Example #1
0
void
gnet_stats_count_flowc(const void *head, bool head_only)
{
	uint t;
	uint16 size = gmsg_size(head) + GTA_HEADER_SIZE;
	uint8 function = gnutella_header_get_function(head);
	uint8 ttl = gnutella_header_get_ttl(head);
	uint8 hops = gnutella_header_get_hops(head);

	g_assert(thread_is_main());

	if (GNET_PROPERTY(node_debug) > 3)
		g_debug("FLOWC function=%d ttl=%d hops=%d", function, ttl, hops);

	/*
	 * Adjust for Kademlia messages.
	 */

	if (GTA_MSG_DHT == function && size >= KDA_HEADER_SIZE && !head_only) {
		uint8 opcode = kademlia_header_get_function(head);

		if (UNSIGNED(opcode + MSG_DHT_BASE) < G_N_ELEMENTS(stats_lut)) {
			t = stats_lut[opcode + MSG_DHT_BASE];
		} else {
			t = stats_lut[function];		/* Invalid opcode? */
		}
		hops = 0;
		ttl = 0;
	} else {
		t = stats_lut[function];
	}

	gnet_stats_flowc_internal(t, function, ttl, hops, size);
}
Example #2
0
/**
 * Process the whole message we read.
 *
 * @return FALSE if an error was reported (processing aborted).
 */
static gboolean
browse_data_process(struct browse_ctx *bc)
{
	gnutella_node_t *n;

	/*
	 * We accept only query hits.
	 */

	if (gnutella_header_get_function(&bc->header) != GTA_MSG_SEARCH_RESULTS) {
		download_stop(bc->owner, GTA_DL_ERROR, "Non query-hit received");
		return FALSE;
	}

	n = node_browse_prepare(
		&bc->host, bc->vendor, &bc->header, bc->data, bc->size);

	dump_rx_packet(n);
	gnet_stats_count_received_header(n);
	gnet_stats_count_received_payload(n, bc->data);

	search_browse_results(n, bc->sh);
	node_browse_cleanup(n);

	return TRUE;
}
Example #3
0
void
gnet_stats_count_dropped(gnutella_node_t *n, msg_drop_reason_t reason)
{
	uint32 size;
	uint type;
	gnet_stats_t *stats;

	g_assert(UNSIGNED(reason) < MSG_DROP_REASON_COUNT);
	g_assert(thread_is_main());

	stats = NODE_USES_UDP(n) ? &gnet_udp_stats : &gnet_tcp_stats;

	if (NODE_TALKS_G2(n)) {
		int f = g2_msg_type(n->data, n->size);
		if (f != G2_MSG_MAX) {
			f += MSG_G2_BASE;
		} else {
			f = G_N_ELEMENTS(stats_lut) - 1;	/* Last, holds MSG_UNKNOWN */
		}
		type = stats_lut[f];
		size = n->size;
	} else {
		type = stats_lut[gnutella_header_get_function(&n->header)];
		size = n->size + sizeof(n->header);
	}

	entropy_harvest_small(
		VARLEN(n->addr), VARLEN(n->port), VARLEN(reason), VARLEN(type),
		VARLEN(size), NULL);

	DROP_STATS(stats, type, size);
	node_inc_rxdrop(n);

	switch (reason) {
	case MSG_DROP_HOSTILE_IP: n->n_hostile++; break;
	case MSG_DROP_SPAM: n->n_spam++; break;
	case MSG_DROP_EVIL: n->n_evil++; break;
	default: ;
	}

	if (NODE_TALKS_G2(n)) {
		if (GNET_PROPERTY(log_dropped_g2)) {
			g2_msg_log_dropped_data(n->data, n->size,
				"from %s: %s", node_infostr(n),
				gnet_stats_drop_reason_to_string(reason));
		}
	} else {
		if (GNET_PROPERTY(log_dropped_gnutella)) {
			gmsg_log_split_dropped(&n->header, n->data, n->size,
				"from %s: %s", node_infostr(n),
				gnet_stats_drop_reason_to_string(reason));
		}
	}
}
Example #4
0
/**
 * Send given Gnutella ping message to the host, monitoring replies and
 * timeouts through specified callback.
 *
 * @param m			the Ping message to send
 * @param size		size of the Ping message, in bytes
 * @param addr		address to which ping should be sent
 * @param port		port number
 * @param cb		callback to invoke on reply or timeout
 * @param arg		additional callback argument
 * @param multiple	whether multiple replies (Pongs) are expected
 *
 * @return TRUE if we sent the ping, FALSE it we throttled it.
 */
bool
udp_send_ping_callback(
	gnutella_msg_init_t *m, uint32 size,
	const host_addr_t addr, uint16 port,
	udp_ping_cb_t cb, void *arg, bool multiple)
{
	g_assert(cb != NULL);
	g_assert(GTA_MSG_INIT == gnutella_header_get_function(m));

