Example #1
0
void gf_general_do_region_check(gf_t *gf, gf_general_t *a, void *orig_a, void *orig_target, void *final_target, int bytes, int xor)
{
  gf_internal_t *h;
  int w, words, i;
  gf_general_t oa, ot, ft, sb;
  char sa[50], soa[50], sot[50], sft[50], ssb[50];
  uint8_t *p;

  h = (gf_internal_t *) gf->scratch;
  w = h->w;

  words = (bytes * 8) / w;
  for (i = 0; i < words; i++) {
    if (w <= 32) {
      oa.w32 = gf->extract_word.w32(gf, orig_a, bytes, i);
      ot.w32 = gf->extract_word.w32(gf, orig_target, bytes, i);
      ft.w32 = gf->extract_word.w32(gf, final_target, bytes, i);
      sb.w32 = gf->multiply.w32(gf, a->w32, oa.w32);
      if (xor) sb.w32 ^= ot.w32;
    } else if (w <= 64) {
      oa.w64 = gf->extract_word.w64(gf, orig_a, bytes, i);
      ot.w64 = gf->extract_word.w64(gf, orig_target, bytes, i);
      ft.w64 = gf->extract_word.w64(gf, final_target, bytes, i);
      sb.w64 = gf->multiply.w64(gf, a->w64, oa.w64);
      if (xor) sb.w64 ^= ot.w64;
    } else {
      gf->extract_word.w128(gf, orig_a, bytes, i, oa.w128);
      gf->extract_word.w128(gf, orig_target, bytes, i, ot.w128);
      gf->extract_word.w128(gf, final_target, bytes, i, ft.w128);
      gf->multiply.w128(gf, a->w128, oa.w128, sb.w128);
      if (xor) {
        sb.w128[0] ^= ot.w128[0];
        sb.w128[1] ^= ot.w128[1];
      }
    }

    if (!gf_general_are_equal(&ft, &sb, w)) {
      
      fprintf(stderr,"Problem with region multiply (all values in hex):\n");
      fprintf(stderr,"   Target address base: 0x%lx.  Word 0x%x of 0x%x.  Xor: %d\n", 
                 (unsigned long) final_target, i, words, xor);
      gf_general_val_to_s(a, w, sa, 1);
      gf_general_val_to_s(&oa, w, soa, 1);
      gf_general_val_to_s(&ot, w, sot, 1);
      gf_general_val_to_s(&ft, w, sft, 1);
      gf_general_val_to_s(&sb, w, ssb, 1);
      fprintf(stderr,"   Value: %s\n", sa);
      fprintf(stderr,"   Original source word: %s\n", soa);
      if (xor) fprintf(stderr,"   XOR with target word: %s\n", sot);
      fprintf(stderr,"   Product word: %s\n", sft);
      fprintf(stderr,"   It should be: %s\n", ssb);
      exit(0);
    }
  }
}
Example #2
0
int main(int argc, char **argv)
{
  signal(SIGSEGV, SigHandler);

  int w, i, verbose, single, region, tested, top;
  int s_start, d_start, bytes, xor, alignment_test;
  gf_t   gf, gf_def;
  time_t t0;
  gf_internal_t *h;
  gf_general_t *a, *b, *c, *d, *ai, *bi;
  uint8_t a8, b8, c8, *mult4, *div4, *mult8, *div8;
  uint16_t a16, b16, c16, d16, *log16, *alog16;
  char as[50], bs[50], cs[50], ds[50], ais[50], bis[50];
  uint32_t mask;
  char *ra, *rb, *rc, *rd, *target;
  int align;


  if (argc < 4) usage(NULL);

  if (sscanf(argv[1], "%d", &w) == 0){
    usage("Bad w\n");
  }

  if (sscanf(argv[3], "%ld", &t0) == 0) usage("Bad seed\n");
  if (t0 == -1) t0 = time(0);
  MOA_Seed(t0);

