static char *row_name(struct csa *csa, int i, char rname[255+1]) { /* construct symbolic name of i-th row (constraint) */ const char *name; if (i == 0) name = glp_get_obj_name(csa->P); else name = glp_get_row_name(csa->P, i); if (name == NULL) goto fake; strcpy(rname, name); adjust_name(rname); if (check_name(rname)) goto fake; return rname; fake: if (i == 0) strcpy(rname, "obj"); else sprintf(rname, "r_%d", i); return rname; }
static void update_quality (struct GAS_MLP_Handle *mlp, struct ATS_Address * address) { GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Updating quality metrics for peer `%s'\n", GNUNET_i2s (&address->peer)); GNUNET_assert (NULL != address); GNUNET_assert (NULL != address->mlp_information); GNUNET_assert (NULL != address->ats); struct MLP_information *mlpi = address->mlp_information; struct GNUNET_ATS_Information *ats = address->ats; GNUNET_assert (mlpi != NULL); int c; for (c = 0; c < GNUNET_ATS_QualityPropertiesCount; c++) { int index = mlp_lookup_ats(address, mlp->q[c]); if (index == GNUNET_SYSERR) continue; GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Updating address for peer `%s' value `%s': %f\n", GNUNET_i2s (&address->peer), mlp_ats_to_string(mlp->q[c]), (double) ats[index].value); int i = mlpi->q_avg_i[c]; double * qp = mlpi->q[c]; qp[i] = (double) ats[index].value; int t; for (t = 0; t < MLP_AVERAGING_QUEUE_LENGTH; t++) { GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Peer `%s': `%s' queue[%u]: %f\n", GNUNET_i2s (&address->peer), mlp_ats_to_string(mlp->q[c]), t, qp[t]); } if (mlpi->q_avg_i[c] + 1 < (MLP_AVERAGING_QUEUE_LENGTH)) mlpi->q_avg_i[c] ++; else mlpi->q_avg_i[c] = 0; int c2; int c3; double avg = 0.0; switch (mlp->q[c]) { case GNUNET_ATS_QUALITY_NET_DELAY: c3 = 0; for (c2 = 0; c2 < MLP_AVERAGING_QUEUE_LENGTH; c2++) { if (mlpi->q[c][c2] != -1) { double * t2 = mlpi->q[c] ; avg += t2[c2]; c3 ++; } } if ((c3 > 0) && (avg > 0)) /* avg = 1 / ((q[0] + ... + q[l]) /c3) => c3 / avg*/ mlpi->q_averaged[c] = (double) c3 / avg; else mlpi->q_averaged[c] = 0.0; GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Peer `%s': `%s' average sum: %f, average: %f, weight: %f\n", GNUNET_i2s (&address->peer), mlp_ats_to_string(mlp->q[c]), avg, avg / (double) c3, mlpi->q_averaged[c]); break; case GNUNET_ATS_QUALITY_NET_DISTANCE: c3 = 0; for (c2 = 0; c2 < MLP_AVERAGING_QUEUE_LENGTH; c2++) { if (mlpi->q[c][c2] != -1) { double * t2 = mlpi->q[c] ; avg += t2[c2]; c3 ++; } } if ((c3 > 0) && (avg > 0)) /* avg = 1 / ((q[0] + ... + q[l]) /c3) => c3 / avg*/ mlpi->q_averaged[c] = (double) c3 / avg; else mlpi->q_averaged[c] = 0.0; GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Peer `%s': `%s' average sum: %f, average: %f, weight: %f\n", GNUNET_i2s (&address->peer), mlp_ats_to_string(mlp->q[c]), avg, avg / (double) c3, mlpi->q_averaged[c]); break; default: break; } if ((mlpi->c_b != 0) && (mlpi->r_q[c] != 0)) { /* Get current number of columns */ int found = GNUNET_NO; int cols = glp_get_num_cols(mlp->prob); int *ind = GNUNET_malloc (cols * sizeof (int) + 1); double *val = GNUNET_malloc (cols * sizeof (double) + 1); /* Get the matrix row of quality */ int length = glp_get_mat_row(mlp->prob, mlp->r_q[c], ind, val); GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "cols %i, length %i c_b %i\n", cols, length, mlpi->c_b); int c4; /* Get the index if matrix row of quality */ for (c4 = 1; c4 <= length; c4++ ) { if (mlpi->c_b == ind[c4]) { /* Update the value */ GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "Updating quality `%s' column `%s' row `%s' : %f -> %f\n", mlp_ats_to_string(mlp->q[c]), glp_get_col_name (mlp->prob, ind[c4]), glp_get_row_name (mlp->prob, mlp->r_q[c]), val[c4], mlpi->q_averaged[c]); val[c4] = mlpi->q_averaged[c]; found = GNUNET_YES; break; } } if (found == GNUNET_NO) { ind[length+1] = mlpi->c_b; val[length+1] = mlpi->q_averaged[c]; GNUNET_log (GNUNET_ERROR_TYPE_DEBUG, "%i ind[%i] val[%i]: %i %f\n", length+1, length+1, length+1, mlpi->c_b, mlpi->q_averaged[c]); glp_set_mat_row (mlp->prob, mlpi->r_q[c], length+1, ind, val); } else { /* Get the index if matrix row of quality */ glp_set_mat_row (mlp->prob, mlpi->r_q[c], length, ind, val); } GNUNET_free (ind); GNUNET_free (val); } } }