	return udp_send_ping_with_callback(m, size, addr, port, cb, arg, multiple);
}
Example #5
0
/**
 * Called when Gnutella header has been read.
 */
void
gnet_stats_count_received_header(gnutella_node_t *n)
{
	uint t = stats_lut[gnutella_header_get_function(&n->header)];
	uint8 ttl, hops;

	g_assert(thread_is_main());
	g_assert(!NODE_TALKS_G2(n));

	ttl = gnutella_header_get_ttl(&n->header);
	hops = gnutella_header_get_hops(&n->header);

	gnet_stats_count_received_header_internal(n, GTA_HEADER_SIZE, t, ttl, hops);
}
Example #6
0
/**
 * Dump relayed or locally-emitted packet.
 * If ``from'' is NULL, packet was emitted locally.
 */
static void
dump_packet_from_to(struct dump *dump,
	const struct gnutella_node *from, const struct gnutella_node *to,
	const pmsg_t *mb)
{
	struct dump_header dh_to;	
	struct dump_header dh_from;	

	g_assert(to != NULL);
	g_assert(mb != NULL);
	g_assert(pmsg_read_base(mb) == pmsg_start(mb));

	if (!dump_initialize(dump))
		return;

	/*
	 * This is only for Gnutella packets, leave DHT messages out.
	 */

	if (GTA_MSG_DHT == gnutella_header_get_function(pmsg_start(mb)))
		return;

	if (!ipset_contains_addr(&dump_tx_to_addrs, to->addr, TRUE))
		return;

	if (NULL == from) {
		struct gnutella_node local;
		local.peermode = NODE_IS_UDP(to) ? NODE_P_UDP : NODE_P_NORMAL;
		local.addr = listen_addr();
		local.port = GNET_PROPERTY(listen_port);
		if (!ipset_contains_addr(&dump_tx_from_addrs, local.addr, TRUE))
			return;
		dump_header_set(&dh_from, &local);
	} else {
		if (!ipset_contains_addr(&dump_tx_from_addrs, from->addr, TRUE))
			return;
		dump_header_set(&dh_from, from);
	}

	dump_header_set(&dh_to, to);
	dh_to.data[0] |= DH_F_TO;
	if (pmsg_prio(mb) != PMSG_P_DATA)
		dh_to.data[0] |= DH_F_CTRL;
		
	dump_append(dump, dh_to.data, sizeof dh_to.data);
	dump_append(dump, dh_from.data, sizeof dh_from.data);
	dump_append(dump, pmsg_read_base(mb), pmsg_size(mb));
	dump_flush(dump);
}
Example #7
0
void
gnet_stats_count_expired(const gnutella_node_t *n)
{
    uint32 size = n->size + sizeof(n->header);
	uint t = stats_lut[gnutella_header_get_function(&n->header)];
	gnet_stats_t *stats;

	g_assert(thread_is_main());
	g_assert(!NODE_TALKS_G2(n));

	stats = NODE_USES_UDP(n) ? &gnet_udp_stats : &gnet_tcp_stats;

    gnet_stats.pkg.expired[MSG_TOTAL]++;
    gnet_stats.pkg.expired[t]++;
    gnet_stats.byte.expired[MSG_TOTAL] += size;
    gnet_stats.byte.expired[t] += size;

    stats->pkg.expired[MSG_TOTAL]++;
    stats->pkg.expired[t]++;
    stats->byte.expired[MSG_TOTAL] += size;
    stats->byte.expired[t] += size;
}
Example #8
0
/**
 * Called to transform Gnutella header counting into Kademlia header counting.
 *
 * @param n		the node receiving the message
 * @param kt
 */
static void
gnet_stats_count_kademlia_header(const gnutella_node_t *n, uint kt)
{
	uint t = stats_lut[gnutella_header_get_function(&n->header)];
	uint i;
	gnet_stats_t *stats;

	g_assert(thread_is_main());
	g_assert(!NODE_TALKS_G2(n));

	stats = NODE_USES_UDP(n) ? &gnet_udp_stats : &gnet_tcp_stats;

