Example #1
0
/* Recursively constructs deref chains to split a copy instruction into
 * multiple (if needed) copy instructions with full-length deref chains.
 * External callers of this function should pass the tail and head of the
 * deref chains found as the source and destination of the copy instruction
 * into this function.
 *
 * \param  old_copy  The copy instruction we are splitting
 * \param  dest_head The head of the destination deref chain we are building
 * \param  src_head  The head of the source deref chain we are building
 * \param  dest_tail The tail of the destination deref chain we are building
 * \param  src_tail  The tail of the source deref chain we are building
 * \param  state     The current split_var_copies_state object
 */
static void
split_var_copy_instr(nir_intrinsic_instr *old_copy,
                     nir_deref *dest_head, nir_deref *src_head,
                     nir_deref *dest_tail, nir_deref *src_tail,
                     struct split_var_copies_state *state)
{
   assert(src_tail->type == dest_tail->type);

   /* Make sure these really are the tails of the deref chains */
   assert(dest_tail->child == NULL);
   assert(src_tail->child == NULL);

   switch (glsl_get_base_type(src_tail->type)) {
   case GLSL_TYPE_ARRAY: {
      /* Make a wildcard dereference */
      nir_deref_array *deref = nir_deref_array_create(state->dead_ctx);
      deref->deref.type = glsl_get_array_element(src_tail->type);
      deref->deref_array_type = nir_deref_array_type_wildcard;

      /* Set the tail of both as the newly created wildcard deref.  It is
       * safe to use the same wildcard in both places because a) we will be
       * copying it before we put it in an actual instruction and b)
       * everything that will potentially add another link in the deref
       * chain will also add the same thing to both chains.
       */
      src_tail->child = &deref->deref;
      dest_tail->child = &deref->deref;

      split_var_copy_instr(old_copy, dest_head, src_head,
                           dest_tail->child, src_tail->child, state);

      /* Set it back to the way we found it */
      src_tail->child = NULL;
      dest_tail->child = NULL;
      break;
   }

   case GLSL_TYPE_STRUCT:
      /* This is the only part that actually does any interesting
       * splitting.  For array types, we just use wildcards and resolve
       * them later.  For structure types, we need to emit one copy
       * instruction for every structure element.  Because we may have
       * structs inside structs, we just recurse and let the next level
       * take care of any additional structures.
       */
      for (unsigned i = 0; i < glsl_get_length(src_tail->type); i++) {
         nir_deref_struct *deref = nir_deref_struct_create(state->dead_ctx, i);
         deref->deref.type = glsl_get_struct_field(src_tail->type, i);

         /* Set the tail of both as the newly created structure deref.  It
          * is safe to use the same wildcard in both places because a) we
          * will be copying it before we put it in an actual instruction
          * and b) everything that will potentially add another link in the
          * deref chain will also add the same thing to both chains.
          */
         src_tail->child = &deref->deref;
         dest_tail->child = &deref->deref;

         split_var_copy_instr(old_copy, dest_head, src_head,
                              dest_tail->child, src_tail->child, state);
      }
      /* Set it back to the way we found it */
      src_tail->child = NULL;
      dest_tail->child = NULL;
      break;

   case GLSL_TYPE_UINT:
   case GLSL_TYPE_INT:
   case GLSL_TYPE_FLOAT:
   case GLSL_TYPE_BOOL:
      if (glsl_type_is_matrix(src_tail->type)) {
         nir_deref_array *deref = nir_deref_array_create(state->dead_ctx);
         deref->deref.type = glsl_get_column_type(src_tail->type);
         deref->deref_array_type = nir_deref_array_type_wildcard;

         /* Set the tail of both as the newly created wildcard deref.  It
          * is safe to use the same wildcard in both places because a) we
          * will be copying it before we put it in an actual instruction
          * and b) everything that will potentially add another link in the
          * deref chain will also add the same thing to both chains.
          */
         src_tail->child = &deref->deref;
         dest_tail->child = &deref->deref;

         split_var_copy_instr(old_copy, dest_head, src_head,
                              dest_tail->child, src_tail->child, state);

         /* Set it back to the way we found it */
         src_tail->child = NULL;
         dest_tail->child = NULL;
      } else {
         /* At this point, we have fully built our deref chains and can
          * actually add the new copy instruction.
          */
         nir_intrinsic_instr *new_copy =
            nir_intrinsic_instr_create(state->mem_ctx, nir_intrinsic_copy_var);

         /* We need to make copies because a) this deref chain actually
          * belongs to the copy instruction and b) the deref chains may
          * have some of the same links due to the way we constructed them
          */
         nir_deref *src = nir_copy_deref(new_copy, src_head);
         nir_deref *dest = nir_copy_deref(new_copy, dest_head);

         new_copy->variables[0] = nir_deref_as_var(dest);
         new_copy->variables[1] = nir_deref_as_var(src);

