {
			rindex=2*(trcount-ntr);
			memcpy((void *) data[0],(const void *) data[rindex],shiftbytes);
			trcount++;
		}

	}

	if (verbose && subtract)	warn("filtered data subtracted from input");

	/* Clean up */
	efclose(headerfp);
	if (istmpdir) eremove(headerfile);
	efclose(tracefp);
	if (istmpdir) eremove(tracefile);

	return(CWP_Exit());
}
Example #16
0
int main(int argc, char **argv)
{
	int i,ix,it;		/* loop counters */
	int wtype;		/* =1 psv. =2 sh wavefields */
	int wfield;		/* =1 displcement =2 velocity =3 acceleration */
	int stype;		/* source type */
	int int_type;		/* =1 for trapezoidal rule. =2 for Filon */
	int flt;		/* =1 apply earth flattening correction */
	int rand;		/* =1 for random velocity layers */
	int qopt;		/* some flag ???? */
	int vsp;		/* =1 for vsp, =0 otherwise */
	int win;		/* =1 if frequency windowing required */
	int verbose;		/* flag to output processing information */
	int nt;			/* samples per trace in output traces */
	int ntc;		/* samples per trace in computed traces */
	int nx;			/* number of output traces */
	int np;			/* number of ray parameters */
	int nlint=0;		/* number of times layer interp is required */
	int lsource;		/* layer on top of which the source is located*/
	int nw;			/* number of frequencies */
	int nor;		/* number of receivers */
	int nlayers;		/* number of reflecting layers */
	int layern;
	int nrand_layers;	/* maximum number of random layers permitted */
	int nf;			/* number of frequencies in output traces */
	int *filters_phase=NULL;	/* =0 for zero phase, =1 for minimum phase fil*/
	int nfilters;		/* number of required filters */
	int wavelet_type;	/* =1 spike =2 ricker1 =3 ricker2 =4 akb */

	float dt;		/* time sampling interval */
	float tsec;		/* trace length in seconds */
	float fpeak;		/* peak frequency for output wavelet */
	float fref;		/* first frequency */
	float p2w;		/* maximum ray parameter value */
	float bp;		/* smallest ray parameter (s/km) */
	float bx;		/* beginning of range in Kms. */
	float fx;		/* final range in Kms. */
	float dx;		/* range increment in Kms. */
	float pw1,pw2,pw3,pw4;	/* window ray parameters (to apply taper) */
	float h1;		/* horizontal linear part of the source */ 
	float h2;		/* vertical linear part of the source */ 
	float m0;		/* seismic moment */
	float m1,m2,m3;		/* components of the moment tensor */

	float delta;		/* dip */
	float lambda;		/* rake */
	float phis;		/* azimuth of the fault plane */
	float phi;		/* azimuth of the receiver location */

	float sdcl,sdct;	/* standar deviation for p and s-wave vels */
	float z0=0.0;		/* reference depth */
	float zlayer;		/* thickness of random layers */
	int layer;		/* layer over on top of which to compute rand*/
	float tlag;		/* time lag in output traces */
	float red_vel;		/* erducing velocity */

	float w1=0.0;		/* low end frequency cutoff for taper */
	float w2=0.0;		/* high end frequency cutoff for taper */
	float wrefp;		/* reference frequency for p-wave velocities */
	float wrefs;		/* reference frequency for s-wave velocities */

	float epsp;		/* .... for p-wave velocities */
	float epss;		/* .... for p-wave velocities */
	float sigp;		/* .... for p-wave velocities */
	float sigs;		/* .... for s-wave velocities */
	float fs;		/* sampling parameter, usually 0.07<fs<0.12 */
	float decay;		/* decay factor to avoid wraparound */

	int *lobs;		/* layers on top of which lay the receivers */
	int *nintlayers=NULL;	/* array of number of layers to interpolate */
	int *filters_type;	/* array of 1 lo cut, 2 hi cut, 3 notch */

	float *dbpo=NULL;	/* array of filter slopes in db/octave */
	float *f1=NULL;		/* array of lo frequencies for filters */
	float *f2=NULL;		/* array of high frequencies for filters */
	float *cl;		/* array of compressional wave velocities */
	float *ql;		/* array of compressional Q values */
	float *ct;		/* array of shear wave velocities */
	float *qt;		/* array of shear Q values */
	float *rho;		/* array of densities */
	float *t;		/* array of absolute layer thickness */

	int *intlayers=NULL;	/* array of layers to interpolate */

	float *intlayth=NULL;	/* array of thicknesses over which to interp */
	float **wavefield1;	/* array for pressure wavefield component */
	float **wavefield2=NULL;/* array for radial wavefield component */
	float **wavefield3=NULL;/* array for vertical wavefield component */

	char *lobsfile="";	/* input file receiver layers */
	char *clfile="";	/* input file of p-wave velocities */
	char *qlfile="";	/* input file of compressional Q-values */
	char *ctfile="";	/* input file of s-wave velocities */
	char *qtfile="";	/* input file of shear Q-values */
	char *rhofile="";	/* input file of density values */
	char *tfile="";		/* input file of absolute layer thicknesses */
	char *intlayfile="";	/* input file of layers to interpolate */
	char *nintlayfile="";	/* input file of number of layers to interp */
	char *intlaythfile="";	/*input file of layer thickness where to inter*/
	char *filtypefile="";	/* input file of filter types to apply */
	char *fphfile="";	/* input file of filters phases */
	char *dbpofile="";	/* input file of filter slopes in db/octave */
	char *f1file="";	/* input file of lo-end frequency */
	char *f2file="";	/* input file of hi-end frequency */

	char *wfp="";		/* output file of pressure */
	char *wfr="";		/* output file of radial wavefield */
	char *wfz="";		/* output file of vertical wavefield */
	char *wft="";		/* output file of tangential wavefield */
	char *outf="";		/* output file for processing information */

	FILE *wfp_file;		/* file pointer to output pressure */
	FILE *wfr_file;		/* file pointer to output radial wavefield */
	FILE *wfz_file;		/* file pointer to output vertical wavefield */
	FILE *wft_file;		/* file pointer to output tangential wavefield*/
	FILE *outfp=NULL;	/* file pointer to processing information */
	FILE *infp;		/* file pointer to input information */

	
	/* hook up getpar to handle the parameters */
	initargs(argc,argv);
	requestdoc(0);			/* no input data */

	/* get required parameter, seismic moment */
	if (!getparfloat("m0",&m0))	
		err("error: the seismic moment, m0, is a required parameter\n");

	/*********************************************************************/
	/* get general flags and set their defaults */
	if (!getparint("rand",&rand))			rand	= 0;
	if (!getparint("qopt",&qopt))			qopt	= 0;
	if (!getparint("stype",&stype))			stype	= 1;
	if (!getparint("wtype",&wtype))			wtype	= 1;
	if (!getparint("wfield",&wfield))		wfield	= 1;
	if (!getparint("int_type",&int_type))		int_type= 1;
	if (!getparint("flt",&flt))			flt	= 0;
	if (!getparint("vsp",&vsp))			vsp	= 0;
	if (!getparint("win",&win))			win	= 0;
	if (!getparint("wavelet_type",&wavelet_type))	wavelet_type = 1;
	if (!getparint("verbose",&verbose))		verbose	= 0;

	/* get model parameters and set their defaults */
	if (!getparint("lsource",&lsource))		lsource = 0;
	if (!getparfloat("fs",&fs)) 			fs	= 0.07;
	if (!getparfloat("decay",&decay))		decay	= 50.0;
	if (!getparfloat("tsec",&tsec))			tsec	= 2.048;

	/* get response parameters and set their defaults */
	if (!getparfloat("fref",&fref))			fref	= 1.0;
	if (!getparint("nw",&nw))			nw	= 100;
	if (!getparint("nor",&nor))			nor	= 100;
	if (!getparint("np",&np))			np	= 1300;
	if (!getparfloat("p2w",&p2w))			p2w	= 5.0;
	if (!getparfloat("bx",&bx))			bx	= 0.005;
	if (!getparfloat("bp",&bp))			bp	= 0.0;
	if (!getparfloat("fx",&fx))			fx	= 0.1;
	if (!getparfloat("dx",&dx))			dx	= 0.001;
	if (!getparfloat("pw1",&pw1))			pw1	= 0.0;
	if (!getparfloat("pw2",&pw2))			pw2	= 0.1;
	if (!getparfloat("pw3",&pw3))			pw3	= 6.7;
	if (!getparfloat("pw4",&pw4))			pw4	= 7.0;
	if (!getparfloat("h1",&h1))			h1	= 1.0;
	if (!getparfloat("h2",&h2))			h2	= 0.0;

	/* get output parameters and set their defaults */
	if (!getparint("nx",&nx))			nx	= 100;
	if (!getparfloat("dt",&dt))			dt	= 0.004;
	if (!getparint("nt",&nt))			nt	= tsec/dt;
	if (!getparint("nf",&nf))			nf	= 50;
	if (!getparfloat("red_vel",&red_vel))		red_vel	= 5;
	if (!getparfloat("fpeak",&fpeak))		fpeak	= 25.;
	if (!getparfloat("tlag",&tlag))			tlag	= 0.;

	/* get names of output files */
	if (wtype==1) {
		getparstring("wfp",&wfp);
		getparstring("wfr",&wfr);
		getparstring("wfz",&wfz);
	} else if (wtype==2) {
		getparstring("wft",&wft);
	} else err ("wtype has to be zero or one");

	/*********************************************************************/
	/* get or compute moment tensor components */
	if (stype==1) {

		/* get source parameters */
		if (!getparfloat("delta",&delta))	
			err("if stype==1, delta is a required parameter\n");
		if (!getparfloat("lambda",&lambda))	
			err("if stype==1, lambda is a required parameter\n");
		if (!getparfloat("phis",&phis))	
			err("if stype==1, phis is a required parameter\n");
		if (!getparfloat("phi",&phi))	
			err("if stype==1, phi is a required parameter\n");

		/* compute moment tensor components */
		compute_moment_tensor (wtype, phi, lambda, delta, phis, m0, 
			&m1, &m2, &m3);

	} else if (stype==2) {

		/* get moment tensor components from input */	
		if (!getparfloat("m1",&m1))	
			err("if stype==2, m1 is a required parameter\n");
		if (!getparfloat("m2",&m2))	
			err("if stype==2, m2 is a required parameter\n");
		if (!getparfloat("m3",&m3))	
			err("if stype==2, m3 is a required parameter\n");

	} else err("error, stype flag has to be one or two\n");

	/*********************************************************************/
	/* if q-option is not requesed, set corresponding parameters to zero */
	if (!getparint("layern",&layern))		layern	=0;	
	if (!getparfloat("wrefp",&wrefp))		wrefp	=0.0;
	if (!getparfloat("wrefs",&wrefs))		wrefs	=0.0;
	if (!getparfloat("epsp",&epsp))			epsp	=0.0;
	if (!getparfloat("epss",&epss))			epss	=0.0;
	if (!getparfloat("sigp",&sigp))			sigp	=0.0;
	if (!getparfloat("sigs",&sigs))			sigs	=0.0;

	/*********************************************************************/
	/* get number of layers and check input parameters */
	if (*clfile=='\0') {	/* p-wave vels input from the comand line */
		nlayers=countparval("cl");
	} else  {		/* p-wave vels input from a file */
		getparint("nlayers",&nlayers);
	}
	if (*ctfile=='\0') {	/* s-wave vels input from the comand line */
		if (nlayers !=countparval("cl")) 
			err("number of p-wave and s-wave velocities"
				"has to be the same");
	}
	if (*qlfile=='\0') { 	/* compressional q-values from comand line */
		if (nlayers !=countparval("ql")) 
			err("number of p-wave velocities and q-values"
				"has to be the same");
	}
	if (*qtfile=='\0') { 	/* shear q-values input from comand line */
		if (nlayers !=countparval("qt")) 
			err("number of p-wave velocities and shear q-values"
				"has to be the same");
	}
	if (*rhofile=='\0') { 	/* densities input from comand line */
		if (nlayers !=countparval("rho")) 
			err("number of p-wave velocities and densities"
				"has to be the same");
	}
	if (*tfile=='\0') { 	/* layer thicknesses input from comand line */
		if (nlayers !=countparval("t")) 
			err("number of p-wave velocities and thicknesses"
				"has to be the same");
	}
	if (int_type!=1 && int_type!=2) err("int_type flag has to be one or two");