    gnet_stats.pkg.received[t]--;
    gnet_stats.pkg.received[kt]++;
    gnet_stats.byte.received[t] -= GTA_HEADER_SIZE;
    gnet_stats.byte.received[kt] += GTA_HEADER_SIZE;

    stats->pkg.received[t]--;
    stats->pkg.received[kt]++;
    stats->byte.received[t] -= GTA_HEADER_SIZE;
    stats->byte.received[kt] += GTA_HEADER_SIZE;

	i = MIN(gnutella_header_get_ttl(&n->header), STATS_RECV_COLUMNS - 1);
    stats->pkg.received_ttl[i][MSG_TOTAL]--;
    stats->pkg.received_ttl[i][t]--;

	i = MIN(gnutella_header_get_hops(&n->header), STATS_RECV_COLUMNS - 1);
    stats->pkg.received_hops[i][MSG_TOTAL]--;
    stats->pkg.received_hops[i][t]--;

	/* DHT messages have no hops nor ttl, use 0 */

    stats->pkg.received_ttl[0][MSG_TOTAL]++;
    stats->pkg.received_ttl[0][kt]++;
    stats->pkg.received_hops[0][MSG_TOTAL]++;
    stats->pkg.received_hops[0][kt]++;
}
Example #9
0
void
gnet_stats_count_dropped_nosize(
	const gnutella_node_t *n, msg_drop_reason_t reason)
{
	uint type;
	gnet_stats_t *stats;

	g_assert(UNSIGNED(reason) < MSG_DROP_REASON_COUNT);
	g_assert(thread_is_main());
	g_assert(!NODE_TALKS_G2(n));

	type = stats_lut[gnutella_header_get_function(&n->header)];
	stats = NODE_USES_UDP(n) ? &gnet_udp_stats : &gnet_tcp_stats;

	entropy_harvest_small(VARLEN(n->addr), VARLEN(n->port), NULL);

	/* Data part of message not read */
	DROP_STATS(stats, type, sizeof(n->header));

	if (GNET_PROPERTY(log_dropped_gnutella))
		gmsg_log_split_dropped(&n->header, n->data, 0,
			"from %s: %s", node_infostr(n),
			gnet_stats_drop_reason_to_string(reason));
}
Example #10
0
/**
 * Called when Gnutella payload has been read, or when a G2 messsage is read.
 *
 * The actual payload size (effectively read) is expected to be found
 * in n->size for Gnutella messages and G2 messages.
 *
 * @param n			the node from which message was received
 * @param payload	start of Gnutella payload, or head of G2 frame
 */
void
gnet_stats_count_received_payload(const gnutella_node_t *n, const void *payload)
{
	uint8 f;
	uint t;
	uint i;
	gnet_stats_t *stats;
    uint32 size;
	uint8 hops, ttl;

	g_assert(thread_is_main());

	stats = NODE_USES_UDP(n) ? &gnet_udp_stats : &gnet_tcp_stats;
	size = n->size;

	/*
	 * Size is NOT read in the Gnutella header but in n->size, which
	 * reflects how much data we have in the payload, as opposed to the
	 * size in the header which may be wrong, or have highest bits set
	 * because they indicate flags.
	 *
	 * In particular, broken DHT messages often come with an invalid size in
	 * the header.
	 *		--RAM, 2010-10-30
	 */

	if (NODE_TALKS_G2(n)) {
		f = g2_msg_type(payload, size);
		if (f != G2_MSG_MAX) {
			f += MSG_G2_BASE;
		} else {
			f = G_N_ELEMENTS(stats_lut) - 1;	/* Last, holds MSG_UNKNOWN */
		}
		ttl = 1;
		hops = NODE_USES_UDP(n) ? 0 : 1;
		t = stats_lut[f];
		/*
		 * No header for G2, so count header reception now with a size of zero.
		 * This is required to update the other packet reception statistics.
		 */
		gnet_stats_count_received_header_internal(
			deconstify_pointer(n),
			0, t, ttl, hops);
	} else {
		f = gnutella_header_get_function(&n->header);
		hops = gnutella_header_get_hops(&n->header);
		ttl = gnutella_header_get_ttl(&n->header);
		t = stats_lut[f];
	}

	gnet_stats_randomness(n, f, size);