  if (w > 32 && w != 64 && w != 128) usage("Bad w");
  
  if (create_gf_from_argv(&gf, w, argc, argv, 4) == 0) usage(BM);
  printf("Size (bytes): %d\n", gf_size(&gf));

  for (i = 0; i < strlen(argv[2]); i++) {
    if (strchr("ASRV", argv[2][i]) == NULL) usage("Bad test\n");
  }

  h = (gf_internal_t *) gf.scratch;
  a = (gf_general_t *) malloc(sizeof(gf_general_t));
  b = (gf_general_t *) malloc(sizeof(gf_general_t));
  c = (gf_general_t *) malloc(sizeof(gf_general_t));
  d = (gf_general_t *) malloc(sizeof(gf_general_t));
  ai = (gf_general_t *) malloc(sizeof(gf_general_t));
  bi = (gf_general_t *) malloc(sizeof(gf_general_t));

  //15 bytes extra to make sure it's 16byte aligned
  ra = (char *) malloc(sizeof(char)*REGION_SIZE+15);
  rb = (char *) malloc(sizeof(char)*REGION_SIZE+15);
  rc = (char *) malloc(sizeof(char)*REGION_SIZE+15);
  rd = (char *) malloc(sizeof(char)*REGION_SIZE+15);

  //this still assumes 8 byte aligned pointer from malloc
  //(which is usual on 32-bit machines)
  ra += (uint64_t)ra & 0xf;
  rb += (uint64_t)rb & 0xf;
  rc += (uint64_t)rc & 0xf;
  rd += (uint64_t)rd & 0xf;

  if (w <= 32) {
    mask = 0;
    for (i = 0; i < w; i++) mask |= (1 << i);
  }

  verbose = (strchr(argv[2], 'V') != NULL);
  single = (strchr(argv[2], 'S') != NULL || strchr(argv[2], 'A') != NULL);
  region = (strchr(argv[2], 'R') != NULL || strchr(argv[2], 'A') != NULL);

  if (!gf_init_hard(&gf_def, w, GF_MULT_DEFAULT, GF_REGION_DEFAULT, GF_DIVIDE_DEFAULT,
      (h->mult_type != GF_MULT_COMPOSITE) ? h->prim_poly : 0, 0, 0, NULL, NULL))
    problem("No default for this value of w");
  if (w == 4) {
    mult4 = gf_w4_get_mult_table(&gf);
    div4 = gf_w4_get_div_table(&gf);
  }

  if (w == 8) {
    mult8 = gf_w8_get_mult_table(&gf);
    div8 = gf_w8_get_div_table(&gf);
  }

  if (w == 16) {
    log16 = gf_w16_get_log_table(&gf);
    alog16 = gf_w16_get_mult_alog_table(&gf);
  }

  if (verbose) printf("Seed: %ld\n", t0);

  if (single) {
    
    if (gf.multiply.w32 == NULL) problem("No multiplication operation defined.");
    if (verbose) { printf("Testing single multiplications/divisions.\n"); fflush(stdout); }
    if (w <= 10) {
      top = (1 << w)*(1 << w);
    } else {
      top = 1024*1024;
    }
    for (i = 0; i < top; i++) {
      if (w <= 10) {
        a->w32 = i % (1 << w);
        b->w32 = (i >> w);

      //Allen: the following conditions were being run 10 times each. That didn't seem like nearly enough to
      //me for these special cases, so I converted to doing this mod stuff to easily make the number of times
      //run both larger and proportional to the total size of the run.
      } else {
        switch (i % 32)
        {
          case 0: 
            gf_general_set_zero(a, w);
            gf_general_set_random(b, w, 1);
            break;
          case 1:
            gf_general_set_random(a, w, 1);
            gf_general_set_zero(b, w);
            break;
          case 2:
            gf_general_set_one(a, w);
            gf_general_set_random(b, w, 1);
            break;
          case 3:
            gf_general_set_random(a, w, 1);
            gf_general_set_one(b, w);
            break;
          default:
            gf_general_set_random(a, w, 1);
            gf_general_set_random(b, w, 1);
        }
      }