	/*********************************************************************/
	/* if layer interpolation is requested, get parameters */
	if (*intlayfile !='\0') {
		getparint("nlint",&nlint);
		if ((infp=efopen(intlayfile,"r"))==NULL)
			err("cannot open file of layer interp=%s\n",intlayfile);
		intlayers=alloc1int(nlint);
		fread (intlayers,sizeof(int),nlint,infp);
		efclose(infp);
	} else if (countparval("intlayers") !=0) {
		nlint=countparval("intlayers");
		intlayers=alloc1int(nlint);
		getparint("intlayers",intlayers);
	}
	if (*nintlayfile !='\0') {
		if ((infp=efopen(nintlayfile,"r"))==NULL)
			err("cannot open file of layer inter=%s\n",nintlayfile);
		nintlayers=alloc1int(nlint);
		fread (nintlayers,sizeof(int),nlint,infp);
		efclose(infp);
	} else if (countparval("nintlayers") !=0) {
		if (nlint !=countparval("nintlayers")) 
			err("number of values in intlay and nintlay not equal");
		nintlayers=alloc1int(nlint);
		getparint("nintlayers",nintlayers);
	}
	if (*intlaythfile !='\0') {
		if ((infp=efopen(intlaythfile,"r"))==NULL)
			err("cannot open file=%s\n",intlaythfile);
		intlayth=alloc1float(nlint);
		fread (intlayth,sizeof(int),nlint,infp);
		efclose(infp);
	} else if (countparval("intlayth") !=0) {
		if (nlint !=countparval("intlayth")) 
			err("# of values in intlay and intlayth not equal");
		intlayth=alloc1float(nlint);
		getparfloat("intlayth",intlayth);
	}
	/* update total number of layers */
	if (nlint!=0) {
		for (i=0; i<nlint; i++) nlayers +=intlayers[i]-1;
	}
		
	/*********************************************************************/
	/* if random velocity layers requested, get parameters */
	if (rand==1) {
		getparint("layer",&layer);
		getparint("nrand_layers",&nrand_layers);
		getparfloat("zlayer",&zlayer);
		getparfloat("sdcl",&sdcl);
		getparfloat("sdct",&sdct);
	} else nrand_layers=0;	

	/*********************************************************************/
	/* allocate space */
	cl = alloc1float(nlayers+nrand_layers);
	ct = alloc1float(nlayers+nrand_layers);
	ql = alloc1float(nlayers+nrand_layers);
	qt = alloc1float(nlayers+nrand_layers);
	rho = alloc1float(nlayers+nrand_layers);
	t = alloc1float(nlayers+nrand_layers);
	lobs = alloc1int(nor+1);
	lobs[nor]=0;

	/*********************************************************************/
	/* read  input parameters from files or command line */
	if (*clfile !='\0') {			/* read from a file */	
		if ((infp=efopen(clfile,"r"))==NULL)
			err("cannot open file of pwave velocities=%s\n",clfile);
		fread(cl,sizeof(float),nlayers,infp);
		efclose(infp);
	} else getparfloat("cl",cl);		/* get from command line */
	if (*qlfile !='\0') {
		if ((infp=efopen(qlfile,"r"))==NULL)
			err("cannot open file of compressional Q=%s\n",qlfile);
		fread(ql,sizeof(float),nlayers,infp);
		efclose(infp);
	} else getparfloat("ql",ql);
	if (*ctfile !='\0') {
		if ((infp=efopen(ctfile,"r"))==NULL)
			err("cannot open file of swave velocities=%s\n",ctfile);
		fread(ct,sizeof(float),nlayers,infp);
		efclose(infp);
	} else getparfloat("ct",ct);
	if (*qtfile !='\0') {
		if ((infp=efopen(qtfile,"r"))==NULL)
			err("cannot open file of shear Q=%s\n",qtfile);
		fread(qt,sizeof(float),nlayers,infp);
		efclose(infp);
	} else getparfloat("qt",qt);
	if (*rhofile !='\0') {
		if ((infp=efopen(rhofile,"r"))==NULL)
			err("cannot open file of densities=%s\n",rhofile);
		fread(rho,sizeof(float),nlayers,infp);
		efclose(infp);
	} else getparfloat("rho",rho);
	if (*tfile !='\0') {
		if ((infp=efopen(tfile,"r"))==NULL)
			err("cannot open file of thicknesses=%s\n",tfile);
		fread(t,sizeof(float),nlayers,infp);
		efclose(infp);
	} else getparfloat("t",t);
	if (*lobsfile !='\0') {
		if ((infp=efopen(lobsfile,"r"))==NULL)
			err("can't open file of receiver layers=%s\n",lobsfile);
		fread(lobs,sizeof(int),nor,infp);
		efclose(infp);
	} else getparint("lobs",lobs);

	/*********************************************************************/
	/* if requested, do interpolation and/or parameter adjustment */
	if (nlint!=0)
		parameter_interpolation (nlayers, intlayers, nintlayers, 
				intlayth, cl, ql, ct, qt, rho, t);	

	/* if requested, compute random velocity layers */
	if (rand==1) {
		random_velocity_layers (&nlayers, &lsource, nrand_layers, sdcl,
			sdct, layer, zlayer, cl, ql, ct, qt, rho, t);
	}

	/* if requested, apply earth flattening approximation */
	if (flt==1) {
		apply_earth_flattening (nlayers, z0, cl, ct, rho, t);
	}


	/*********************************************************************/
	/* get filter parameters */
	if (*filtypefile !='\0') {
		if ((infp=efopen(filtypefile,"r"))==NULL)
			err("cannot open file=%s\n",filtypefile);
		getparint("nfilters",&nfilters);
		filters_type=alloc1int(nfilters);
		fread (filters_type,sizeof(int),nfilters,infp);
		efclose(infp);
	} else {
		nfilters=countparval("filters_type");
		filters_type=alloc1int(nfilters);
		getparint("filters_type",filters_type);
	}
	if (*fphfile !='\0') {
		if ((infp=efopen(fphfile,"r"))==NULL)
			err("cannot open file=%s\n",fphfile);
		filters_phase=alloc1int(nfilters);
		fread (filters_phase,sizeof(float),nfilters,infp);
		efclose(infp);
	} else if (nfilters == countparval("filters_phase")) {
		filters_phase=alloc1int(nfilters);
		getparint("filters_phase",filters_phase);
	} else err("number of elements infilterstype and phase must be equal");
	if (*dbpofile !='\0') {
		if ((infp=efopen(dbpofile,"r"))==NULL)
			err("cannot open file=%s\n",dbpofile);
		dbpo=alloc1float(nfilters);
		fread (dbpo,sizeof(float),nfilters,infp);
		efclose(infp);
	} else if (nfilters == countparval("dbpo")) {
		dbpo=alloc1float(nfilters);
		getparfloat("dbpo",dbpo);
	} else err("number of elements in filters_type and dbpo must be equal");
	if (*f1file !='\0') {
		if ((infp=efopen(f1file,"r"))==NULL)
			err("cannot open file=%s\n",f1file);
		f1=alloc1float(nfilters);
		fread (f1,sizeof(float),nfilters,infp);
		efclose(infp);
	} else if (nfilters == countparval("f1")) {
		f1=alloc1float(nfilters);
		getparfloat("f1",f1);
	} else err("number of elements in filters_type and f1 must be equal");
	if (*f2file !='\0') {
		if ((infp=efopen(f2file,"r"))==NULL)
			err("cannot open file=%s\n",f2file);
		f2=alloc1float(nfilters);
		fread (f2,sizeof(float),nfilters,infp);
		efclose(infp);
	} else if (nfilters == countparval("f2")) {
		f2=alloc1float(nfilters);
		getparfloat("f2",f2);
	} else err("number of elements in filters_type and f2 must be equal");
		

	/*********************************************************************/
	/* allocate space for wavefield computations */
	wavefield1=alloc2float(nt,nx);
	if (wtype==1) {
		wavefield2=alloc2float(nt,nx);
		wavefield3=alloc2float(nt,nx);
	}
	/* get name of output file for processing information */
	if (verbose==2||verbose==3) {
		if (!getparstring("outf",&outf))	outf="info";
		if ((outfp=efopen(outf,"w"))==NULL) {
			warn("cannot open processing file =%s, no processing\n"
			"information file will be generated\n",outf);
			verbose=1;
		}
	}

	/* initialize wavefields */
	if (wtype==1) {
		for (ix=0;ix<nx;ix++) {
			for (it=0;it<nt;it++) {
				wavefield1[ix][it]=0.0;
				wavefield2[ix][it]=0.0;
				wavefield3[ix][it]=0.0;
			}
		}
	} else if (wtype==2) {
		for (ix=0;ix<nx;ix++) {
			for (it=0;it<nt;it++) {
				wavefield1[ix][it]=0.0;
			}
		}
	}

	/* number of time samples in computed traces */
	ntc=tsec/dt;
	if (int_type==2) bp=0.0;

	/*********************************************************************/
	/* Now, compute the actual reflectivities */
	compute_reflectivities (int_type, verbose, wtype, wfield, vsp, flt,
		win, nx, nt, ntc, nor, nf, nlayers, lsource, layern, nfilters,
		filters_phase, nw, np, bp, tlag, red_vel, w1, w2, fx, dx, bx,
		fs, decay, p2w, tsec, fref, wrefp, wrefs, epsp, epss, sigp,
		sigs, pw1, pw2, pw3, pw4, h1, h2, m1, m2, m3, fref, lobs,
		filters_type, dbpo, f1, f2, cl, ct, ql, qt, rho, t, wavefield1,
		wavefield2, wavefield3, outfp);
	/*********************************************************************/

	/* if open, close processing information file */
	if (verbose==2||verbose==3) efclose(outfp);

	/* convolve with a wavelet and write the results out */
	if (wtype==1) {			/* PSV */
		
		/* convolve with a wavelet to produce the seismograms */
		convolve_wavelet (wavelet_type, nx, nt, dt, fpeak, wavefield1); 
		convolve_wavelet (wavelet_type, nx, nt, dt, fpeak, wavefield2); 
		convolve_wavelet (wavelet_type, nx, nt, dt, fpeak, wavefield3); 

		/* output results in SU format */
		if(*wfp!='\0'){
			if ((wfp_file=efopen(wfp,"w"))==NULL)
				err("cannot open pressure file=%s\n",wfp);
			{	register int ix;
				for (ix=0; ix<nx; ix++) {
					for (it=0; it<nt; it++)
						tr1.data[it]=wavefield1[ix][it];

					/* headers*/
					tr1.ns=nt;
					tr1.dt=1000*(int)(1000*dt);
					tr1.offset=(bx+ix*dx)*1000;
	
					/* output trace */
					fputtr(wfp_file, &tr1);
				}
				efclose (wfp_file);
			}
		}
		if (*wfr !='\0') {
			if ((wfr_file=efopen(wfr,"w"))==NULL)
					err("cannot open radial wfield file=%s\n",wfr);
			{	register int ix;
				for (ix=0; ix<nx; ix++) {
					for (it=0; it<nt; it++)
						tr2.data[it]=wavefield2[ix][it];
					tr2.ns=nt;
					tr2.dt=1000*(int)(1000*dt);
					tr2.offset=(bx+ix*dx)*1000;
					fputtr(wfr_file, &tr2);
				}
				efclose (wfr_file);
			}
		}
		if (*wfz !='\0') {
			if ((wfz_file=efopen(wfz,"w"))==NULL)
				err("canno open vertical field file=%s\n",wfz);
			{	register int ix;
				for (ix=0; ix<nx; ix++) {
					for (it=0; it<nt; it++)
							tr3.data[it]=wavefield3[ix][it];
					tr3.ns=nt;
					tr3.dt=1000*(int)(1000*dt);
					tr3.offset=(bx+ix*dx)*1000;
					fputtr(wfz_file, &tr3);
				}
				efclose (wfz_file);
			}
		}
		
		/* free allocated space */
		free2float(wavefield1);
		free2float(wavefield2);
		free2float(wavefield3);

	} else if (wtype==2) {			/* SH */

		/* convolve with a wavelet to produce the seismogram */
		convolve_wavelet (wavelet_type, nx, nt, dt, fpeak, wavefield1); 

		/* output the result in SU format */
		if (*wft !='\0') {
			if ((wft_file=efopen(wft,"w"))==NULL)
				err("cannot open tangential file=%s\n",wft);
			{	register int ix;
				for (ix=0; ix<nx; ix++) {
					for (it=0; it<nt; it++)
							tr1.data[it]=wavefield1[ix][it];
					tr1.ns=nt;
					tr1.dt=1000*(int)(1000*dt);
					tr1.offset=(bx+ix*dx)*1000;
					fputtr(wft_file, &tr1);
				}
				efclose (wft_file);
			}
		}

		/* free allocated space */
		free2float(wavefield1);
	}

	/* free workspace */
	free1float(cl);
	free1float(ct);
	free1float(ql);
	free1float(qt);
	free1float(rho);
	free1float(t);
	free1int(lobs);
	free1int(filters_type);
	free1int(filters_phase);
	free1float(dbpo);
	free1float(f1);
	free1float(f2);
	return EXIT_SUCCESS;
}
Example #17
0
int
main(int argc, char **argv)
{
   char *tmpdir ;                 /* directory path for tmp files */
   cwp_Bool istmpdir=cwp_false ;  /* true for user given path */
   float *hedr ;                  /* the headers */
   float *data ;                  /* the data */

   int nt ;                       /* number of trace samples */
   float dt ;                     /* sample interval, sec */
   float delrt ;                  /* delay recording time, sec */
   cwp_String key[SU_NKEYS] ;     /* array of keywords */
   cwp_String type ;              /* key string type */
   int nkeys ;                    /* number of keywords */
   int ikey,ntr = 0 ;	          /* counters */
   int num ;                      /* number of traces to dump */
   int numtr = 4 ;                /* number of traces to dump */
   int hpf ;                      /* header print format */

   /* Initialize */
   initargs(argc, argv) ;
   requestdoc(1) ;