         /* Emit the copy instruction after the old instruction.  We'll
          * remove the old one later.
          */
         nir_instr_insert_after(&old_copy->instr, &new_copy->instr);
         state->progress = true;
      }
      break;

   case GLSL_TYPE_SAMPLER:
   case GLSL_TYPE_IMAGE:
   case GLSL_TYPE_ATOMIC_UINT:
   case GLSL_TYPE_INTERFACE:
   default:
      unreachable("Cannot copy these types");
   }
}
Example #2
0
static void
_vtn_block_load_store(struct vtn_builder *b, nir_intrinsic_op op, bool load,
                      nir_ssa_def *index, nir_ssa_def *offset,
                      struct vtn_access_chain *chain, unsigned chain_idx,
                      struct vtn_type *type, struct vtn_ssa_value **inout)
{
   if (chain && chain_idx >= chain->length)
      chain = NULL;

   if (load && chain == NULL && *inout == NULL)
      *inout = vtn_create_ssa_value(b, type->type);

   enum glsl_base_type base_type = glsl_get_base_type(type->type);
   switch (base_type) {
   case GLSL_TYPE_UINT:
   case GLSL_TYPE_INT:
   case GLSL_TYPE_FLOAT:
   case GLSL_TYPE_BOOL:
      /* This is where things get interesting.  At this point, we've hit
       * a vector, a scalar, or a matrix.
       */
      if (glsl_type_is_matrix(type->type)) {
         if (chain == NULL) {
            /* Loading the whole matrix */
            struct vtn_ssa_value *transpose;
            unsigned num_ops, vec_width;
            if (type->row_major) {
               num_ops = glsl_get_vector_elements(type->type);
               vec_width = glsl_get_matrix_columns(type->type);
               if (load) {
                  const struct glsl_type *transpose_type =
                     glsl_matrix_type(base_type, vec_width, num_ops);
                  *inout = vtn_create_ssa_value(b, transpose_type);
               } else {
                  transpose = vtn_ssa_transpose(b, *inout);
                  inout = &transpose;
               }
            } else {
               num_ops = glsl_get_matrix_columns(type->type);
               vec_width = glsl_get_vector_elements(type->type);
            }

            for (unsigned i = 0; i < num_ops; i++) {
               nir_ssa_def *elem_offset =
                  nir_iadd(&b->nb, offset,
                           nir_imm_int(&b->nb, i * type->stride));
               _vtn_load_store_tail(b, op, load, index, elem_offset,
                                    &(*inout)->elems[i],
                                    glsl_vector_type(base_type, vec_width));
            }

            if (load && type->row_major)
               *inout = vtn_ssa_transpose(b, *inout);
         } else if (type->row_major) {
            /* Row-major but with an access chiain. */
            nir_ssa_def *col_offset =
               vtn_access_link_as_ssa(b, chain->link[chain_idx],
                                      type->array_element->stride);
            offset = nir_iadd(&b->nb, offset, col_offset);

            if (chain_idx + 1 < chain->length) {
               /* Picking off a single element */
               nir_ssa_def *row_offset =
                  vtn_access_link_as_ssa(b, chain->link[chain_idx + 1],
                                         type->stride);
               offset = nir_iadd(&b->nb, offset, row_offset);
               if (load)
                  *inout = vtn_create_ssa_value(b, glsl_scalar_type(base_type));
               _vtn_load_store_tail(b, op, load, index, offset, inout,
                                    glsl_scalar_type(base_type));
            } else {
               /* Grabbing a column; picking one element off each row */
               unsigned num_comps = glsl_get_vector_elements(type->type);
               const struct glsl_type *column_type =
                  glsl_get_column_type(type->type);

               nir_ssa_def *comps[4];
               for (unsigned i = 0; i < num_comps; i++) {
                  nir_ssa_def *elem_offset =
                     nir_iadd(&b->nb, offset,
                              nir_imm_int(&b->nb, i * type->stride));

                  struct vtn_ssa_value *comp, temp_val;
                  if (!load) {
                     temp_val.def = nir_channel(&b->nb, (*inout)->def, i);
                     temp_val.type = glsl_scalar_type(base_type);
                  }
                  comp = &temp_val;
                  _vtn_load_store_tail(b, op, load, index, elem_offset,
                                       &comp, glsl_scalar_type(base_type));
                  comps[i] = comp->def;
               }

               if (load) {
                  if (*inout == NULL)
                     *inout = vtn_create_ssa_value(b, column_type);

                  (*inout)->def = nir_vec(&b->nb, comps, num_comps);
               }
            }
         } else {
            /* Column-major with a deref. Fall through to array case. */
            nir_ssa_def *col_offset =
               vtn_access_link_as_ssa(b, chain->link[chain_idx], type->stride);
            offset = nir_iadd(&b->nb, offset, col_offset);

            _vtn_block_load_store(b, op, load, index, offset,
                                  chain, chain_idx + 1,
                                  type->array_element, inout);
         }
      } else if (chain == NULL) {
         /* Single whole vector */
         assert(glsl_type_is_vector_or_scalar(type->type));
         _vtn_load_store_tail(b, op, load, index, offset, inout, type->type);
      } else {
         /* Single component of a vector. Fall through to array case. */
         nir_ssa_def *elem_offset =
            vtn_access_link_as_ssa(b, chain->link[chain_idx], type->stride);
         offset = nir_iadd(&b->nb, offset, elem_offset);

         _vtn_block_load_store(b, op, load, index, offset, NULL, 0,
                               type->array_element, inout);
      }
      return;

   case GLSL_TYPE_ARRAY: {
      unsigned elems = glsl_get_length(type->type);
      for (unsigned i = 0; i < elems; i++) {
         nir_ssa_def *elem_off =
            nir_iadd(&b->nb, offset, nir_imm_int(&b->nb, i * type->stride));
         _vtn_block_load_store(b, op, load, index, elem_off, NULL, 0,
                               type->array_element, &(*inout)->elems[i]);
      }
      return;
   }

   case GLSL_TYPE_STRUCT: {
      unsigned elems = glsl_get_length(type->type);
      for (unsigned i = 0; i < elems; i++) {
         nir_ssa_def *elem_off =
            nir_iadd(&b->nb, offset, nir_imm_int(&b->nb, type->offsets[i]));
         _vtn_block_load_store(b, op, load, index, elem_off, NULL, 0,
                               type->members[i], &(*inout)->elems[i]);
      }
      return;
   }

   default:
      unreachable("Invalid block member type");
   }
}