	/*
	 * If we're dealing with a Kademlia message, we need to do two things:
	 *
	 * We counted the Gnutella header for the GTA_MSG_DHT message, but we
	 * now need to undo that and count it as a Kademlia message.
	 *
	 * To access the proper entry in the array, we need to offset the
	 * Kademlia OpCode from the header with MSG_DHT_BASE to get the entry
	 * in the statistics that are associated with that particular message.
	 *		--RAM, 2010-11-01
	 */

	if (GTA_MSG_DHT == f && size + GTA_HEADER_SIZE >= KDA_HEADER_SIZE) {
		uint8 opcode = peek_u8(payload);	/* Kademlia Opcode */

		if (UNSIGNED(opcode + MSG_DHT_BASE) < G_N_ELEMENTS(stats_lut)) {
			t = stats_lut[opcode + MSG_DHT_BASE];
			gnet_stats_count_kademlia_header(n, t);
		}
	}

	g_assert(t < MSG_TOTAL);

    gnet_stats.byte.received[MSG_TOTAL] += size;
    gnet_stats.byte.received[t] += size;

    stats->byte.received[MSG_TOTAL] += size;
    stats->byte.received[t] += size;

	i = MIN(ttl, STATS_RECV_COLUMNS - 1);
    stats->byte.received_ttl[i][MSG_TOTAL] += size;
    stats->byte.received_ttl[i][t] += size;

	i = MIN(hops, STATS_RECV_COLUMNS - 1);
    stats->byte.received_hops[i][MSG_TOTAL] += size;
    stats->byte.received_hops[i][t] += size;
}
Example #11
0
/**
 * Notification from the socket layer that we got a new datagram.
 *
 * @param s				the receiving socket (with s->addr and s->port set)
 * @param data			start of received data (not necessarily s->buf)
 * @param len			length of received data (not necessarily s->pos)
 * @param truncated		whether received datagram was truncated
 *
 * If `truncated' is true, then the message was too large for the
 * socket buffer.
 */
void
udp_received(const gnutella_socket_t *s,
	const void *data, size_t len, bool truncated)
{
	gnutella_node_t *n;
	bool bogus = FALSE;
	bool dht = FALSE;
	bool rudp = FALSE;

	/*
	 * This must be regular Gnutella / DHT traffic.
	 */

	inet_udp_got_incoming(s->addr);

	/*
	 * We need to identify semi-reliable UDP traffic early, because that
	 * traffic needs to go through the RX stack to reassemble the final
	 * payload out of the many fragments, or to process the acknowledgments.
	 *
	 * We have to apply heuristics however because the leading 8 bytes could
	 * be just a part of gnutella message (the first 8 bytes of a GUID).
	 * One thing is certain though: if the size is less than that of a a
	 * Gnutella header, it has to be semi-reliable UDP traffic...
	 *
	 * Because semi-reliable UDP uses small payloads, much smaller than our
	 * socket buffer, the datagram cannot be truncated.
	 */

	if (!truncated) {
		enum udp_traffic utp;
		rxdrv_t *rx;

		utp = udp_intuit_traffic_type(s, data, len);

		switch (utp) {
		case GNUTELLA:
			goto unreliable;
		case RUDP:
			rudp = TRUE;
			gnet_stats_count_general(GNR_RUDP_RX_BYTES, len);
			goto rudp;		/* Don't account this message in UDP statistics */
		case DHT:
			dht = TRUE;
			goto unreliable;
		case UNKNOWN:
			goto unknown;
		case SEMI_RELIABLE_GTA:
		case SEMI_RELIABLE_GND:
			break;
		}

		/*
		 * We are going to treat this message a a semi-reliable UDP fragment.
		 *
		 * Account the size of the payload for traffic purposes, then redirect
		 * the message to the RX layer that reassembles and dispatches these
		 * messages.
		 */

		bws_udp_count_read(len, FALSE);	/* We know it's not DHT traffic */

		rx = udp_get_rx_semi_reliable(utp, s->addr, len);

		if (rx != NULL) {
			gnet_host_t from;

			gnet_host_set(&from, s->addr, s->port);
			ut_got_message(rx, data, len, &from);
		}

		return;
	}

unknown:
	/*
	 * Discriminate between Gnutella UDP and DHT messages, so that we
	 * can account received data with the proper bandwidth scheduler.
	 */

	if (len >= GTA_HEADER_SIZE)
		dht = GTA_MSG_DHT == gnutella_header_get_function(data);

	/* FALL THROUGH */

unreliable:
	/*
	 * Account for Gnutella / DHT incoming UDP traffic.
	 */

	bws_udp_count_read(len, dht);