   /* Look for user-supplied tmpdir */
   if (!getparstring("tmpdir",&tmpdir) &&
       !(tmpdir = getenv("CWP_TMPDIR"))) tmpdir="";
   if (!STREQ(tmpdir, "") && access(tmpdir, WRITE_OK))
       err("you can't write in %s (or it doesn't exist)", tmpdir);

   /* Get values from first trace */
   if (!gettr(&tr)) err("can't get first trace");
   nt = (int) tr.ns ;                  /* Get nt */
   dt = ((double) tr.dt)/1000000.0 ;   /* microsecs to secs */
   if (!dt) getparfloat("dt", &dt) ;
   if (!dt) MUSTGETPARFLOAT("dt", &dt) ;
   delrt = ((double) tr.delrt)/1000.0 ; /* millisecs to secs */

   /* Get parameters */
   if (getparint ("num", &num)) numtr = num ;
   if ((nkeys=countparval("key"))!=0) getparstringarray("key",key) ;
   hedr = ealloc1float(nkeys*numtr) ;  /* make space for headers */
   if (!getparint ("hpf", &hpf)) hpf = 0 ;

   /* Store traces, headers in tempfiles */
   if (STREQ(tmpdir,""))
   {
      tracefp = etmpfile();
      headerfp = etmpfile();

      do
      {
         ++ntr;
         efwrite(&tr, HDRBYTES, 1, headerfp);
         efwrite(tr.data, FSIZE, nt, tracefp);

         /* Get header values */
         for (ikey=0; ikey<nkeys; ++ikey)
         {
            Value val;
            float fval;

            gethdval(&tr, key[ikey], &val) ;
            type = hdtype(key[ikey]) ;
            fval = vtof(type,val) ;
            hedr[(ntr-1)*nkeys+ikey] = fval ;
         }

      }
      while (ntr<numtr  &&  gettr(&tr)) ;

   }
   else  /* user-supplied tmpdir */
   {
      char directory[BUFSIZ];
      strcpy(directory, tmpdir);
      strcpy(tracefile, temporary_filename(directory));
      strcpy(headerfile, temporary_filename(directory));
      /* Handle user interrupts */
      signal(SIGINT, (void (*) (int)) closefiles);
      signal(SIGQUIT, (void (*) (int)) closefiles);
      signal(SIGHUP,  (void (*) (int)) closefiles);
      signal(SIGTERM, (void (*) (int)) closefiles);
      tracefp = efopen(tracefile, "w+");
      headerfp = efopen(headerfile, "w+");
      istmpdir=cwp_true;      

      do
      {
         ++ntr;
         efwrite(&tr, HDRBYTES, 1, headerfp);
         efwrite(tr.data, FSIZE, nt, tracefp);

         /* Get header values */
         for (ikey=0; ikey<nkeys; ++ikey)
         {
            Value val;
            float fval;

            gethdval(&tr, key[ikey], &val) ;
            type = hdtype(key[ikey]) ;
            fval = vtof(type,val) ;
            hedr[(ntr-1)*nkeys+ikey] = fval ;
         }

      }
      while (ntr<numtr  &&  gettr(&tr)) ;

   }

   /* Rewind after read, allocate space */
   erewind(tracefp);
   erewind(headerfp);
   data = ealloc1float(nt*ntr);

   /* Load traces into data and close tmpfile */
   efread(data, FSIZE, nt*ntr, tracefp);
   efclose(tracefp);
   if (istmpdir) eremove(tracefile);

   rewind(headerfp);
   rewind(tracefp);

   /* Do trace work */
   dump(data, dt, hedr, key, delrt, nkeys, ntr, nt, hpf) ;

   /* close */
   efclose(headerfp);
   if (istmpdir) eremove(headerfile);

   free1(hedr) ;
   free1(data) ;

   return(CWP_Exit()) ;
}
Example #18
0
main(int argc, char **argv)
{
	string head;	/* name of file holding headers		*/
	FILE *headfp;	/* ... its file pointer			*/
	string outpar;	/* name of file holding output parfile	*/
	FILE *outparfp;	/* ... its file pointer			*/
	int ns;		/* number of data samples on the segys	*/
	int nsbytes;	/* ... in bytes				*/
	int ftn;	/* fortran flag				*/
	int ntr = 0;	/* number of traces written		*/
	FILE *infp=stdin, *outfp=stdout;


	/* Initialize */
	initargs(argc, argv);
	askdoc(1);


	switch(filestat(STDOUT)) {
	case BADFILETYPE:
		warn("stdout is illegal filetype");
		selfdoc();
	break;
	case TTY:
		warn("stdout can't be tty");
		selfdoc();
	break;
	}

	/* Get parameters */
	if (!getparstring("head"  , &head))	head   = "/dev/null";
	if (!getparstring("outpar", &outpar))	outpar = "/dev/tty" ;
	if (!getparint   ("ftn"   , &ftn))	ftn = 0;
	if (ftn != 0 && ftn != 1)  err("ftn=%d must be 0 or 1", ftn);


	/* Open files to save headers and parameters */
	headfp = efopen(head, "w");
	if( (outparfp = fopen(outpar,"w"))==NULL ) outparfp = stderr;

	/*
	outparfp = efopen(outpar, "w");
	*/

	fseek2g(infp,0,1);
        fseek2g(outfp,0,1);

	/* read id header and save in head */
	gethdr(&ch,&bh);
	fputhdr(headfp,&ch,&bh);

	/* Get info from first trace */
	if (!gettr(&tr)) err("can't get first trace");
	ns = tr.ns;
	nsbytes = ns * FSIZE;


	/* Write the data portion of the records--if the ftn	*/
	/* option is selected, write an int before and after	*/
	/* each trace giving the length of the trace in bytes	*/
	/* as per the Fortran unformatted record format.	*/
	do {

		if (ftn) efwrite(&nsbytes, ISIZE, 1, stdout);
		efwrite(tr.data, FSIZE, ns, stdout);
		if (ftn) efwrite(&nsbytes, ISIZE, 1, stdout);

		efwrite(&tr, 1, HDRBYTES, headfp);

		++ntr;

	} while (gettr(&tr));

	/* Make par file for headerless file */
	fprintf(outparfp, "n1=%d n2=%d d1=%f\n", tr.ns, ntr, 
		(float)tr.dt/1000000.0);


	return EXIT_SUCCESS;
}
Example #19
0
int
main(int argc, char **argv)
{
	
	float **data;
        char **hdrdata;
	float ***workm;
	
        int ival2;              /* int value of key2                */
        int ival3;              /* int value of key3                */
        Value val2;      	/* ... its value                        */
        Value val3;      	/* ... its value                        */
	int index2;
	int index3;
	
	int n1,n2,n3;
	int i1,i2,i3;
        char *key2=NULL;      /* header key word from segy.h    */
        char *type2=NULL;     /* ... its type                   */
        char *key3=NULL;      /* header key word from segy.h    */
        char *type3=NULL;     /* ... its type                   */
	
	int lins;
	int line;
	int nl;
	int dir=2;
	int il;
	int su;
	float cdp;
	float t;
	float dt;
	
        /* Initialize */
        initargs(argc, argv);
        requestdoc(1);
       	
       MUSTGETPARINT("n2", &n2);
       MUSTGETPARINT("n3", &n3);
       
       /* get key2*/
        if (!getparstring("key2", &key2))  key2 = "fldr"; 
        type2 = hdtype(key2);
        index2 = getindex(key2);
	
       /* get key3*/
        if (!getparstring("key3", &key3))  key3 = "tracf"; 
        type3 = hdtype(key3);
        index3 = getindex(key3);

        if (!getparint("lins", &lins))  lins = 1;
	if(lins<1) err(" lins must be larger than 0");
        if (!getparint("line", &line)) line = n2; 
         if (!getparint("su", &su)) su = 1; 
      
	/* Get info from first trace */
        if (!gettr(&tr))  err ("can't get first trace");
        n1 = tr.ns;
	
	if (!getparfloat("dt", &dt))	dt = ((float) tr.dt)/1000000.0;
	if (!dt) {
		dt = .01;
		warn("dt not set, assumed to be .01");
	}



	data = bmalloc(n1*sizeof(float),n2,n3);
		
	hdrdata = bmalloc(HDRBYTES,n2,n3);
	
        do {
		gethval(&tr, index2, &val2);
		ival2 = vtoi(type2,val2);
		gethval(&tr, index3, &val3);
		ival3 = vtoi(type3,val3);

		if(ival2>n2 || ival2<0 ) err(" Array in dimension 2 out of bound\n");
		if(ival3>n3 || ival3<0 ) err(" Array in dimension 3 out of bound\n");
		
		
      		bmwrite(data,1,ival2-1,ival3-1,1,tr.data);
		bmwrite(hdrdata,1,ival2-1,ival3-1,1,&tr);
		
	} while (gettr(&tr));
	
	
	
	nl=line-lins+1;
	if(dir==2) {
		/* n2 direction */
		workm = alloc3float(n1,n3,nl);
		for(il=lins-1;il<nl;il++) {
			for(i3=0;i3<n3;i3++) bmread(data,1,lins+il-1,i3,1,workm[il][i3]);
		}
		
		if(su==1) {	
			fprintf(stdout,"cdp=");
			for(il=lins-1;il<nl;il++) {
				for(i3=0;i3<n3;i3++) fprintf(stdout,"%d,",(lins+il)*1000+i3+1);
			}
		
			for(il=lins-1;il<nl;il++) {
				for(i3=0;i3<n3;i3++){
					fprintf(stdout,"\ntnmo=");
					for(i1=0;i1<n1;i1++) fprintf(stdout,"%.3f,",dt*i1);
					fprintf(stdout,"\nvnmo=");
					for(i1=0;i1<n1;i1++)
						fprintf(stdout,"%.3f,",workm[il][i3][i1]);
				}
		
			}
		} else {
			for(il=lins-1;il<nl;il++) {
				for(i3=0;i3<n3;i3++) {
					 cdp=(lins+il)*1000+i3+1;
					 fwrite(&cdp,sizeof(float),1,stdout);
				}
			}
		
			for(il=lins-1;il<nl;il++) {
				for(i3=0;i3<n3;i3++){
					for(i1=0;i1<n1;i1++) {
						t=tr.d1*i1;
						fwrite(&t,sizeof(float),1,stdout);
					}
					for(i1=0;i1<n1;i1++)
						fwrite(&workm[il][i3][i1],sizeof(float),1,stdout);
				}
		
			}
		}
			free3float(workm);	
	}
	
	bmfree(data);
	bmfree(hdrdata);	
	return EXIT_SUCCESS;
}
Example #20
0
int
main(int argc, char **argv)
{
	cwp_String key[SU_NKEYS];  /* array of keywords			*/
	cwp_String type[SU_NKEYS]; /* array of keywords			*/
	int index[SU_NKEYS];	/* name of type	of getparred key	*/

	int ikey;		/* key counter 				*/
	int nkeys;		/* number of header fields set		*/
	int count=0;		/* number of header fields from file	*/
	double i;		/* parameters for computing fields	*/
	int itr = 0;		/* trace counter 			*/
	Value val;		/* value of key field 			*/

	char *infile="";	/* name of input file of header values	*/
	FILE *infp=NULL;	/* pointer to input file		*/
	cwp_Bool from_file=cwp_false; /* is the data from infile?	*/

	float *afile=NULL;	/* array of "a" values from file	*/
	double *a=NULL;		/* array of "a" values			*/
	double *b=NULL;		/* array of "b" values			*/
	double *c=NULL;		/* array of "c" values			*/
	double *d=NULL;		/* array of "d" values			*/
	double *j=NULL;		/* array of "j" values			*/
	int n;			/* number of a,b,c,d,j values		*/

	/* Initialize */
	initargs(argc, argv);
	requestdoc(1);

	/* Get "key" values */
	if ((nkeys=countparval("key"))!=0) {
		getparstringarray("key",key);

	} else {
		key[0]="cdp";
	}

	/* get types and indexes corresponding to the keys */
	for (ikey=0; ikey<nkeys; ++ikey) {
		type[ikey]=hdtype(key[ikey]);
		index[ikey]=getindex(key[ikey]);
	}


	/* get name of infile */
	getparstring("infile",&infile);

	/* if infile is specified get specified keys from file */
	if (*infile!='\0') {

		/* open infile */
		if((infp=efopen(infile,"r"))==NULL)
			err("cannot open infile=%s\n",infile);

		/* set from_file flag */
		from_file=cwp_true;
	}

	/* If not from file, getpar a,b,c,d,j */
	if (!from_file) { 
		/* get "a" values */
		if ((n=countparval("a"))!=0) { 
			if (n!=nkeys)
			err("number of a values not equal to number of keys");

			a=ealloc1double(n);
			getpardouble("a",a);
		} else {
			a=ealloc1double(nkeys);
			for (ikey=0; ikey<nkeys; ++ikey) a[ikey]=0.;
		}
		
		/* get "b" values */
		if ((n=countparval("b"))!=0) { 
			if (n!=nkeys)
			err("number of b values not equal to number of keys");

			b=ealloc1double(n);
			getpardouble("b",b);
		} else {
			b=ealloc1double(nkeys);
			for (ikey=0; ikey<nkeys; ++ikey) b[ikey]=0.;
		}
		