      //Allen: the following special cases for w=64 are based on the code below for w=128.
      //These w=64 cases are based on Dr. Plank's suggestion because some of the methods for w=64
      //involve splitting it in two. I think they're less likely to give errors than the 128-bit case
      //though, because the 128 bit case is always split in two.
      //As with w=128, I'm arbitrarily deciding to do this sort of thing with a quarter of the cases
      if (w == 64) {
        switch (i % 32)
        {
          case 0: if (!gf_general_is_one(a, w)) a->w64 &= RMASK; break;
          case 1: if (!gf_general_is_one(a, w)) a->w64 &= LMASK; break;
          case 2: if (!gf_general_is_one(a, w)) a->w64 &= RMASK; if (!gf_general_is_one(b, w)) b->w64 &= RMASK; break;
          case 3: if (!gf_general_is_one(a, w)) a->w64 &= RMASK; if (!gf_general_is_one(b, w)) b->w64 &= LMASK; break;
          case 4: if (!gf_general_is_one(a, w)) a->w64 &= LMASK; if (!gf_general_is_one(b, w)) b->w64 &= RMASK; break;
          case 5: if (!gf_general_is_one(a, w)) a->w64 &= LMASK; if (!gf_general_is_one(b, w)) b->w64 &= LMASK; break;
          case 6: if (!gf_general_is_one(b, w)) b->w64 &= RMASK; break;
          case 7: if (!gf_general_is_one(b, w)) b->w64 &= LMASK; break;
        }
      }

      //Allen: for w=128, we have important special cases where one half or the other of the number is all
      //zeros. The probability of hitting such a number randomly is 1^-64, so if we don't force these cases
      //we'll probably never hit them. This could be implemented more efficiently by changing the set-random
      //function for w=128, but I think this is easier to follow.
      //I'm arbitrarily deciding to do this sort of thing with a quarter of the cases
      if (w == 128) {
        switch (i % 32)
        {
          case 0: if (!gf_general_is_one(a, w)) a->w128[0] = 0; break;
          case 1: if (!gf_general_is_one(a, w)) a->w128[1] = 0; break;
          case 2: if (!gf_general_is_one(a, w)) a->w128[0] = 0; if (!gf_general_is_one(b, w)) b->w128[0] = 0; break;
          case 3: if (!gf_general_is_one(a, w)) a->w128[0] = 0; if (!gf_general_is_one(b, w)) b->w128[1] = 0; break;
          case 4: if (!gf_general_is_one(a, w)) a->w128[1] = 0; if (!gf_general_is_one(b, w)) b->w128[0] = 0; break;
          case 5: if (!gf_general_is_one(a, w)) a->w128[1] = 0; if (!gf_general_is_one(b, w)) b->w128[1] = 0; break;
          case 6: if (!gf_general_is_one(b, w)) b->w128[0] = 0; break;
          case 7: if (!gf_general_is_one(b, w)) b->w128[1] = 0; break;
        }
      }

      tested = 0;
      gf_general_multiply(&gf, a, b, c);
      
      /* If w is 4, 8 or 16, then there are inline multiplication/division methods.  
         Test them here. */

      if (w == 4 && mult4 != NULL) {
        a8 = a->w32;
        b8 = b->w32;
        c8 = GF_W4_INLINE_MULTDIV(mult4, a8, b8);
        if (c8 != c->w32) {
          printf("Error in inline multiplication. %d * %d.  Inline = %d.  Default = %d.\n",
             a8, b8, c8, c->w32);
          exit(1);
        }
      }