	/* FALL THROUGH */

rudp:
	/*
	 * The RUDP layer is used to implement firewalled-to-firewalled transfers
	 * via a mini TCP-like layer built on top of UDP.  Therefore, it is used
	 * as the basis for higher-level connections (HTTP) and will have to be
	 * accounted for once the type of traffic is known, by upper layers, as
	 * part of the upload/download traffic.
	 *
	 * Of course, the higher levels will never see all the bytes that pass
	 * through, such as acknowledgments or retransmissions, but that is also
	 * the case for TCP-based sockets.
	 *		--RAM, 2012-11-02.
	 */

	/*
	 * If we get traffic from a bogus IP (unroutable), warn, for now.
	 */

	if (bogons_check(s->addr)) {
		bogus = TRUE;

		if (GNET_PROPERTY(udp_debug)) {
			g_warning("UDP %sdatagram (%zu byte%s) received from bogus IP %s",
				truncated ? "truncated " : "",
				len, 1 == len ? "" : "s",
				host_addr_to_string(s->addr));
		}
		gnet_stats_inc_general(GNR_UDP_BOGUS_SOURCE_IP);
	}

	/*
	 * Get proper pseudo-node.
	 *
	 * These routines can return NULL if the address/port combination is
	 * not correct, but this will be handled by udp_is_valid_gnet().
	 */

	n = dht ? node_dht_get_addr_port(s->addr, s->port) :
		node_udp_get_addr_port(s->addr, s->port);

	if (!udp_is_valid_gnet(n, s, truncated, data, len))
		return;

	/*
	 * RUDP traffic does not go to the upper Gnutella processing layers.
	 */

	if (rudp) {
		/* Not ready for prime time */
#if 0
		rudp_handle_packet(s->addr, s->port. data, len);
#endif
		return;
	}

	/*
	 * Process message as if it had been received from regular Gnet by
	 * another node, only we'll use a special "pseudo UDP node" as origin.
	 */

	if (GNET_PROPERTY(udp_debug) > 19 || (bogus && GNET_PROPERTY(udp_debug)))
		g_debug("UDP got %s from %s%s", gmsg_infostr_full(data, len),
			bogus ? "BOGUS " : "", host_addr_port_to_string(s->addr, s->port));

	node_udp_process(n, s, data, len);
}
Example #12
0
/**
 * Identify the traffic type received on the UDP socket.
 *
 * This routine uses simple heuristics that ensure we're properly discriminating
 * incoming traffic on the UDP socket between regular Gnutella traffic and
 * semi-reliable UDP traffic (which adds a small header before its actual
 * payload).
 *
 * Most messages will be un-ambiguous, and the probabilty of misclassifying
 * an ambiguous message (one that look like valid for both types, based on
 * header inspections) is brought down to less than 1 in a billion, making
 * it perfectly safe in practice.
 *
 * @return intuited type
 */
static enum udp_traffic
udp_intuit_traffic_type(const gnutella_socket_t *s,
	const void *data, size_t len)
{
	enum udp_traffic utp;

	utp = udp_check_semi_reliable(data, len);

	if (len >= GTA_HEADER_SIZE) {
		uint16 size;			/* Payload size, from the Gnutella message */
		gmsg_valid_t valid;

		valid = gmsg_size_valid(data, &size);

		switch (valid) {
		case GMSG_VALID:
		case GMSG_VALID_MARKED:
			if ((size_t) size + GTA_HEADER_SIZE == len) {
				uint8 function, hops, ttl;

				function = gnutella_header_get_function(data);

				/*
				 * If the header cannot be that of a known semi-reliable
				 * UDP protocol, there is no ambiguity.
				 */

				if (UNKNOWN == utp) {
					return GTA_MSG_DHT == function ?
						DHT : GTA_MSG_RUDP == function ?
						RUDP : GNUTELLA;
				}