		/* get "c" values */
		if ((n=countparval("c"))!=0) { 
			if (n!=nkeys)
			err("number of c values not equal to number of keys");

			c=ealloc1double(n);
			getpardouble("c",c);
		} else {
			c=ealloc1double(nkeys);
			for (ikey=0; ikey<nkeys; ++ikey) c[ikey]=0.;
		}

		/* get "d" values */
		if ((n=countparval("d"))!=0) { 
			if (n!=nkeys)
			err("number of d values not equal to number of keys");

			d=ealloc1double(n);
			getpardouble("d",d);
		} else {
			d=ealloc1double(nkeys);
			for (ikey=0; ikey<nkeys; ++ikey) d[ikey]=0.;
		}

		/* get "j" values */
		if ((n=countparval("j"))!=0) { 
			if (n!=nkeys)
			err("number of j values not equal to number of keys");

			j=ealloc1double(n);
			getpardouble("j",j);

			/* make sure that j!=0 */
			for (ikey=0; ikey<nkeys; ++ikey)
				if(j[ikey]==0) j[ikey]=ULONG_MAX;
		} else {
			j=ealloc1double(nkeys);
			for (ikey=0; ikey<nkeys; ++ikey) j[ikey]=ULONG_MAX;
		}
	} else { /* if reading from a file */
		/* allocate space for afile */
		afile=ealloc1float(nkeys);
	}

        checkpars();

	/* loop over traces */
	while (gettr(&tr)) {

		if (from_file) {
			/* use the "a" value from file to trace by trace */
			if (efread(afile,FSIZE,nkeys,infp)!=0) {
				for (ikey=0; ikey<nkeys; ++ikey) {
					double a_in;
					a_in=(double) afile[ikey];
					setval(type[ikey],&val,a_in,
							 0,0,0,ULONG_MAX);
					puthval(&tr,index[ikey],&val);
				++count;
				}
			}
		} else { /* use getparred values of a,b,c,d,j */
			for (ikey=0; ikey<nkeys; ++ikey) {
				i = (double) itr + d[ikey];
				
				setval(type[ikey],&val,a[ikey],b[ikey],
						c[ikey],i,j[ikey]);
				puthval(&tr,index[ikey],&val);
			}

		}

		++itr;
		puttr(&tr);
	}

	if (from_file) {
		efclose(infp);
		if (count < (int)(itr*nkeys) ) {
		   warn("itr=%d > count=%d %s",(int) itr*count,count);
		   warn("n traces=%d > data count =%d",(itr*nkeys),count);
		}
	}


	return(CWP_Exit());
}
Example #21
0
int main(int argc, char **argv)
{
	modPar mod;
	recPar rec;
	srcPar src;
	shotPar shot;
	rayPar ray;
    float *velocity, *slowness, *smooth, *trueslow, **inter;
	double t0, t1, t2, tinit, tray, tio;
	size_t size;
	int nw, n1, ix, iz, ir, ixshot, izshot;
	int nt, ntfft, nfreq, ig;
	int irec, sbox, ipos, nrx, nrz, nr;
    fcoord coordsx, coordgx, Time;
    icoord grid, isrc; 
    float Jr, *ampl, *time, *ttime, *ttime_p, cp_average, *wavelet, dw, dt;
	float dxrcv, dzrcv, rdelay, tr, dt_tmp;
    segy hdr;
    char filetime[1024], fileamp[1024], *method, *file_rcvtime, *file_src;
    size_t  nwrite, nread;
	int verbose;
    complex *cmute, *cwav;
    FILE *fpt, *fpa, *fpwav, *fprcv;

	t0= wallclock_time();
	initargs(argc,argv);
	requestdoc(0);

	if(!getparint("verbose",&verbose)) verbose=0;
    if(!getparint("sbox", &sbox)) sbox = 1;
    if(!getparstring("method", &method)) method="jesper";
	if (!getparfloat("rec_delay",&rdelay)) rdelay=0.0;

	getParameters(&mod, &rec, &src, &shot, &ray, verbose);

    /* read file_src if file_rcvtime is defined */

    if (!getparstring("file_rcvtime",&file_rcvtime)) file_rcvtime=NULL;

	if (file_rcvtime != NULL) {
    	if (!getparstring("file_src",&file_src)) file_src=NULL;
		if (!getparfloat("dt",&dt)) dt=0.004;
		if (file_src != NULL ) {
        	fpwav = fopen( file_src, "r" );
        	assert( fpwav != NULL);
        	nread = fread( &hdr, 1, TRCBYTES, fpwav );
        	assert(nread == TRCBYTES);
			ntfft = optncr(MAX(hdr.ns, rec.nt));
 			wavelet = (float *)calloc(ntfft,sizeof(float));
			/* read first trace */
        	nread = fread(wavelet, sizeof(float), hdr.ns, fpwav);
        	assert (nread == hdr.ns);
        	fclose(fpwav);
		}
		else {
			ntfft = optncr(rec.nt);
 			wavelet = (float *)calloc(ntfft,sizeof(float));
			wavelet[0] = 1.0;
		}
    	nfreq = ntfft/2+1;
    	cwav    = (complex *)calloc(nfreq,sizeof(complex));
    	cmute   = (complex *)calloc(nfreq,sizeof(complex));
        rc1fft(wavelet,cwav,ntfft,-1);
    	dw      = 2*M_PI/(ntfft*dt);
	}

	/* allocate arrays for model parameters: the different schemes use different arrays */

	n1 = mod.nz;
    if(!strcmp(method,"fd")) nw = 0;
    else nw = ray.smoothwindow;

	velocity = (float *)calloc(mod.nx*mod.nz,sizeof(float));
	slowness = (float *)calloc((mod.nx+2*nw)*(mod.nz+2*nw),sizeof(float));
    trueslow = (float *)calloc(mod.nx*mod.nz,sizeof(float));

    if(!strcmp(method,"fd")) {
		ttime = (float *)calloc(mod.nx*mod.nz,sizeof(float));
	}

	/* read velocity and density files */
	readModel(mod, velocity, slowness, nw);

	/* allocate arrays for wavefield and receiver arrays */

	size = shot.n*rec.n;
    time = (float *)calloc(size,sizeof(float));
    ampl = (float *)calloc(size,sizeof(float));

	/* Sinking source and receiver arrays: 
	   If P-velocity==0 the source and receiver 
	   postions are placed deeper until the P-velocity changes. 
	   Setting the option rec.sinkvel only sinks the receiver position 
       (not the source) and uses the velocity 
	   of the first receiver to sink through to the next layer. */

/* sink receivers to value different than sinkvel */
	for (ir=0; ir<rec.n; ir++) {
		iz = rec.z[ir];
		ix = rec.x[ir];
		while(velocity[(ix)*n1+iz] == rec.sinkvel) iz++;
		rec.z[ir]=iz+rec.sinkdepth;
		rec.zr[ir]=rec.zr[ir]+(rec.z[ir]-iz)*mod.dz;
//		rec.zr[ir]=rec.z[ir]*mod.dz;
		if (verbose>3) vmess("receiver position %d at grid[ix=%d, iz=%d] = (x=%f z=%f)", ir, ix, rec.z[ir], rec.xr[ir]+mod.x0, rec.zr[ir]+mod.z0);
	}
		vmess("   - method for ray-tracing       = %s", method);
/*
*/

/* sink sources to value different than zero */
	for (izshot=0; izshot<shot.nz; izshot++) {
		for (ixshot=0; ixshot<shot.nx; ixshot++) {
			iz = shot.z[izshot];
			ix = shot.x[ixshot];
			while(velocity[(ix)*n1+iz] == 0.0) iz++;
			shot.z[izshot]=iz+src.sinkdepth; 
		}
	}

	if (verbose>3) writeSrcRecPos(&mod, &rec, &src, &shot);

    /* smooth slowness grid */
    grid.x = mod.nx;
    grid.z = mod.nz;
    grid.y = 1;
    if ( nw != 0 ) { /* smooth slowness */ 
        smooth = (float *)calloc(grid.x*grid.z,sizeof(float));
        applyMovingAverageFilter(slowness, grid, nw, 2, smooth);
        memcpy(slowness,smooth,grid.x*grid.z*sizeof(float));
        free(smooth);
	}

    /* prepare output file and headers */
    strcpy(filetime, rec.file_rcv);
    name_ext(filetime, "_time");
    fpt = fopen(filetime, "w");
    assert(fpt != NULL);

	if (ray.geomspread) {
        strcpy(fileamp, rec.file_rcv);
        name_ext(fileamp, "_amp");
        fpa = fopen(fileamp, "w");
        assert(fpa != NULL);
	}
	if (file_rcvtime != NULL) {
        fprcv = fopen(file_rcvtime, "w");
        assert(fprcv != NULL);
	}

    memset(&hdr,0,sizeof(hdr));
    hdr.scalco = -1000;
    hdr.scalel = -1000;
    hdr.trid   = 0;

	t1=wallclock_time();
	tinit = t1-t0;
    tray=0.0;
    tio=0.0;

	/* Outer loop over number of shots */
	for (izshot=0; izshot<shot.nz; izshot++) {
		for (ixshot=0; ixshot<shot.nx; ixshot++) {

	        t2=wallclock_time();
        	if (verbose) {
            	vmess("Modeling source %d at gridpoints ix=%d iz=%d", (izshot*shot.n)+ixshot, shot.x[ixshot], shot.z[izshot]);
            	vmess(" which are actual positions x=%.2f z=%.2f", mod.x0+mod.dx*shot.x[ixshot], mod.z0+mod.dz*shot.z[izshot]);
            	vmess("Receivers at gridpoint x-range ix=%d - %d", rec.x[0], rec.x[rec.n-1]);
            	vmess(" which are actual positions x=%.2f - %.2f", mod.x0+rec.xr[0], mod.x0+rec.xr[rec.n-1]);
            	vmess("Receivers at gridpoint z-range iz=%d - %d", rec.z[0], rec.z[rec.n-1]);
            	vmess(" which are actual positions z=%.2f - %.2f", mod.z0+rec.zr[0], mod.z0+rec.zr[rec.n-1]);
        	}

        	coordsx.x = shot.x[ixshot]*mod.dx;
        	coordsx.z = shot.z[izshot]*mod.dz;
        	coordsx.y = 0;

	        t1=wallclock_time();
            tio += t1-t2;

            if (!strcmp(method,"jesper")) {
#pragma omp parallel for default(shared) \
private (coordgx,irec,Time,Jr) 
        		for (irec=0; irec<rec.n; irec++) {
            		coordgx.x=rec.xr[irec];
            		coordgx.z=rec.zr[irec];
            		coordgx.y = 0;
		
            		getWaveParameter(slowness, grid, mod.dx, coordsx, coordgx, ray, &Time, &Jr);
	
            		time[((izshot*shot.nx)+ixshot)*rec.n + irec] = Time.x + Time.y + 0.5*Time.z;
            		ampl[((izshot*shot.nx)+ixshot)*rec.n + irec] = Jr;
            		if (verbose>4) vmess("JS: shot=%f,%f receiver at %f,%f T0=%f T1=%f T2=%f Jr=%f",coordsx.x, coordsx.z, coordgx.x, coordgx.z, Time.x, Time.y, Time.z, Jr); 
        		}
			}
            else if(!strcmp(method,"fd")) {
	            int mzrcv;

                isrc.x = shot.x[ixshot];
                isrc.y = 0;
                isrc.z = shot.z[izshot];

                mzrcv = 0;
                for (irec = 0; irec < rec.n; irec++) mzrcv = MAX(rec.z[irec], mzrcv);

                vidale(ttime,slowness,&isrc,grid,mod.dx,sbox, mzrcv);
        		for (irec=0; irec<rec.n; irec++) {
            		coordgx.x=mod.x0+rec.xr[irec];
            		coordgx.z=mod.z0+rec.zr[irec];
            		coordgx.y = 0;
					ipos = ((izshot*shot.nx)+ixshot)*rec.n + irec;
	
            		time[ipos] = ttime[rec.z[irec]*mod.nx+rec.x[irec]];
					/* compute average velocity between source and receiver */
 					nrx = (rec.x[irec]-isrc.x);
 					nrz = (rec.z[irec]-isrc.z);
 					nr = abs(nrx) + abs(nrz);
					cp_average = 0.0;
        			for (ir=0; ir<nr; ir++) {
						ix = isrc.x + floor((ir*nrx)/nr);
						iz = isrc.z + floor((ir*nrz)/nr);
						//fprintf(stderr,"ir=%d ix=%d iz=%d velocity=%f\n", ir, ix, iz, velocity[ix*mod.nz+iz]);
						cp_average += velocity[ix*mod.nz+iz];
					}
					cp_average = cp_average/((float)nr);
            		ampl[ipos] = sqrt(time[ipos]*cp_average);
            		if (verbose>4) vmess("FD: shot=%f,%f receiver at %f(%d),%f(%d) T=%e V=%f Ampl=%f",coordsx.x, coordsx.z, coordgx.x, rec.x[irec], coordgx.z, rec.z[irec], time[ipos], cp_average, ampl[ipos]); 
        		}
            }
	        t2=wallclock_time();
            tray += t2-t1;

