Example #1
0
double glpk_wrapper::get_row_value(int i) {
    double cstr_value = 0;
    if (solver_type ==  SIMPLEX || solver_type == EXACT) {
        int cstr_status = glp_get_row_stat(lp, i);
        if (cstr_status == GLP_BS) {  // basic variable;
            cstr_status = glp_get_row_prim(lp, i);  // or glp_get_row_dual
        } else if (cstr_status == GLP_NL || cstr_status == GLP_NS) {  // non-basic variable on its lower bound, non-basic fixed variable.
            cstr_value = glp_get_row_lb(lp, i);
        } else if (cstr_status == GLP_NU) {  //  non-basic variable on its upper bound
            cstr_value = glp_get_row_ub(lp, i);
        }
        // TODO(dzufferey): should we do something for GLP_NF — non-basic free (unbounded) variable;
    } else {
        cstr_value = glp_ipt_row_prim(lp, i);  // or glp_ipt_row_dual
    }
    return cstr_value;
}
Example #2
0
int glp_mpl_postsolve(glp_tran *tran, glp_prob *prob, int sol)
{     /* postsolve the model */
      int i, j, m, n, stat, ret;
      double prim, dual;
      if (!(tran->phase == 3 && !tran->flag_p))
         xerror("glp_mpl_postsolve: invalid call sequence\n");
      if (!(sol == GLP_SOL || sol == GLP_IPT || sol == GLP_MIP))
         xerror("glp_mpl_postsolve: sol = %d; invalid parameter\n",
            sol);
      m = mpl_get_num_rows(tran);
      n = mpl_get_num_cols(tran);
      if (!(m == glp_get_num_rows(prob) &&
            n == glp_get_num_cols(prob)))
         xerror("glp_mpl_postsolve: wrong problem object\n");
      if (!mpl_has_solve_stmt(tran))
      {  ret = 0;
         goto done;
      }
      for (i = 1; i <= m; i++)
      {  if (sol == GLP_SOL)
         {  stat = glp_get_row_stat(prob, i);
            prim = glp_get_row_prim(prob, i);
            dual = glp_get_row_dual(prob, i);
         }
         else if (sol == GLP_IPT)
         {  stat = 0;
            prim = glp_ipt_row_prim(prob, i);
            dual = glp_ipt_row_dual(prob, i);
         }
         else if (sol == GLP_MIP)
         {  stat = 0;
            prim = glp_mip_row_val(prob, i);
            dual = 0.0;
         }
         else
            xassert(sol != sol);
         if (fabs(prim) < 1e-9) prim = 0.0;
         if (fabs(dual) < 1e-9) dual = 0.0;
         mpl_put_row_soln(tran, i, stat, prim, dual);
      }
      for (j = 1; j <= n; j++)
      {  if (sol == GLP_SOL)
         {  stat = glp_get_col_stat(prob, j);
            prim = glp_get_col_prim(prob, j);
            dual = glp_get_col_dual(prob, j);
         }
         else if (sol == GLP_IPT)
         {  stat = 0;
            prim = glp_ipt_col_prim(prob, j);
            dual = glp_ipt_col_dual(prob, j);
         }
         else if (sol == GLP_MIP)
         {  stat = 0;
            prim = glp_mip_col_val(prob, j);
            dual = 0.0;
         }
         else
            xassert(sol != sol);
         if (fabs(prim) < 1e-9) prim = 0.0;
         if (fabs(dual) < 1e-9) dual = 0.0;
         mpl_put_col_soln(tran, j, stat, prim, dual);
      }
      ret = mpl_postsolve(tran);
      if (ret == 3)
         ret = 0;
      else if (ret == 4)
         ret = 1;
done: return ret;
}
Example #3
0
double lpx_get_row_prim(LPX *lp, int i)
{     /* retrieve row primal value (basic solution) */
      return glp_get_row_prim(lp, i);
}
Example #4
0
/*
    R is the random contraint data in row major memory layout
    ridx is an N array of integers 
    soln is an array of length (n+1) soln[n] is t (objective value)
    active_constr is an N-length 0-1 array
*/
void solve_lp(int N, int n, double* R, int* ridx, double* soln, int* active_constr)
{
    double tol = 1.0e-14;
    int size = (N+1)*(n+1) + 1; // We add one because GLPK indexes arrays
                                // starting at 1 instead of 0.