				/*
				 * Message is ambiguous: its leading header appears to be
				 * both a legitimate Gnutella message and a semi-reliable UDP
				 * header.
				 *
				 * We have to apply some heuristics to decide whether to handle
				 * the message as a Gnutella one or as a semi-reliable UDP one,
				 * knowing that if we improperly classify it, the message will
				 * not be handled correctly.
				 *
				 * Note that this is highly unlikely.  There is about 1 chance
				 * in 10 millions (1 / 2^23 exactly) to mis-interpret a random
				 * Gnutella MUID as the start of one of the semi-reliable
				 * protocols we support.  Our discriminating logic probes a
				 * few more bytes (say 2 at least) which are going to let us
				 * decide with about 99% certainety.  So mis-classification
				 * will occur only once per billion -- a ratio which is OK.
				 *
				 * We could also mistakenely handle a semi-reliable UDP message
				 * as a Gnutella one.  For that to happen, the payload must
				 * contain a field that will be exactly the message size,
				 * a 1 / 2^32 event (since the size is 4 bytes in Gnutella).
				 * However, if message flags are put to use for Gnutella UDP,
				 * this ratio could lower to 1 / 2^16 and that is too large
				 * a chance (about 1.5 in 100,000).
				 *
				 * So when we think an ambiguous message could be a valid
				 * Gnutella message, we also check whether the message could
				 * not be interpreted as a valid semi-reliable UDP one, and
				 * we give priority to that classification if we have a match:
				 * correct sequence number, consistent count and emitting host.
				 * This checks roughly 3 more bytes in the message, yielding
				 * a misclassification for about 1 / 2^(16+24) random cases.
				 */

				hops = gnutella_header_get_hops(data);
				ttl = gnutella_header_get_ttl(data);

				gnet_stats_inc_general(GNR_UDP_AMBIGUOUS);

				if (GNET_PROPERTY(udp_debug)) {
					g_debug("UDP ambiguous datagram from %s: "
						"%zu bytes (%u-byte payload), "
						"function=%u, hops=%u, TTL=%u, size=%u",
						host_addr_port_to_string(s->addr, s->port),
						len, size, function, hops, ttl,
						gnutella_header_get_size(data));
					dump_hex(stderr, "UDP ambiguous datagram", data, len);
				}

				switch (function) {
				case GTA_MSG_DHT:
					/*
					 * A DHT message must be larger than KDA_HEADER_SIZE bytes.
					 */

					if (len < KDA_HEADER_SIZE)
						break;		/* Not a DHT message */

					/*
					 * DHT messages have no bits defined in the size field
					 * to mark them.
					 */

					if (valid != GMSG_VALID)
						break;		/* Higest bit set, not a DHT message */

					/*
					 * If it is a DHT message, it must have a valid opcode.
					 */

					function = kademlia_header_get_function(data);

					if (function > KDA_MSG_MAX_ID)
						break;		/* Not a valid DHT opcode */

					/*
					 * Check the contact address length: it must be 4 in the
					 * header, because there is only room for an IPv4 address.
					 */

					if (!kademlia_header_constants_ok(data))
						break;		/* Not a valid Kademlia header */

					/*
					 * Make sure we're not mistaking a valid semi-reliable UDP
					 * message as a DHT message.
					 */

					if (udp_is_valid_semi_reliable(utp, s, data, len))
						break;		/* Validated it as semi-reliable UDP */

					g_warning("UDP ambiguous message from %s (%zu bytes total),"
						" DHT function is %s",
						host_addr_port_to_string(s->addr, s->port),
						len, kmsg_name(function));

					return DHT;

				case GTA_MSG_INIT:
				case GTA_MSG_PUSH_REQUEST:
				case GTA_MSG_SEARCH:
					/*
					 * No incoming messages of this type can have a TTL
					 * indicating a deflated payload, since there is no
					 * guarantee the host would be able to read it (deflated
					 * UDP is negotiated and can therefore only come from a
					 * response).
					 */

					if (ttl & GTA_UDP_DEFLATED)
						break;			/* Not Gnutella, we're positive */

					/* FALL THROUGH */

				case GTA_MSG_INIT_RESPONSE:
				case GTA_MSG_VENDOR:
				case GTA_MSG_SEARCH_RESULTS:
					/*
					 * To further discriminate, look at the hop count.
					 * Over UDP, the hop count will be low (0 or 1 mostly)
					 * and definitely less than 3 since the only UDP-relayed
					 * messages are from GUESS, and they can travel at most
					 * through a leaf and an ultra node before reaching us.
					 */

					if (hops >= 3U)
						break;			/* Gnutella is very unlikely */

					/*
					 * Check the TTL, cleared from bits that indicate
					 * support for deflated UDP or a deflated payload.
					 * No servent should send a TTL greater than 7, which
					 * was the de-facto limit in the early Gnutella days.
					 */

					if ((ttl & ~(GTA_UDP_CAN_INFLATE | GTA_UDP_DEFLATED)) > 7U)
						break;			/* Gnutella is very unlikely */