        	hdr.sx     = 1000*(mod.x0+mod.dx*shot.x[ixshot]);
        	hdr.sdepth = 1000*(mod.z0+mod.dz*shot.z[izshot]);
        	hdr.selev  = (int)(-1000.0*(mod.z0+mod.dz*shot.z[izshot]));
        	hdr.fldr   = ((izshot*shot.nx)+ixshot)+1;
        	hdr.tracl  = ((izshot*shot.nx)+ixshot)+1;
        	hdr.tracf  = ((izshot*shot.nx)+ixshot)+1;
        	hdr.ntr    = shot.n;
    		hdr.dt     = (unsigned short)1;
    		hdr.trwf   = shot.n;
    		hdr.ns     = rec.n;
        	//hdr.d1     = (rec.x[1]-rec.x[0])*mod.dx; // discrete
        	hdr.d1     = (rec.xr[1]-rec.xr[0]);
        	hdr.f1     = mod.x0+rec.x[0]*mod.dx;
        	hdr.d2     = (shot.x[MIN(shot.n-1,1)]-shot.x[0])*mod.dx;
        	hdr.f2     = mod.x0+shot.x[0]*mod.dx;
			dt_tmp = (fabs(hdr.d1*((float)hdr.scalco)));
			hdr.dt	   = (unsigned short)dt_tmp;
    
        	nwrite = fwrite( &hdr, 1, TRCBYTES, fpt);
        	assert(nwrite == TRCBYTES);
        	nwrite = fwrite( &time[((izshot*shot.nx)+ixshot)*rec.n], sizeof(float), rec.n, fpt);
        	assert(nwrite == rec.n);
	    	fflush(fpt);
	    	if (ray.geomspread) {
            	nwrite = fwrite( &hdr, 1, TRCBYTES, fpa);
            	assert(nwrite == TRCBYTES);
            	nwrite = fwrite( &ampl[((izshot*shot.nx)+ixshot)*rec.n], sizeof(float), rec.n, fpa);
            	assert(nwrite == rec.n);
	        	fflush(fpa);
        	}
			if (file_rcvtime != NULL) {
    			hdr.ns     = rec.nt;
    			hdr.trwf   = rec.n;
    			hdr.ntr    = ((izshot*shot.nx)+ixshot+1)*rec.n;
    			hdr.dt     = dt*1000000;
    			hdr.d1     = dt;
        		hdr.f1     = 0.0;
        		hdr.d2     = (rec.xr[1]-rec.xr[0]);
    			hdr.f2     = mod.x0+rec.x[0]*mod.dx;

        		for (irec=0; irec<rec.n; irec++) {
					ipos = ((izshot*shot.nx)+ixshot)*rec.n + irec;
        			hdr.tracf  = irec+1;
        			hdr.tracl  = ((izshot*shot.nx)+ixshot*shot.nz)+irec+1;
        			hdr.gx     = 1000*(mod.x0+rec.xr[irec]);
        			hdr.offset = (rec.xr[irec]-shot.x[ixshot]*mod.dx);
        			hdr.gelev  = (int)(-1000*(mod.z0+rec.zr[irec]));

					tr = time[ipos]+rdelay;
                    for (ig=0; ig<nfreq; ig++) {
                        cmute[ig].r = (cwav[ig].r*cos(ig*dw*tr-M_PI/4.0)-cwav[ig].i*sin(ig*dw*tr-M_PI/4.0))/(ntfft*ampl[ipos]);
                        cmute[ig].i = (cwav[ig].i*cos(ig*dw*tr-M_PI/4.0)+cwav[ig].r*sin(ig*dw*tr-M_PI/4.0))/(ntfft*ampl[ipos]);
                    }
                	cr1fft(cmute,wavelet,ntfft,-1);
        			nwrite = fwrite( &hdr, 1, TRCBYTES, fprcv);
        			nwrite = fwrite( wavelet, sizeof(float), rec.nt, fprcv );
				}
			}
	        t1=wallclock_time();
            tio += t1-t2;
    	} /* end of ixshot loop */
	} /* end of loop over number of shots */
	fclose(fpt);
	if (file_rcvtime != NULL) fclose(fprcv);
	if (ray.geomspread) fclose(fpa);

	t1= wallclock_time();
	if (verbose) {
		vmess("*******************************************");
		vmess("************* runtime info ****************");
		vmess("*******************************************");
		vmess("Total compute time ray-tracing    = %.2f s.", t1-t0);
		vmess("   - intializing arrays and model = %.3f", tinit);
		vmess("   - ray tracing                  = %.3f", tray);
		vmess("   - writing data to file         = %.3f", tio);
	}

	/* free arrays */

	initargs(argc,argv); /* this will free the arg arrays declared */
	free(velocity);
	free(slowness);
	
	return 0;
}
Example #22
0
/* main program */
main(int argc, char **argv)
{
	
	
	float min, max; 		/* scale */
	double dtmp, tmp, dmin, dmax;
	int nt;			/* number of samples per trace */
	int it;			/* time index */
	FILE *infp=stdin, *outfp=stdout;	
	int itrace;
	int nbad, ibad, report_good, action;
	char *printout;
	FILE *printfp;
	float fmax, fmin;
	int *count, itmp, i; 
	float *plots;
	double rms, rmssum;
	float rmsout, scale;
	int imute, ntrace;
	int itmin, itmax, its;
	
/* initialize */
	initargs(argc, argv);	/* initialize parameter reading */ 
	askdoc(1);		/* on-line self documentation */

/* parameters fetching */

	if (!getparfloat("min",&min)) min=0.0;
	if (!getparfloat("max",&max)) max=1.0e+6;
	if (!getparint("report",&report_good)) report_good=0;
	if (!getparint("action",&action)) action=0;
	if (!getparstring("printout",&printout)) {
		printfp = stderr;
	} else {
		printfp = fopen(printout,"w");
	}

	if (action==3) {
		if(!getparfloat("rmsout",&rmsout)) 
			err(" rmsout missing ");
	}

/* processing */ 

	file2g(infp);
	if (!fgettr(infp,&trin))  err("can't get first trace");
				/* read in the first trace, exit if fail */

	nt = trin.ns;		/* obtain number of samples per trace */

	if(action!=0) file2g(outfp);



	if (!getparint("itmin",&itmin)) itmin = 0;
	if (!getparint("itmax",&itmax)) itmax = nt;

	dmin = min;
	dmax = max;
	nbad = 0;
	itrace=1;
	fmax = 0.;
	fmin = 1.e+38;
	count = (int*) malloc(40*sizeof(int));
	plots = (float*) malloc(160*sizeof(float));
	bzero(count,40*sizeof(int));
	bzero(plots,160*sizeof(float));
	rmssum = 0.;
	ntrace = 0;

	/* Main loop over traces */
	do {

		ibad = 0;
		rms = 0.;
		if(itmin==0) {
			imute = (trin.mute - trin.delrt)*1000/(int)trin.dt;
			if(imute<0) imute=0;
			its = imute;
		} else {
			its = itmin;
		}
		for(it=its;it<nt;it++) {
		        if( !ieeefinite(&trin.data[it]) ) {
				ibad += 1;
				if(action==1) trin.data[it] = 0.;
				count[39] += 1;
			} else {
				rms = rms + trin.data[it]*trin.data[it]; 
				dtmp = trin.data[it];
				tmp = fabs(dtmp);
				if(tmp<dmin || tmp>dmax) {
					ibad += 1;
					if(action==1) trin.data[it] = 0.;
				}
				if(tmp>fmax) {
					 fmax = tmp;
				} else if (tmp<fmin) {
					 fmin = tmp;
				} 
				if(dtmp>0.) {
					dtmp = log10(tmp);
					itmp = dtmp;
				} else {
					itmp = 0;
				}
				if(itmp<0) {
					itmp = 0;
				} else if(itmp>38) {
					itmp = 39;
				} 
				count[itmp] += 1;
			}
		}
		if(nt>its) {
			rms = sqrt(rms/(nt-its));
		}
		
		if(ibad>0 && action==2) bzero((char*)trin.data,nt*4);

		if( (ibad>0 || rms>rmsout) && action==3) {
			if(rms==0) {
				bzero((char*)trin.data,nt*4);
			} else {
				scale = rmsout/rms;
				for(it=0;it<nt;it++) trin.data[it] *=scale;
			}
		}
		if(ibad>0) nbad += 1;

		/* report */
		if(ibad>0) {
		    fprintf(printfp, 
	    "BAD amplitude at trace %d with trace number=%d rms=%g \n",
			itrace,trin.tracl,rms);
		} else if(report_good == 1) {
		    fprintf(printfp, 
		    "GOOD amplitude at trace %d with trace number=%d rms=%g\n",
			itrace,trin.tracl,rms);
		} else if(action==3 && rms>rmsout) {
		    fprintf(printfp, 
	    "BAD rms amplitude at trace %d with trace number=%d rms=%g \n",
			itrace,trin.tracl,rms);
		}
		fflush(printfp);
		itrace +=1;
		if(action!=0) fputtr(outfp,&trin);
		rmssum += rms;
		ntrace += 1; 
 
	} while (fgettr(infp,&trin));		/* reading traces */

	if( ntrace>1) rmssum = rmssum / ntrace;

	fprintf(printfp, 
	"===> Total Number of Bad Traces in Input = %d \n",nbad);
	fprintf(printfp, 
	"===> Maximum Absolute Amplitude in Input = %g \n",fmax);
	fprintf(printfp, 
	"===> Minimum Absolute Amplitude in Input = %g \n",fmin);
	fprintf(printfp, 
	"===> average trace rms amplitude in Input = %g \n",rmssum);
	itmp = 0;
	for(i=0;i<40;i++) itmp += count[i]; 

	
	for(i=0;i<40;i++) {
		plots[i*4] = i;
		plots[i*4+1] = (float)count[i]/(float)itmp*100.;
		plots[i*4+2] = i+1;
		plots[i*4+3] = (float)count[i]/(float)itmp*100.;
	}
		
	for(i=0;i<39;i++) {
		if(count[i]>0) {
			if(i==0) {
				tmp = 0.;
			} else {
				tmp = pow(10.,(float)i);
			}
	fprintf(printfp,
	"===> Percentage of Amplitudes from %g to %g =%-5.2f \n",
	tmp, pow(10.,(float)(i+1)),
	(float)count[i]/(float)itmp*100.);
		}
	}
	if(count[39]>0) fprintf(printfp,
	"===> Percentage of Infinity/NaN Amplitudes =%-5.2f \n",
	(float)count[39]/(float)itmp*100.);
	
	itmp = 80;
	dump2xgraph(plots,&itmp,1,"Input Amplitude Distribution","power of 10",
			"percentage","normal");

	free(count);
	free(plots);

	return 0;
}
Example #23
0
int main(int argc, char **argv)      /*argc, argv - the arguments to the main() function*/
{ 
int nt;                              /*number of time samples*/
int nz;			             /*number of migrated depth samples*/
int nx;                              /*number of midpoints (traces)*/
int ix;
int iz;

float dt;                            /*time sampling interval*/                
float dx;                            /*spatial sampling interval*/
float dz;                            /*migrated depth sampling interval*/           
float **data;                        /*input seismic data*/
complex **image;                     /*migrated image*/      
float **rimage;                      /*migrated image*/ 
float **v;                           /*velocity model*/
FILE *vfp;

char *vfile="";                      /*name of velocity file*/
int verbose=1;
char *tmpdir;		             /* directory path for tmp files*/
cwp_Bool istmpdir=cwp_false;         /* true for user-given path*/

/******************************* Intialize *********************************************/
initargs(argc,argv);
requestdoc(1);

/********************************* Get parameters **************************************/
/*get info from first trace*/
if (!gettr(&tr))  err("can't get first trace");  /*fgettr: get a fixed-length segy trace from a file by file pointer*/
nt = tr.ns;                         /*nt*/       /*gettr: macro using fgettr to get a trace from stdin*/

if (!getparfloat("dt", &dt)) {      /*dt*/
if (tr.dt) { 
dt = ((double) tr.dt)/1000000.0;
} 
else {err("dt is not set");}
}

if (!getparfloat("dx", &dx)) {       /*dx*/
if (tr.d2) {
dx = tr.d2;
} 
else {
err("dx is not set");
}
}

/*get optional parameters*/
if (!getparint("nz",&nz)) err("nz must be specified"); 
if (!getparfloat("dz",&dz)) err("dz must be specified");
if (!getparstring("vfile", &vfile)) err("velocity file must be specified");
if (!getparint("verbose", &verbose)) verbose = 0;
/****************************************************************************************/

/* Look for user-supplied tmpdir */
if (!getparstring("tmpdir",&tmpdir) &&
 !(tmpdir = getenv("CWP_TMPDIR"))) tmpdir="";
if (!STREQ(tmpdir, "") && access(tmpdir, WRITE_OK))
err("you can't write in %s (or it doesn't exist)", tmpdir);
checkpars();