int glp_print_ranges(glp_prob *P, int len, const int list[], int flags, const char *fname) { /* print sensitivity analysis report */ glp_file *fp = NULL; GLPROW *row; GLPCOL *col; int m, n, pass, k, t, numb, type, stat, var1, var2, count, page, ret; double lb, ub, slack, coef, prim, dual, value1, value2, coef1, coef2, obj1, obj2; const char *name, *limit; char buf[13+1]; /* sanity checks */ if (P == NULL || P->magic != GLP_PROB_MAGIC) xerror("glp_print_ranges: P = %p; invalid problem object\n", P); m = P->m, n = P->n; if (len < 0) xerror("glp_print_ranges: len = %d; invalid list length\n", len); if (len > 0) { if (list == NULL) xerror("glp_print_ranges: list = %p: invalid parameter\n", list); for (t = 1; t <= len; t++) { k = list[t]; if (!(1 <= k && k <= m+n)) xerror("glp_print_ranges: list[%d] = %d; row/column numb" "er out of range\n", t, k); } } if (flags != 0) xerror("glp_print_ranges: flags = %d; invalid parameter\n", flags); if (fname == NULL) xerror("glp_print_ranges: fname = %p; invalid parameter\n", fname); if (glp_get_status(P) != GLP_OPT) { xprintf("glp_print_ranges: optimal basic solution required\n"); ret = 1; goto done; } if (!glp_bf_exists(P)) { xprintf("glp_print_ranges: basis factorization required\n"); ret = 2; goto done; } /* start reporting */ xprintf("Write sensitivity analysis report to '%s'...\n", fname); fp = glp_open(fname, "w"); if (fp == NULL) { xprintf("Unable to create '%s' - %s\n", fname, get_err_msg()); ret = 3; goto done; } page = count = 0; for (pass = 1; pass <= 2; pass++) for (t = 1; t <= (len == 0 ? m+n : len); t++) { if (t == 1) count = 0; k = (len == 0 ? t : list[t]); if (pass == 1 && k > m || pass == 2 && k <= m) continue; if (count == 0) { xfprintf(fp, "GLPK %-4s - SENSITIVITY ANALYSIS REPORT%73sPa" "ge%4d\n", glp_version(), "", ++page); xfprintf(fp, "\n"); xfprintf(fp, "%-12s%s\n", "Problem:", P->name == NULL ? "" : P->name); xfprintf(fp, "%-12s%s%s%.10g (%s)\n", "Objective:", P->obj == NULL ? "" : P->obj, P->obj == NULL ? "" : " = ", P->obj_val, P->dir == GLP_MIN ? "MINimum" : P->dir == GLP_MAX ? "MAXimum" : "???"); xfprintf(fp, "\n"); xfprintf(fp, "%6s %-12s %2s %13s %13s %13s %13s %13s %13s " "%s\n", "No.", pass == 1 ? "Row name" : "Column name", "St", "Activity", pass == 1 ? "Slack" : "Obj coef", "Lower bound", "Activity", "Obj coef", "Obj value at", "Limiting"); xfprintf(fp, "%6s %-12s %2s %13s %13s %13s %13s %13s %13s " "%s\n", "", "", "", "", "Marginal", "Upper bound", "range", "range", "break point", "variable"); xfprintf(fp, "------ ------------ -- ------------- --------" "----- ------------- ------------- ------------- ------" "------- ------------\n"); } if (pass == 1) { numb = k; xassert(1 <= numb && numb <= m); row = P->row[numb]; name = row->name; type = row->type; lb = glp_get_row_lb(P, numb); ub = glp_get_row_ub(P, numb); coef = 0.0; stat = row->stat; prim = row->prim; if (type == GLP_FR) slack = - prim; else if (type == GLP_LO) slack = lb - prim; else if (type == GLP_UP || type == GLP_DB || type == GLP_FX) slack = ub - prim; dual = row->dual; } else { numb = k - m; xassert(1 <= numb && numb <= n); col = P->col[numb]; name = col->name; lb = glp_get_col_lb(P, numb); ub = glp_get_col_ub(P, numb); coef = col->coef; stat = col->stat; prim = col->prim; slack = 0.0; dual = col->dual; } if (stat != GLP_BS) { glp_analyze_bound(P, k, &value1, &var1, &value2, &var2); if (stat == GLP_NF) coef1 = coef2 = coef; else if (stat == GLP_NS) coef1 = -DBL_MAX, coef2 = +DBL_MAX; else if (stat == GLP_NL && P->dir == GLP_MIN || stat == GLP_NU && P->dir == GLP_MAX) coef1 = coef - dual, coef2 = +DBL_MAX; else coef1 = -DBL_MAX, coef2 = coef - dual; if (value1 == -DBL_MAX) { if (dual < -1e-9) obj1 = +DBL_MAX; else if (dual > +1e-9) obj1 = -DBL_MAX; else obj1 = P->obj_val; } else obj1 = P->obj_val + dual * (value1 - prim); if (value2 == +DBL_MAX) { if (dual < -1e-9) obj2 = -DBL_MAX; else if (dual > +1e-9) obj2 = +DBL_MAX; else obj2 = P->obj_val; } else obj2 = P->obj_val + dual * (value2 - prim); } else { glp_analyze_coef(P, k, &coef1, &var1, &value1, &coef2, &var2, &value2); if (coef1 == -DBL_MAX) { if (prim < -1e-9) obj1 = +DBL_MAX; else if (prim > +1e-9) obj1 = -DBL_MAX; else obj1 = P->obj_val; } else obj1 = P->obj_val + (coef1 - coef) * prim; if (coef2 == +DBL_MAX) { if (prim < -1e-9) obj2 = -DBL_MAX; else if (prim > +1e-9) obj2 = +DBL_MAX; else obj2 = P->obj_val; } else obj2 = P->obj_val + (coef2 - coef) * prim; } /*** first line ***/ /* row/column number */ xfprintf(fp, "%6d", numb); /* row/column name */ xfprintf(fp, " %-12.12s", name == NULL ? "" : name); if (name != NULL && strlen(name) > 12) xfprintf(fp, "%s\n%6s %12s", name+12, "", ""); /* row/column status */ xfprintf(fp, " %2s", stat == GLP_BS ? "BS" : stat == GLP_NL ? "NL" : stat == GLP_NU ? "NU" : stat == GLP_NF ? "NF" : stat == GLP_NS ? "NS" : "??"); /* row/column activity */ xfprintf(fp, " %s", format(buf, prim)); /* row slack, column objective coefficient */ xfprintf(fp, " %s", format(buf, k <= m ? slack : coef)); /* row/column lower bound */ xfprintf(fp, " %s", format(buf, lb)); /* row/column activity range */ xfprintf(fp, " %s", format(buf, value1)); /* row/column objective coefficient range */ xfprintf(fp, " %s", format(buf, coef1)); /* objective value at break point */ xfprintf(fp, " %s", format(buf, obj1)); /* limiting variable name */ if (var1 != 0) { if (var1 <= m) limit = glp_get_row_name(P, var1); else limit = glp_get_col_name(P, var1 - m); if (limit != NULL) xfprintf(fp, " %s", limit); } xfprintf(fp, "\n"); /*** second line ***/ xfprintf(fp, "%6s %-12s %2s %13s", "", "", "", ""); /* row/column reduced cost */ xfprintf(fp, " %s", format(buf, dual)); /* row/column upper bound */ xfprintf(fp, " %s", format(buf, ub)); /* row/column activity range */ xfprintf(fp, " %s", format(buf, value2)); /* row/column objective coefficient range */ xfprintf(fp, " %s", format(buf, coef2)); /* objective value at break point */ xfprintf(fp, " %s", format(buf, obj2)); /* limiting variable name */ if (var2 != 0) { if (var2 <= m) limit = glp_get_row_name(P, var2); else limit = glp_get_col_name(P, var2 - m); if (limit != NULL) xfprintf(fp, " %s", limit); } xfprintf(fp, "\n"); xfprintf(fp, "\n"); /* print 10 items per page */ count = (count + 1) % 10; } xfprintf(fp, "End of report\n"); #if 0 /* FIXME */ xfflush(fp); #endif if (glp_ioerr(fp)) { xprintf("Write error on '%s' - %s\n", fname, get_err_msg()); ret = 4; goto done; } ret = 0; done: if (fp != NULL) glp_close(fp); return ret; }
const char *lpx_get_row_name(LPX *lp, int i) { /* retrieve row name */ return glp_get_row_name(lp, i); }
const char *c_glp_get_row_name (glp_prob *lp, int i){ return glp_get_row_name (lp, i); }