    glp_prob *lp;
    int* ia = malloc(size * sizeof(int));
    int* ja = malloc(size * sizeof(int));
    double* ar = malloc(size * sizeof(double));

    int i, j;
  
    lp = glp_create_prob();
    glp_set_prob_name(lp, "portfolio");
    glp_set_obj_dir(lp, GLP_MAX);

    glp_add_rows(lp, N+1);

    // Sampled constraints are ">= 0"
    for (i = 1; i <= N; i++) {
        glp_set_row_bnds(lp, i, GLP_LO, 0.0, 0.0);
    }
  
    // Sum = 1 constraint
    glp_set_row_name(lp, N+1, "sum");
    glp_set_row_bnds(lp, N+1, GLP_FX, 1.0, 1.0);
  
    glp_add_cols(lp, n+1);
  
    // Nonnegative variables y
    for (i = 1; i <= n; i++) {
        glp_set_col_bnds(lp, i, GLP_LO, 0.0, 0.0);
        glp_set_obj_coef(lp, i, 0.0);
    }
  
    // Free variable t
    glp_set_col_name(lp, n+1, "t");
    glp_set_col_bnds(lp, n+1, GLP_FR, 0.0, 0.0);
    glp_set_obj_coef(lp, n+1, 1.0);
    
    // for (i = 0; i < N*(n-1); i++) {
    //     printf("%d: %g\n", i, R[i]);
    // }

    int idx = 1;
    // Sampled constraints
    for (i = 1; i <= N; i++) {
        // Uncertain assets
        for (j = 1; j < n; j++) {
            ia[idx] = i;
            ja[idx] = j;
            ar[idx] = R[ ridx[(i-1)] * (n-1) + (j-1) ];
            idx += 1;
        }

        // Fixed return asset
        ia[idx] = i;
        ja[idx] = n;
        ar[idx] = 1.05;
        idx += 1;

        // t
        ia[idx] = i;
        ja[idx] = n+1;
        ar[idx] = -1.0;
        idx += 1;
    }

    // Sum = 1 constraint
    for (i = 1; i <= n; i++) {
        ia[idx] = N+1;
        ja[idx] = i;
        ar[idx] = 1.0;
        idx += 1;
    }
    // t
    ia[idx] = N+1;
    ja[idx] = n+1;
    ar[idx] = 0.0;
    idx += 1;

    // for (i = 1; i < size; i++) {
    //     printf("%d %d %g\n", ia[i], ja[i], ar[i]);
    // }

    glp_load_matrix(lp, size-1, ia, ja, ar);

    // glp_scale_prob(lp, GLP_SF_AUTO);

    glp_smcp param;
    glp_init_smcp(&param);
    param.meth = GLP_PRIMAL;
    //glp_std_basis(lp);
    glp_simplex(lp, &param);
  
    double z = glp_get_obj_val(lp);
    // printf("z = %g\n", z);
    if (soln) {
        for (i = 0; i < n; i++) {
            double y = glp_get_col_prim(lp, i+1);
            soln[i] = y;
            // printf("y%d = %g\n", i, y);
        }
        double t = glp_get_col_prim(lp, n+1);
        soln[n] = t;
        // printf("t = %g\n", glp_get_col_prim(lp, n+1));
    }
  

    for (i = 1; i <= N; i++) {
        double slack = glp_get_row_prim(lp, i);
        active_constr[i-1] = fabs(slack) < tol ? 1 : 0;
        // printf("constr%d %d\n", i, active_constr[i-1]);
    }


    glp_delete_prob(lp);
    // glp_free_env();
    free(ia);
    free(ja);
    free(ar);
}
Example #5
0
double c_glp_get_row_prim(glp_prob *lp, int i){
  	return glp_get_row_prim(lp, i);
}