/**************************** Count trace number nx ******************************/
/* store traces and headers in tempfiles while getting a count */
	if (STREQ(tmpdir,"")) {
		tracefp = etmpfile();
		headerfp = etmpfile();
		if (verbose) warn("using tmpfile() call");
	} 
     else { /* user-supplied tmpdir */
		char directory[BUFSIZ];
		strcpy(directory, tmpdir);
		strcpy(tracefile, temporary_filename(directory));
		strcpy(headerfile, temporary_filename(directory));
		/* Trap signals so can remove temp files */
		signal(SIGINT,  (void (*) (int)) closefiles);
		signal(SIGQUIT, (void (*) (int)) closefiles);
		signal(SIGHUP,  (void (*) (int)) closefiles);
		signal(SIGTERM, (void (*) (int)) closefiles);
		tracefp = efopen(tracefile, "w+");
		headerfp = efopen(headerfile, "w+");
      		istmpdir=cwp_true;		
		if (verbose) warn("putting temporary files in %s", directory);
	}

	nx = 0;
	do {
		 ++nx;                                   /*get the number of traces nx*/
		efwrite(&tr,HDRBYTES,1,headerfp);
		efwrite(tr.data, FSIZE, nt, tracefp);
	} while (gettr(&tr));

	erewind(tracefp);                    /*Set position of stream to the beginning*/
	erewind(headerfp);

/******************************************************************************************/

/*allocate memory*/
data = alloc2float(nt,nx);                   /*2D array nx by nt*/
image = alloc2complex(nz,nx);                /*2D array nx by nz*/
rimage = alloc2float(nz,nx);                 /*2D array nx by nz*/
v= alloc2float(nz,nx);                       /*2D array, in Fortran the velocity model is nz by nx 2D array*/ 
                                             /*in binary, it is actually 1D*/

/* load traces into the zero-offset array and close tmpfile */
efread(*data, FSIZE, nt*nx, tracefp);        /*read traces to data*/
efclose(tracefp);                 

/*load velicoty file*/
vfp=efopen(vfile,"r");	
efread(v[0],FSIZE,nz*nx,vfp);                    /*load velocity*/
efclose(vfp);			

/***********************finish reading data*************************************************/
/* call pspi migration function*/
pspimig(data,image,v,nt,nx,nz,dt,dx,dz);

/*get real part of image*/
for (iz=0;iz<nz;iz++){
for (ix=0;ix<nx;ix++){
rimage[ix][iz] = image[ix][iz].r;
}
}

/* restore header fields and write output */
for (ix=0; ix<nx; ix++) {
efread(&tr,HDRBYTES,1,headerfp);
tr.ns = nz;
tr.d1 = dz;
memcpy( (void *) tr.data, (const void *) rimage[ix],nz*FSIZE);
puttr(&tr);
}
	
/* Clean up */
efclose(headerfp);
if (istmpdir) eremove(headerfile);
if (istmpdir) eremove(tracefile);
return(CWP_Exit());	
}
int main(int argc, char **argv) {

int  gelev_vmin, gelev_vmax, selev_vmin, selev_vmax;
int  gelev_min, gelev_max, selev_min, selev_max;
int  gelev_globalmin, gelev_globalmax, selev_globalmin, selev_globalmax;
int  gelev_num, selev_num;
int  imin, iminv, ifirst, nz1, nz, ns, ntr, ntrv, nsv;
double dfirst, delrt, delrtv, twt, dt, dtv, factor, z, amp_out;
double *depth, *tr_amp;
float ***velocity;
short verbose;
register int i, j, k, l;
cwp_String vfile;
FILE *fv;

initargs(argc, argv);
requestdoc (0);

if (!getparshort("verbose", &verbose)) verbose = 1;
if (!getparstring("vfile",&vfile)) vfile = "output.su";

ntr    = gettra (&tr,  0);
fv     = efopen (vfile, "r");
ntrv   = fgettra (fv, &vtr, 0);
delrt  = tr.delrt;
delrtv = vtr.delrt;
if (!getparint("ns",  &ns))  ns  = tr.ns;
if (!getparint("nsv", &nsv)) nsv = vtr.ns;
if (!getparint("nz", &nz)) nz=2000;

dt    = tr.dt  * 0.001;
dtv   = vtr.dt * 0.001;
imin  = nint ( delrt / dt );
iminv = nint ( delrtv / dtv );

depth  = ealloc1double ( ns );
tr_amp = ealloc1double ( ns );

factor = 0.0005;

if ( verbose ) {
   fprintf ( stderr, "\n" );
   fprintf ( stderr, "Number of input traces = %d\n", ntr );
   fprintf ( stderr, "Number of input samples per trace = %d\n", ns );
   fprintf ( stderr, "Number of output samples per trace = %d\n", nz );
   fprintf ( stderr, "Sample rate = %f ms.\n", dt );
   fprintf ( stderr, "Average velocity SU file name = %s\n", vfile );
   fprintf ( stderr, "Number of VAVG input traces = %d\n", ntrv );
   fprintf ( stderr, "Number of VAVG input samples per trace = %d\n", nsv );
   fprintf ( stderr, "VAVG Sample rate = %f ms.\n", dtv );
   fprintf ( stderr, "Input Delay = %f ms., First sample = %d\n", delrt, imin );
   fprintf ( stderr, "Velocity Delay = %f ms., First sample = %d\n", delrtv, iminv );
   fprintf ( stderr, "\n" );
}

rewind ( fv );
gelev_vmin = selev_vmin = INT_MAX;
gelev_vmax = selev_vmax = INT_MIN;
for ( i = 0; i < ntrv; ++i ) {
   fgettr (fv, &vtr);
   gelev_vmin = min ( gelev_vmin, vtr.gelev );
   gelev_vmax = max ( gelev_vmax, vtr.gelev );
   selev_vmin = min ( selev_vmin, vtr.selev );
   selev_vmax = max ( selev_vmax, vtr.selev );
}

if ( verbose ) fprintf ( stderr, "VELOCITY DATA - gelev_vmin = %d, gelev_vmax = %d, selev_vmin = %d, selev_vmax = %d\n", gelev_vmin, gelev_vmax, selev_vmin, selev_vmax );

rewind (stdin);
gelev_min = selev_min = INT_MAX;
gelev_max = selev_max = INT_MIN;
for ( i = 0; i < ntr; ++i ) {
   gettr (&tr);
   gelev_min = min ( gelev_min, tr.gelev );
   gelev_max = max ( gelev_max, tr.gelev );
   selev_min = min ( selev_min, tr.selev );
   selev_max = max ( selev_max, tr.selev );
}

if ( verbose ) fprintf ( stderr, "INPUT DATA -    gelev_min =  %d, gelev_max =  %d, selev_min =  %d, selev_max =  %d\n", gelev_min, gelev_max, selev_min, selev_max );

gelev_globalmin = max ( gelev_min, gelev_vmin );
selev_globalmin = max ( selev_min, selev_vmin );
gelev_globalmax = min ( gelev_max, gelev_vmax );
selev_globalmax = min ( selev_max, selev_vmax );

gelev_num = gelev_globalmax - gelev_globalmin + 1;
selev_num = selev_globalmax - selev_globalmin + 1;

if ( verbose ) {
   fprintf ( stderr, "\n" );
   fprintf ( stderr, "gelev_globalmin = %d, gelev_globalmax = %d, selev_globalmin = %d, selev_globalmax = %d\n", gelev_globalmin, gelev_globalmax, selev_globalmin, selev_globalmax );
   fprintf ( stderr, "gelev_num = %d, selev_num = %d\n", gelev_num, selev_num );
}

velocity = ealloc3float ( nsv, selev_num, gelev_num );

rewind ( fv );
ifirst = 0;
dfirst = 9999999999999999.9;
for ( k = 0; k < ntrv; ++k ) {
   fgettr (fv, &vtr);
   if ( vtr.gelev >= gelev_globalmin && vtr.gelev <= gelev_globalmax && vtr.selev >= selev_globalmin && vtr.selev <= selev_globalmax ) {
      i = vtr.gelev - gelev_globalmin;
      j = vtr.selev - selev_globalmin;
      memcpy( (void *) &velocity[i][j][0], (const void *) &vtr.data, nsv * FSIZE );
      dfirst = min ( dfirst, velocity[i][j][0] * delrtv * factor );
   }
}
efclose (fv);
ifirst = nint ( dfirst / dt );
nz1 = nz - ifirst;
if ( verbose ) fprintf ( stderr, "ifirst = %d, dfirst = %f, nz1 = %d\n", ifirst, dfirst, nz1 );

float zero;
double depth_max;

zero = 0.0;

rewind (stdin);
for ( l = 0; l < ntr; ++l ) {
   gettr (&tr);
   if ( tr.gelev >= gelev_globalmin && tr.gelev <= gelev_globalmax && tr.selev >= selev_globalmin && tr.selev <= selev_globalmax ) {
      i = tr.gelev - gelev_globalmin;
      j = tr.selev - selev_globalmin;
      for ( k = 0; k < nsv; ++k ) {
         twt = ( k * dtv ) + delrtv;
         tr_amp[k] = tr.data[k+iminv];
         depth[k] = velocity[i][j][k] * twt * factor;
      }
      depth_max = depth[nsv-1];
      fprintf ( stderr, "trace number = %5d, depth_max = %f\n", l, depth_max );
      for ( k=ifirst; k < nz1; ++k ) {
         z = k * dt;
         if ( z <= depth_max ) {
            dintlin ( nsv, depth, tr_amp, tr_amp[0], tr_amp[nsv-1], 1, &z, &amp_out );
            tr.data[k-ifirst] = (float) amp_out;
         } else {
            tr.data[k-ifirst] = zero;
         }
      }
      tr.trid = 1;
      tr.ns = nsv;
      tr.delrt = nint ( dfirst );
      tr.dt = nint(dt*1000);
      puttr (&tr);
   } 
} 

free1double (tr_amp);
free1double (depth);
free3float  (velocity);

return EXIT_SUCCESS;

}
Example #25
0
int
main(int argc, char **argv)
{
	int nx,nz,ix,iz,verbose;
	float tmp;
	float **c11,**c13,**c33,**c44,**vp,**vs,**rho,**eps, **delta;

	/* input files */
	char *c11_file, *c13_file, *c33_file, *c44_file;
	FILE *c11fp, *c13fp, *c33fp, *c44fp;

	/* output files */
	char *vp_file,*vs_file,*rho_file,*eps_file,*delta_file;
	FILE *vpfp,*vsfp,*rhofp,*epsfp,*deltafp;

	/* hook up getpar */
	initargs(argc, argv);
	requestdoc(1);

	/* get required parameters */
	MUSTGETPARINT("nx",  &nx );
	MUSTGETPARINT("nz",  &nz );

	/* get parameters */
	if (!getparstring("rho_file", &rho_file))       rho_file="rho.bin";
	if (!getparstring("c11_file", &c11_file))   	c11_file="c11.bin";
	if (!getparstring("c13_file", &c13_file))   	c13_file="c13.bin";
	if (!getparstring("c33_file", &c33_file))   	c33_file="c33.bin";
	if (!getparstring("c44_file", &c44_file))   	c44_file="c44.bin";
	if (!getparstring("vp_file", &vp_file))       	vp_file="vp.bin";
	if (!getparstring("vs_file", &vs_file))       	vs_file="vs.bin";
	if (!getparstring("eps_file", &eps_file))     	eps_file="eps.bin";
	if (!getparstring("delta_file", &delta_file)) 	delta_file="delta.bin";
	if (!getparint("verbose", &verbose))        	verbose = 1;
	

        checkpars();

	/* allocate space */
	rho	= alloc2float(nz,nx);
	c11	= alloc2float(nz,nx);
	c13	= alloc2float(nz,nx);
	c33	= alloc2float(nz,nx);
	c44	= alloc2float(nz,nx);
	vp	= alloc2float(nz,nx);
	vs	= alloc2float(nz,nx);
	eps	= alloc2float(nz,nx);
	delta   = alloc2float(nz,nx);



	/* read mandatory input files */
	rhofp = efopen(rho_file,"r");
	if (efread(*rho, sizeof(float), nz*nx, rhofp)!=nz*nx)
	  err("error reading rho_file=%s!\n",rho_file);

	c11fp = efopen(c11_file,"r");
	if (efread(*c11, sizeof(float), nz*nx, c11fp)!=nz*nx)
	  err("error reading c11_file=%s!\n",c11_file);

	c13fp = efopen(c13_file,"r");
	if (efread(*c13, sizeof(float), nz*nx, c13fp)!=nz*nx)
	  err("error reading c13_file=%s!\n",c13_file);

	c33fp = efopen(c33_file,"r");
	if (efread(*c33, sizeof(float), nz*nx, c33fp)!=nz*nx)
	  err("error reading c33_file=%s!\n",c33_file);

	c44fp = efopen(c44_file,"r");
	if (efread(*c44, sizeof(float), nz*nx, c44fp)!=nz*nx)
	  err("error reading c44_file=%s!\n",c44_file);

	fclose(rhofp);
	fclose(c11fp);
	fclose(c13fp);
	fclose(c33fp);
	fclose(c44fp);


	/* open output file: */
	vpfp = fopen(vp_file,"w");
	vsfp = fopen(vs_file,"w");
	epsfp = fopen(eps_file,"w");
	deltafp = fopen(delta_file,"w");