					/*
					 * Make sure we're not mistaking a valid semi-reliable UDP
					 * message as a Gnutella message.
					 */

					if (udp_is_valid_semi_reliable(utp, s, data, len))
						break;		/* Validated it as semi-reliable UDP */

					g_warning("UDP ambiguous message from %s (%zu bytes total),"
						" Gnutella function is %s, hops=%u, TTL=%u",
						host_addr_port_to_string(s->addr, s->port),
						len, gmsg_name(function), hops, ttl);

					return GNUTELLA;

				case GTA_MSG_RUDP:
					/*
					 * RUDP traffic is special: the only meaningful fields
					 * of the Gnutella header are the opcode field (which we
					 * have read here since we fall into this case) and the
					 * Gnutella header size.
					 *
					 * The TTL and hops fields cannot be interpreted to
					 * disambiguate, so our only option is deeper inspection.
					 */

					if (udp_is_valid_semi_reliable(utp, s, data, len))
						break;		/* Validated it as semi-reliable UDP */

					g_warning("UDP ambiguous message from %s (%zu bytes total),"
						" interpreted as RUDP packet",
						host_addr_port_to_string(s->addr, s->port), len);

					return RUDP;
					
				case GTA_MSG_STANDARD:	/* Nobody is using this function code */
				default:
					break;				/* Not a function we expect over UDP */
				}

				/*
				 * Will be handled as semi-reliable UDP.
				 */

				gnet_stats_inc_general(GNR_UDP_AMBIGUOUS_AS_SEMI_RELIABLE);

				{
					udp_tag_t tag;

					memcpy(tag.value, data, sizeof tag.value);

					g_warning("UDP ambiguous message (%zu bytes total), "
						"not Gnutella (function is %d, hops=%u, TTL=%u) "
						"handling as semi-reliable UDP (tag=\"%s\")",
						len, function, hops, ttl, udp_tag_to_string(tag));
				}
				return utp;
			}
			/* FALL THROUGH */
		case GMSG_VALID_NO_PROCESS:
		case GMSG_INVALID:
			break;
		}
	}

	return utp;
}
Example #13
0
/**
 * Look whether the datagram we received is a valid Gnutella packet.
 *
 * The routine also handles traffic statistics (reception and dropping).
 *
 * If ``n'' is not NULL, then ``s'' may be NULL.  If ``n'' is NULL, then
 * ``s'' must not be NULL.
 *
 * @param n				the pseudo UDP reception node (NULL if invalid IP:port)
 * @param s				the socket on which we got the UDP datagram
 * @param truncated		whether datagram was truncated during reception
 * @param header		header of message
 * @param payload		payload of message (maybe not contiguous with header)
 * @param len			total length of message (header + payload)
 *
 * @return TRUE if valid, FALSE otherwise.
 */
bool
udp_is_valid_gnet_split(gnutella_node_t *n, const gnutella_socket_t *s,
	bool truncated, const void *header, const void *payload, size_t len)
{
	const char *msg;
	uint16 size;			/**< Payload size, from the Gnutella message */

	g_assert(s != NULL || n != NULL);

	/*
	 * If we can't get a proper UDP node for this address/port combination,
	 * ignore the message.
	 */

	if (NULL == n) {
		msg = "Invalid address/port combination";
		goto not;
	}

	if (len < GTA_HEADER_SIZE) {
		msg = "Too short";
		goto not;
	}

	/*
	 * We have enough to account for packet reception.
	 * Note that packet could be garbage at this point.
	 */

	memcpy(n->header, header, sizeof n->header);
	n->size = len - GTA_HEADER_SIZE;		/* Payload size if Gnutella msg */

	gnet_stats_count_received_header(n);
	gnet_stats_count_received_payload(n, payload);

	/*
	 * If the message was truncated, then there is also going to be a
	 * size mismatch, but we want to flag truncated messages as being
	 * "too large" because this is mainly why we reject them.  They may
	 * be legitimate Gnutella packets, too bad.
	 */

	if (truncated) {
		msg = "Truncated (too large?)";
		goto too_large;
	}

	/*
	 * Message sizes are architecturally limited to 64K bytes.
	 *
	 * We don't ensure the leading bits are zero in the size field because
	 * this constraint we put allows us to use those bits for flags in
	 * future extensions.
	 *
	 * The downside is that we have only 3 bytes (2 bytes for the size and
	 * 1 byte for the function type) to identify a valid Gnutella packet.
	 */

	switch (gmsg_size_valid(header, &size)) {
	case GMSG_VALID:
	case GMSG_VALID_MARKED:
		break;
	case GMSG_VALID_NO_PROCESS:
		msg = "Header flags undefined for now";
		goto drop;
	case GMSG_INVALID:
		msg = "Invalid size (greater than 64 KiB without flags)";
		goto not;		/* Probably just garbage */
	}

	if ((size_t) size + GTA_HEADER_SIZE != len) {
		msg = "Size mismatch";
		goto not;
	}