      if (w == 8 && mult8 != NULL) {
        a8 = a->w32;
        b8 = b->w32;
        c8 = GF_W8_INLINE_MULTDIV(mult8, a8, b8);
        if (c8 != c->w32) {
          printf("Error in inline multiplication. %d * %d.  Inline = %d.  Default = %d.\n",
             a8, b8, c8, c->w32);
          exit(1);
        }
      }

      if (w == 16 && log16 != NULL) {
        a16 = a->w32;
        b16 = b->w32;
        c16 = GF_W16_INLINE_MULT(log16, alog16, a16, b16);
        if (c16 != c->w32) {
          printf("Error in inline multiplication. %d * %d.  Inline = %d.  Default = %d.\n",
             a16, b16, c16, c->w32);
          printf("%d %d\n", log16[a16], log16[b16]);
          top = log16[a16] + log16[b16];
          printf("%d %d\n", top, alog16[top]);
          exit(1);
        }
      }

      /* If this is not composite, then first test against the default: */

      if (h->mult_type != GF_MULT_COMPOSITE) {
        tested = 1;
        gf_general_multiply(&gf_def, a, b, d);

        if (!gf_general_are_equal(c, d, w)) {
          gf_general_val_to_s(a, w, as, 1);
          gf_general_val_to_s(b, w, bs, 1);
          gf_general_val_to_s(c, w, cs, 1);
          gf_general_val_to_s(d, w, ds, 1);
          printf("Error in single multiplication (all numbers in hex):\n\n");
          printf("  gf.multiply(gf, %s, %s) = %s\n", as, bs, cs);
          printf("  The default gf multiplier returned %s\n", ds);
          exit(1);
        }
      }

      /* Now, we also need to double-check by other means, in case the default is wanky, 
         and when we're performing composite operations. Start with 0 and 1, where we know
         what the result should be. */

      if (gf_general_is_zero(a, w) || gf_general_is_zero(b, w) || 
          gf_general_is_one(a, w)  || gf_general_is_one(b, w)) {
        tested = 1;
        if (((gf_general_is_zero(a, w) || gf_general_is_zero(b, w)) && !gf_general_is_zero(c, w)) ||
            (gf_general_is_one(a, w) && !gf_general_are_equal(b, c, w)) ||
            (gf_general_is_one(b, w) && !gf_general_are_equal(a, c, w))) {
          gf_general_val_to_s(a, w, as, 1);
          gf_general_val_to_s(b, w, bs, 1);
          gf_general_val_to_s(c, w, cs, 1);
          printf("Error in single multiplication (all numbers in hex):\n\n");
          printf("  gf.multiply(gf, %s, %s) = %s, which is clearly wrong.\n", as, bs, cs);
;
          exit(1);
        }
      }

      /* Dumb check to make sure that it's not returning numbers that are too big: */

      if (w < 32 && (c->w32 & mask) != c->w32) {
        gf_general_val_to_s(a, w, as, 1);
        gf_general_val_to_s(b, w, bs, 1);
        gf_general_val_to_s(c, w, cs, 1);
        printf("Error in single multiplication (all numbers in hex):\n\n");
        printf("  gf.multiply.w32(gf, %s, %s) = %s, which is too big.\n", as, bs, cs);
        exit(1);
      }

      /* Finally, let's check to see that multiplication and division work together */

      if (!gf_general_is_zero(a, w)) {
        gf_general_divide(&gf, c, a, d);
        if (!gf_general_are_equal(b, d, w)) {
          gf_general_val_to_s(a, w, as, 1);
          gf_general_val_to_s(b, w, bs, 1);
          gf_general_val_to_s(c, w, cs, 1);
          gf_general_val_to_s(d, w, ds, 1);
          printf("Error in single multiplication/division (all numbers in hex):\n\n");
          printf("  gf.multiply(gf, %s, %s) = %s, but gf.divide(gf, %s, %s) = %s\n", as, bs, cs, cs, as, ds);
          exit(1);
        }
      }

    }