	/* loop over gridpoints and do calculations */
	for(ix=0; ix<nx; ++ix){
	      for(iz=0; iz<nz; ++iz){
		vp[ix][iz] = sqrt(c33[ix][iz]/rho[ix][iz]);
		vs[ix][iz] = sqrt(c44[ix][iz]/rho[ix][iz]);
		eps[ix][iz] = (c11[ix][iz]-c33[ix][iz])/(2*c33[ix][iz]);
		tmp = (c13[ix][iz]+c44[ix][iz])*(c13[ix][iz]+c44[ix][iz]);
		tmp = tmp - (c33[ix][iz]-c44[ix][iz])*(c33[ix][iz]-c44[ix][iz]);
		delta[ix][iz] = tmp/(2*c33[ix][iz]*(c33[ix][iz]-c44[ix][iz]));
	      }
	}

	/* write the output files to disk */
	efwrite(*vp,sizeof(float),nz*nx,vpfp);
	efwrite(*vs,sizeof(float),nz*nx,vsfp);
	efwrite(*eps,sizeof(float),nz*nx,epsfp);
	efwrite(*delta,sizeof(float),nz*nx,deltafp);
		if(verbose){
	  warn("Output file for vp : %s ",vp_file);
	  warn("Output file for vs : %s ",vs_file);
	  warn("Output file for epsilon : %s ",eps_file);
	  warn("Output file for delta : %s ",delta_file);
	}


	/* free workspace */
	free2float(vp);
	free2float(vs);
	free2float(rho);
	free2float(eps);
	free2float(delta);
	free2float(c11);
	free2float(c13);
	free2float(c33);
	free2float(c44);

	return(CWP_Exit());	
}
Example #26
0
int
main(int argc, char **argv) {
	cwp_String op="mult";	/* operation: add, sub, ..., 		*/
	int iop=MULT;		/* integer abbrev. for op in switch	*/
	int nt;			/* number of samples on input trace	*/
	float a;
	int copy, j, tracl;


	/* Initialize */
	initargs(argc, argv);
	requestdoc(1);


	/* Get information from first trace */
	if (!gettr(&tr)) err("can't get first trace");
	nt = tr.ns;
	tracl = tr.tracl;

	/* Get operation, recall iop initialized to the default FABS */
	getparstring("op", &op);
	if 	(STREQ(op, "add"))	iop = ADD;
	else if (STREQ(op, "sub"))	iop = SUB;
	else if (STREQ(op, "div"))	iop = DIV;
	else if (STREQ(op, "pow"))	iop = POW;
	else if (STREQ(op, "spow"))	iop = SPOW;
	else if (!STREQ(op, "mult"))	
		err("unknown operation=\"%s\", see self-doc", op);
	if (!getparfloat("a", &a)) a = 1;
	if (!getparint("copy", &copy)) copy = 1;
	if (copy > 1) tracl = 1;

	/* Main loop over traces */
	do {

		switch(iop) { register int i;
		case ADD:
			for (i = 0; i < nt; ++i)
				tr.data[i] += a;
		break;
		case SUB:
			for (i = 0; i < nt; ++i)
				tr.data[i] -= a;
		break;
		case MULT:
			for (i = 0; i < nt; ++i)
				tr.data[i] *= a;
		break;
		case DIV:
			for (i = 0; i < nt; ++i)
				tr.data[i] /= a;
		break;
		case POW:
			for (i = 0; i < nt; ++i)
				tr.data[i] = pow(tr.data[i],a);
		break;
		case SPOW:
			for (i = 0; i < nt; ++i)
				tr.data[i] = SGN(tr.data[i])*pow(ABS(tr.data[i]),a);
		break;
		default:  /* defensive programming */
			err("mysterious operation=\"%s\"", op);
		} /* end scope of i */
		
		if (copy == 1) {
			puttr(&tr);
		} else {
			for (j = 1; j <= copy; ++j) {
				tr.tracl = tracl;
				puttr(&tr);
				++tracl;
			}
		}

	} while (gettr(&tr));


	return(CWP_Exit());
}
Example #27
0
int
main(int argc, char **argv)
{
	int nz;		/* numer of depth samples */
	int iz;		/* counter */
	int nt;		/* number of time samples */

	int nzpar;	/* number of getparred depth values for velocities */
	int nvpar;	/* number of getparred velocity values */
	int izpar;	/* counter */

	int verbose;	/* verbose flag, =0 silent, =1 chatty */

	float dz=0.0;	/* depth sampling interval */
	float fz=0.0;	/* first depth value */
	float dt=0.0;	/* time sampling interval for velocities */
	float ft=0.0;	/* first time value */
	float z=0.0;	/* depth values for times */
	float vmin=0.0;	/* minimum velocity */
	float vmax=0.0;	/* maximum velocity */

	float *zpar=NULL;	/* values of z getparred */
	float *vpar=NULL;	/* values of v getparred */
	float *vz=NULL;		/* v(z) velocity as a function of z */
	float *zt=NULL;		/* z(t) depth as a function of t */
	float *temp=NULL;	/* temporary storage array */
	char *vfile="";		/* name of the velocity file */

	/* hook up getpar */
	initargs(argc,argv);
	requestdoc(1);

	/* get time sampling from first header */
	if (!gettr(&tr)) err("can't get first trace");
	nz = tr.ns;

	/* get depth sampling */
	if (!getparfloat("dz",&dz)) dz = ((float) tr.d1);

	/* determine velocity function v(t) */
	vz = ealloc1float(nz);
	if (!getparstring("vfile",&vfile)) {
		nzpar = countparval("z");
		if (nzpar==0) nzpar = 1;
		zpar = ealloc1float(nzpar);
		if (!getparfloat("z",zpar)) zpar[0] = 0.0;
		nvpar = countparval("v");
		if (nvpar==0) nvpar = 1;
		if (nvpar!=nzpar)err("number of t and v values must be equal");
		vpar = ealloc1float(nvpar);
		if (!getparfloat("v",vpar)) vpar[0] = 1500.0;
		for (izpar=1; izpar<nzpar; ++izpar)
			if (zpar[izpar]<=zpar[izpar-1])
				err("zpar must increase monotonically");
		for (iz=0,z=0.0; iz<nz; ++iz,z+=dz)
			intlin(nzpar,zpar,vpar,vpar[0],vpar[nzpar-1],
				1,&z,&vz[iz]);
	} else { /* read from a file */
		if (fread(vz,sizeof(float),nz,fopen(vfile,"r"))!=nz)
			err("cannot read %d velocities from file %s",nz,vfile);
	}

	/* determine minimum and maximum velocities */
	for (iz=1,vmin=vmax=vz[0]; iz<nz; ++iz) {
		if (vz[iz]<vmin) vmin = vz[iz];
		if (vz[iz]>vmax) vmax = vz[iz];
	}

	/* get parameters */
	if (!getparfloat("dt",&dt)) dt = 2.0*dz/vmin;
	if (!getparfloat("ft",&ft)) ft = 2.0*ft/vz[0];
	if (!getparint("nt",&nt)) nt = 1+(nz-1)*dz*2.0/(dt*vmax);
	if (!getparint("verbose",&verbose)) verbose = 0;
	CHECK_NT("nt",nt);

	/* if requested, print time sampling, etc */
	if (verbose) {
		warn("Input:");
		warn("\tnumber of depth samples = %d",nz);
		warn("\tdepth sampling interval = %g",dz);
		warn("\tfirst depth sample = %g",fz);
		warn("Output:");
		warn("\tnumber of time samples = %d",nt);
		warn("\ttime sampling interval = %g",dt);
		warn("\tfirst time sample = %g",ft);
	}

	/* allocate workspace */
	zt = ealloc1float(nt);
	temp = ealloc1float(nz);

	/* make z(t) function */
	makezt(nz,dz,fz,vz,nt,dt,ft,zt);
	
	/* loop over traces */
	do {
		/* update header fields */
		tr.trid = TREAL;
		tr.ns = nt;
		tr.dt = dt*1000000.0;
		tr.f1 = ft;
		tr.d1 = 0.0;

		/* resample */
		memcpy((void *) temp, (const void *) tr.data,nz*sizeof(float));
		ints8r(nz,dz,fz,temp,0.0,0.0,nt,zt,tr.data);

		/* put this trace before getting another */
		puttr(&tr);

	} while(gettr(&tr));

	return(CWP_Exit());
}
Example #28
0
int
main(int argc, char **argv)
{
	int nx,nz;
	float fx,fz,dx,dz,xs,zs,ex,ez,**v,**t,**a,**sg,**bet;
	FILE *vfp=stdin,*tfp=stdout,*afp,*sfp,*bfp;
	char  *bfile="", *sfile="", *afile="";

	/* hook up getpar to handle the parameters */
	initargs(argc,argv);
	requestdoc(0);
	
	/* get required parameters */
	if (!getparint("nx",&nx)) err("must specify nx!\n");
	if (!getparint("nz",&nz)) err("must specify nz!\n");
	if (!getparfloat("xs",&xs)) err("must specify xs!\n");
	if (!getparfloat("zs",&zs)) err("must specify zs!\n");
	
	/* get optional parameters */
	if (!getparfloat("dx",&dx)) dx = 1.0;
	if (!getparfloat("fx",&fx)) fx = 0.0;
	if (!getparfloat("dz",&dz)) dz = 1.0;
	if (!getparfloat("fz",&fz)) fz = 0.0;

	if (!getparstring("sfile",&sfile)) sfile = "sfile";
	if (!getparstring("bfile",&bfile)) bfile = "bfile";
	if (!getparstring("afile",&afile)) afile = "afile";
	
        checkpars();


	if ((sfp=fopen(sfile,"w"))==NULL)
		err("cannot open sfile=%s",sfile);

	if ((bfp=fopen(bfile,"w"))==NULL)
		err("cannot open bfile=%s",bfile);

	if ((afp=fopen(afile,"w"))==NULL)
		err("cannot open afile=%s",afile);

	/* ensure source is in grid */
	ex = fx+(nx-1)*dx;
	ez = fz+(nz-1)*dz;
	if (fx>xs || ex<xs || fz>zs || ez<zs) 
		err("source lies outside of specified (x,z) grid\n");
	
	/* allocate space */
	v = alloc2float(nz,nx);
	t = alloc2float(nz,nx);
	sg = alloc2float(nz,nx);
	a = alloc2float(nz,nx);
	bet = alloc2float(nz,nx);

	/* read velocities */
	fread(v[0],sizeof(float),nx*nz,vfp);

	/* compute times, angles, sigma, and betas */
	eiktam(xs,zs,nz,dz,fz,nx,dx,fx,v,t,a,sg,bet);
	
	/* write first-arrival times */
	fwrite(t[0],sizeof(float),nx*nz,tfp);

	/* write sigma */
	fwrite(sg[0],sizeof(float),nx*nz,sfp);
	
	/* write angle */
	fwrite(a[0],sizeof(float),nx*nz,afp);
	
	/* write beta */
	fwrite(bet[0],sizeof(float),nx*nz,bfp);

	/* close files */
	fclose(sfp);
	fclose(afp);
	fclose(bfp);
	

	/* free space */
	free2float(v);
	free2float(t);
	free2float(a);
	free2float(sg);
	free2float(bet);
	
	return(CWP_Exit());
}
Example #29
0
int main (int argc, char **argv) {

   char *coeff_x, *coeff_x2, *coeff_x3, file[BUFSIZ];
   cwp_Bool active = TRUE;
	
   struct GRD_HEADER grd_x, grd_x2, grd_x3;
   struct GMT_EDGEINFO edgeinfo_x, edgeinfo_x2, edgeinfo_x3;
   struct GMT_BCR bcr_x, bcr_x2, bcr_x3;

   short  check, verbose;
   int    nz, ntr, ns;
   double value, scale_factor, dz, x_loc, y_loc;
   double weight_x, weight_x2, weight_x3;
   double value_coeff_x, value_coeff_x2, value_coeff_x3, tr_sec, dt_sec;
   float  depth_input, amp_output, *tr_amp, *depth;
   register int k, n;

   initargs(argc, argv);
   argc = GMT_begin (argc, argv);

   if (!getparstring("coeff_x", &coeff_x)) {
      fprintf ( stderr, "Must supply Coefficient_X GMT grid (COEFF_X Parameter) --> exiting\n" );
      return EXIT_FAILURE;
   }

   if (!getparstring("coeff_x2", &coeff_x2)) {
      fprintf ( stderr, "Must supply Coefficient_X2 GMT grid (COEFF_X2 Parameter)--> exiting\n" );
      return EXIT_FAILURE;
   }

   if (!getparstring("coeff_x3", &coeff_x3)) {
      fprintf ( stderr, "Must supply Coefficient_X3 GMT grid (COEFF_X3 Parameter)--> exiting\n" );
      return EXIT_FAILURE;
   }

   if (!getparshort("verbose" , &verbose)) verbose = 0;
   if (!getpardouble("weight_x", &weight_x)) weight_x  = 1.0;
   if (!getpardouble("weight_x2", &weight_x2)) weight_x2  = 1.0;
   if (!getpardouble("weight_x3", &weight_x3)) weight_x3  = 1.0;

   if ( verbose ) {
      fprintf ( stderr, "\n" );
      fprintf ( stderr, "X1 Coefficient GMT grid file name = %s\n", coeff_x );
      fprintf ( stderr, "X2 Coefficient GMT grid file name = %s\n", coeff_x2 );
      fprintf ( stderr, "X3 Coefficient GMT grid file name = %s\n", coeff_x3 );
      fprintf ( stderr, "X1 Grid Weighting Value = %f\n", weight_x );
      fprintf ( stderr, "X2 Grid Weighting Value = %f\n", weight_x2 );
      fprintf ( stderr, "X3 Grid Weighting Value = %f\n", weight_x3 );
      fprintf ( stderr, "\n" );
   }

   weight_x  = 1.0 / weight_x;
   weight_x2 = 1.0 / weight_x2;
   weight_x3 = 1.0 / weight_x3;