// retrieve all missing values of LP/MILP void Rglpk_retrieve_MP_from_file (char **file, int *type, int *lp_n_constraints, int *lp_n_objective_vars, double *lp_objective_coefficients, int *lp_constraint_matrix_i, int *lp_constraint_matrix_j, double *lp_constraint_matrix_values, int *lp_direction_of_constraints, double *lp_right_hand_side, double *lp_left_hand_side, int *lp_objective_var_is_integer, int *lp_objective_var_is_binary, int *lp_bounds_type, double *lp_bounds_lower, double *lp_bounds_upper, int *lp_ignore_first_row, int *lp_verbosity, char **lp_constraint_names, char **lp_objective_vars_names ) { extern glp_prob *lp; glp_tran *tran; const char *str; int i, j, lp_column_kind, tmp; int ind_offset, status; // Turn on/off Terminal Output if (*lp_verbosity==1) glp_term_out(GLP_ON); else glp_term_out(GLP_OFF); // create problem object if (lp) glp_delete_prob(lp); lp = glp_create_prob(); // read file -> gets stored as an GLPK problem object 'lp' // which file type do we have? switch (*type){ case 1: // Fixed (ancient) MPS Format, param argument currently NULL status = glp_read_mps(lp, GLP_MPS_DECK, NULL, *file); break; case 2: // Free (modern) MPS format, param argument currently NULL status = glp_read_mps(lp, GLP_MPS_FILE, NULL, *file); break; case 3: // CPLEX LP Format status = glp_read_lp(lp, NULL, *file); break; case 4: // MATHPROG Format (based on lpx_read_model function) tran = glp_mpl_alloc_wksp(); status = glp_mpl_read_model(tran, *file, 0); if (!status) { status = glp_mpl_generate(tran, NULL); if (!status) { glp_mpl_build_prob(tran, lp); } } glp_mpl_free_wksp(tran); break; } // if file read successfully glp_read_* returns zero if ( status != 0 ) { glp_delete_prob(lp); lp = NULL; error("Reading file %c failed.", *file); } if(*lp_verbosity==1) Rprintf("Retrieve column specific data ...\n"); if(glp_get_num_cols(lp) != *lp_n_objective_vars) { glp_delete_prob(lp); lp = NULL; error("The number of columns is not as specified"); } // retrieve column specific data (values, bounds and type) for (i = 0; i < *lp_n_objective_vars; i++) { lp_objective_coefficients[i] = glp_get_obj_coef(lp, i+1); // Note that str must not be freed befor we have returned // from the .C call in R! str = glp_get_col_name(lp, i+1); if (str){ lp_objective_vars_names[i] = (char *) str; } lp_bounds_type[i] = glp_get_col_type(lp, i+1); lp_bounds_lower[i] = glp_get_col_lb (lp, i+1); lp_bounds_upper[i] = glp_get_col_ub (lp, i+1); lp_column_kind = glp_get_col_kind(lp, i+1); // set to TRUE if objective variable is integer or binary switch (lp_column_kind){ case GLP_IV: lp_objective_var_is_integer[i] = 1; break; case GLP_BV: lp_objective_var_is_binary[i] = 1; break; } } ind_offset = 0; if(*lp_verbosity==1) Rprintf("Retrieve row specific data ...\n"); if(glp_get_num_rows(lp) != *lp_n_constraints) { glp_delete_prob(lp); lp = NULL; error("The number of rows is not as specified"); } // retrieve row specific data (right hand side, direction of constraints) for (i = *lp_ignore_first_row; i < *lp_n_constraints; i++) { lp_direction_of_constraints[i] = glp_get_row_type(lp, i+1); str = glp_get_row_name(lp, i + 1); if (str) { lp_constraint_names[i] = (char *) str; } // the right hand side. Note we don't allow for double bounded or // free auxiliary variables if( lp_direction_of_constraints[i] == GLP_LO ) lp_right_hand_side[i] = glp_get_row_lb(lp, i+1); if( lp_direction_of_constraints[i] == GLP_UP ) lp_right_hand_side[i] = glp_get_row_ub(lp, i+1); if( lp_direction_of_constraints[i] == GLP_FX ) lp_right_hand_side[i] = glp_get_row_lb(lp, i+1); if( lp_direction_of_constraints[i] == GLP_DB ){ lp_right_hand_side[i] = glp_get_row_ub(lp, i+1); lp_left_hand_side[i] = glp_get_row_lb(lp, i+1); } tmp = glp_get_mat_row(lp, i+1, &lp_constraint_matrix_j[ind_offset-1], &lp_constraint_matrix_values[ind_offset-1]); if (tmp > 0) for (j = 0; j < tmp; j++) lp_constraint_matrix_i[ind_offset+j] = i+1; ind_offset += tmp; } if(*lp_verbosity==1) Rprintf("Done.\n"); }