   GMT_boundcond_init (&edgeinfo_x);
   GMT_boundcond_init (&edgeinfo_x2);
   GMT_boundcond_init (&edgeinfo_x3);

   GMT_grd_init (&grd_x,  argc, argv, FALSE);
   GMT_grd_init (&grd_x2, argc, argv, FALSE);
   GMT_grd_init (&grd_x3, argc, argv, FALSE);

   if (GMT_read_grd_info (coeff_x,  &grd_x))  fprintf (stderr, "%s: Error opening file %s\n", GMT_program, file);
   if (GMT_read_grd_info (coeff_x2, &grd_x2)) fprintf (stderr, "%s: Error opening file %s\n", GMT_program, file);
   if (GMT_read_grd_info (coeff_x3, &grd_x3)) fprintf (stderr, "%s: Error opening file %s\n", GMT_program, file);
		
   f1 = (float *) GMT_memory (VNULL, (size_t)((grd_x.nx  + 4) * (grd_x.ny  + 4)), sizeof(float), GMT_program);
   f2 = (float *) GMT_memory (VNULL, (size_t)((grd_x2.nx + 4) * (grd_x2.ny + 4)), sizeof(float), GMT_program);
   f3 = (float *) GMT_memory (VNULL, (size_t)((grd_x3.nx + 4) * (grd_x3.ny + 4)), sizeof(float), GMT_program);

   GMT_pad[0] = GMT_pad[1] = GMT_pad[2] = GMT_pad[3] = 2;

   GMT_boundcond_param_prep (&grd_x,  &edgeinfo_x);
   GMT_boundcond_param_prep (&grd_x2, &edgeinfo_x2);
   GMT_boundcond_param_prep (&grd_x3, &edgeinfo_x3);

   GMT_boundcond_set (&grd_x,  &edgeinfo_x,  GMT_pad, f1);
   GMT_boundcond_set (&grd_x2, &edgeinfo_x2, GMT_pad, f2);
   GMT_boundcond_set (&grd_x3, &edgeinfo_x3, GMT_pad, f3);

   value = 0.0;
   GMT_bcr_init (&grd_x,  GMT_pad, active, value, &bcr_x);
   GMT_bcr_init (&grd_x2, GMT_pad, active, value, &bcr_x2);
   GMT_bcr_init (&grd_x3, GMT_pad, active, value, &bcr_x3);

   GMT_read_grd (coeff_x,  &grd_x,  f1, 0.0, 0.0, 0.0, 0.0, GMT_pad, FALSE);
   GMT_read_grd (coeff_x2, &grd_x2, f2, 0.0, 0.0, 0.0, 0.0, GMT_pad, FALSE);
   GMT_read_grd (coeff_x3, &grd_x3, f3, 0.0, 0.0, 0.0, 0.0, GMT_pad, FALSE);

   /* Get info from first trace */
   ntr     = gettra (&tr, 0);
   ns      = tr.ns;
   dt_sec  = tr.dt * 0.000001;
   scale_factor = tr.scalco;
   if (scale_factor < 0.0 ) scale_factor *= -1.0;
   if (scale_factor == 0.0 ) scale_factor = 1.0;

   if (!getpardouble ("dz",&dz)) dz = 2.0;
   if (!getparint    ("nz",&nz)) nz = ns;

   if ( verbose ) {
      fprintf ( stderr, "Output depth sample rate = %f\n", dz );
      fprintf ( stderr, "Coordinate scale factor = %f\n", scale_factor );
      fprintf ( stderr, "Number of output depth samples per trace = %d\n", nz );
      fprintf ( stderr, "number of traces = %d, number of samples per trace = %d\n", ntr, ns );
      fprintf ( stderr, "time sample rate (seconds) = %f\n", dt_sec );
   }

   rewind (stdin);

   depth  = ealloc1float ( ns );
   tr_amp = ealloc1float ( nz );

   /* Main loop over traces */
   for ( k = 0; k < ntr; ++k ) {
      gettr (&tr);
      x_loc = tr.sx / scale_factor;
      y_loc = tr.sy / scale_factor;

      check = 0;
      if ( x_loc >= grd_x.x_min && x_loc <= grd_x.x_max && y_loc >= grd_x.y_min && y_loc <= grd_x.y_max ) check = 1;

      if ( check ) {
         value_coeff_x  = GMT_get_bcr_z (&grd_x,  x_loc, y_loc, f1, &edgeinfo_x,  &bcr_x);
         value_coeff_x2 = GMT_get_bcr_z (&grd_x2, x_loc, y_loc, f2, &edgeinfo_x2, &bcr_x2);
         value_coeff_x3 = GMT_get_bcr_z (&grd_x3, x_loc, y_loc, f3, &edgeinfo_x3, &bcr_x3);

	 if ( verbose ) fprintf ( stderr, "Trace num = %d, X-Loc = %f, Y-Loc = %f, X Coefficient = %0.10f, X2 Coefficient = %0.10f, X3 Coefficient = %0.10f\n", 
         k+1, x_loc, y_loc, value_coeff_x, value_coeff_x2, value_coeff_x3 );

	 for ( n=0; n < ns; ++n ) {
            tr_amp[n] = tr.data[n];
	    tr_sec   = n * dt_sec;
	    depth[n] = (((value_coeff_x*tr_sec)*weight_x) + ((value_coeff_x2*pow(tr_sec,2))*weight_x2) + ((value_coeff_x3*pow(tr_sec,3))*weight_x3)) * -1.0;
            if ( verbose == 2 ) fprintf ( stderr, "Trace no. = %5d, Sample = %5d, TWT (secs.) = %.4f, Depth (feet) = %.4f\n", k, n, tr_sec, depth[n] ); 
	 }
	 for ( n=0; n < nz; ++n ) {
	    depth_input = n * dz;
	    intlin ( ns, depth, tr_amp, tr_amp[0], tr_amp[ns-1], 1, &depth_input, &amp_output );
	    dtr.data[n] = amp_output; 
         }
	 dtr.tracl  = tr.tracl;
	 dtr.tracr  = tr.tracr;
	 dtr.ep     = tr.ep;
	 dtr.ns     = nz;
	 dtr.dt     = nint (dz * 1000.0);
	 dtr.sx     = tr.sx;
	 dtr.sy     = tr.sy;
	 dtr.trid   = 1;
	 dtr.fldr   = tr.fldr;
	 dtr.cdp    = tr.cdp ;
	 puttr (&dtr);
      } else {
         fprintf ( stderr, "input trace = %d, xloc = %.0f yloc = %.0f is out of bounds\n", k, x_loc, y_loc);
      }
   }

   GMT_free ((void *)f1);
   GMT_free ((void *)f2);
   GMT_free ((void *)f3);
   GMT_end  (argc, argv);

   free1float (depth);
   free1float (tr_amp);

   return (0);
}
Example #30
0
int main( int argc, char *argv[] )
{
	cwp_String keyg;	/* header key word from segy.h		*/
	cwp_String typeg;	/* ... its type				*/
	Value valg;
	cwp_String key[SU_NKEYS];	/* array of keywords		 */
	cwp_String type[SU_NKEYS];	/* array of keywords		 */
	int index[SU_NKEYS];	/* name of type of getparred key	 */
	
	segy **rec_o;		/* trace header+data matrix */	
	
	int first=0;	/* true when we passed the first gather */
	int ng=0;
	float dt;	/* time sampling interval		*/
	int nt;		/* number of time samples per trace	*/
	int ntr;	/* number of traces per ensemble	*/
	
	int nfft=0;		/* lenghth of padded array		*/
	float snfft;		/* scale factor for inverse fft		*/
	int nf=0;		/* number of frequencies		*/
	float d1;		/* frequency sampling int.		*/
	float *rt;		/* real trace				*/
	complex *ctmix;		/* complex trace			*/
	complex **fd;		/* frequency domain data		*/

	
	float padd;
	
	int nd;			/* number of dimensions */
	float *dx=NULL;
	float fac;
	float vmin;
	int vf;
	
	/* Trimming arrays */
	float *itrm=NULL;
	float *rtrm=NULL;
	float *wht=NULL;
	float trimp=15;
		
	/* Initialize */
	initargs(argc, argv);
	requestdoc(1);
	
	if (!getparstring("keyg", &keyg)) keyg ="ep";
	if (!getparint("vf", &vf)) vf = 1;
	if (!getparfloat("vmin", &vmin)) vmin = 5000;
	if (!getparfloat("padd", &padd)) padd = 25.0;
	padd = 1.0+padd/100.0;
	
	/* Get "key" values */
	nd=countparval("key");
	getparstringarray("key",key);

	/* get types and indexes corresponding to the keys */
	{ int ikey;
		for (ikey=0; ikey<nd; ++ikey) {
			type[ikey]=hdtype(key[ikey]);
			index[ikey]=getindex(key[ikey]);
		}
	}

	dx = ealloc1float(nd);
	MUSTGETPARFLOAT("dx",(float *)dx);
	
	if (!getparfloat("fac", &fac)) fac = 1.0;
	fac = MAX(fac,1.0);

	/* get the first record */
	rec_o = get_gather(&keyg,&typeg,&valg,&nt,&ntr,&dt,&first);
	if(ntr==0) err("Can't get first record\n");
	
	/* set up the fft */
	nfft = npfar(nt*padd);
	if (nfft >= SU_NFLTS || nfft >= PFA_MAX)
		 	err("Padded nt=%d--too big", nfft);
	nf = nfft/2 + 1;
	snfft=1.0/nfft;
	d1 = 1.0/(nfft*dt);
	
	rt = ealloc1float(nfft);
	ctmix = ealloc1complex(nf);
	
	
	do {
		ng++;
		 	
		fd = ealloc2complex(nf,ntr); 
		memset( (void *) ctmix, (int) '\0', nf*sizeof(complex));
		
		itrm = ealloc1float(ntr);
		rtrm = ealloc1float(ntr);
		wht = ealloc1float(ntr);

		/* transform the data into FX domain */
		{ unsigned int itr;
			for(itr=0;itr<ntr;itr++) {
				memcpy( (void *) rt, (const void *) (*rec_o[itr]).data,nt*FSIZE);
				memset( (void *) &rt[nt], (int) '\0', (nfft - nt)*FSIZE);
				pfarc(1, nfft, rt, fd[itr]);
			
			}
		}
		
		/* Do the mixing */
		{ unsigned int imx=0,itr,ifr;
		  float dist;
		  
		  	
			/* Find the trace to mix */
			for(itr=0;itr<ntr;itr++) 
				if((*rec_o[itr]).mark) {
					imx = itr;
					break;
				}
			
			memcpy( (void *) ctmix, (const void *) fd[imx],nf*sizeof(complex));
			
			/* Save the header */
			memcpy( (void *) &tr, (const void *) rec_o[imx],HDRBYTES);
 		  	
			/* weights */
			wht[imx] = 1.0;
			for(itr=0;itr<imx;itr++) {
				 dist=n_distance(rec_o,index,type,dx,nd,imx,itr);
				 wht[itr] = MIN(1.0/dist,1.0);
				 wht[itr] = 1.0;
			}
			
			for(itr=imx+1;itr<ntr;itr++) {
				 dist=n_distance(rec_o,index,type,dx,nd,imx,itr);
				 wht[itr] = MIN(1.0/dist,1.0);
				 wht[itr] = 1.0;
			}
				 
			
			/* Do the alpha trim for each trace */			
			for(ifr=0;ifr<nf;ifr++) {
 		  		for(itr=0;itr<ntr;itr++) {
					itrm[itr] = fd[itr][ifr].i;
					rtrm[itr] = fd[itr][ifr].r;
				}
				ctmix[ifr].i = alpha_trim_w(itrm,wht,ntr,trimp);
				ctmix[ifr].r = alpha_trim_w(rtrm,wht,ntr,trimp);
			}
			
					
		}
		
		
		{ unsigned int it;
			pfacr(-1, nfft, ctmix, rt);
				for(it=0;it<nt;it++) 		
					tr.data[it]=rt[it]*snfft;
		}
			
		free2complex(fd);

		{ unsigned int itr;
			for(itr=0;itr<ntr;itr++) {
				free1((void *)rec_o[itr]);
			}
		}
		
		puttr(&tr);
		
	    	rec_o = get_gather(&keyg,&typeg,&valg,&nt,&ntr,&dt,&first);
		
		fprintf(stderr," %d %d\n",ng,ntr);
		
		free1float(rtrm);
		free1float(itrm);
		free1float(wht);
		
	} while(ntr);
		
	
	free1float(rt);

	warn("Number of gathers %10d\n",ng);
	 
	return EXIT_SUCCESS;
}