	/*
	 * We only support a subset of Gnutella message from UDP.  In particular,
	 * messages like HSEP data, BYE or QRP are not expected!
	 */

	switch (gnutella_header_get_function(header)) {
	case GTA_MSG_INIT:
	case GTA_MSG_INIT_RESPONSE:
	case GTA_MSG_VENDOR:
	case GTA_MSG_STANDARD:
	case GTA_MSG_PUSH_REQUEST:
	case GTA_MSG_SEARCH_RESULTS:
	case GTA_MSG_RUDP:
	case GTA_MSG_DHT:
		return TRUE;
	case GTA_MSG_SEARCH:
		if (settings_is_ultra() && GNET_PROPERTY(enable_guess)) {
			return TRUE;	/* GUESS query accepted */
		}
		msg = "Query from UDP refused";
		goto drop;
	}
	msg = "Gnutella message not processed from UDP";

drop:
	gnet_stats_count_dropped(n, MSG_DROP_UNEXPECTED);
	gnet_stats_inc_general(GNR_UDP_UNPROCESSED_MESSAGE);
	goto log;

too_large:
	gnet_stats_count_dropped(n, MSG_DROP_TOO_LARGE);
	gnet_stats_inc_general(GNR_UDP_UNPROCESSED_MESSAGE);
	goto log;

not:
	gnet_stats_inc_general(GNR_UDP_ALIEN_MESSAGE);
	/* FALL THROUGH */

log:
	if (GNET_PROPERTY(udp_debug)) {
		g_warning("UDP got invalid %sGnutella packet (%zu byte%s) "
			"\"%s\" %sfrom %s: %s",
			socket_udp_is_old(s) ? "OLD " : "",
			len, 1 == len ? "" : "s",
			len >= GTA_HEADER_SIZE ?
				gmsg_infostr_full_split(header, payload, len - GTA_HEADER_SIZE)
				: "<incomplete Gnutella header>",
			truncated ? "(truncated) " : "",
			NULL == n ?
				host_addr_port_to_string(s->addr, s->port) :
				node_infostr(n),
			msg);
		if (len != 0) {
			iovec_t iov[2];
			iovec_set(&iov[0], header, GTA_HEADER_SIZE);
			iovec_set(&iov[1], payload, len - GTA_HEADER_SIZE);
			dump_hex_vec(stderr, "UDP datagram", iov, G_N_ELEMENTS(iov));
		}
	}

	return FALSE;		/* Dropped */
}
Example #14
0
/**
 * Route query hits from one node to the other.
 */
void
dh_route(gnutella_node_t *src, gnutella_node_t *dest, int count)
{
	pmsg_t *mb;
	struct dh_pmsg_info *pmi;
	const struct guid *muid;
	dqhit_t *dh;
	mqueue_t *mq;

	g_assert(
		gnutella_header_get_function(&src->header) == GTA_MSG_SEARCH_RESULTS);
	g_assert(count >= 0);

	if (!NODE_IS_WRITABLE(dest))
		goto drop_shutdown;

	muid = gnutella_header_get_muid(&src->header);
	dh = dh_locate(muid);

	g_assert(dh != NULL);		/* Must have called dh_got_results() first! */

	if (GNET_PROPERTY(dh_debug) > 19) {
		g_debug("DH #%s got %d hit%s: "
			"msg=%u, hits_recv=%u, hits_sent=%u, hits_queued=%u",
			guid_hex_str(muid), count, plural(count),
			dh->msg_recv, dh->hits_recv, dh->hits_sent,
			dh->hits_queued);
	}

	mq = dest->outq;

	/*
	 * Can we forward the message?
	 */

	switch (dh_can_forward(dh, mq, FALSE)) {
	case DH_DROP_FC:
		goto drop_flow_control;
	case DH_DROP_THROTTLE:
		goto drop_throttle;
	case DH_DROP_TRANSIENT:
		goto drop_transient;
	case DH_FORWARD:
	default:
		break;
	}

	/*
	 * Allow message through.
	 */

	WALLOC(pmi);
	pmi->hits = count;

	dh->hits_queued += count;
	dh->msg_queued++;

	g_assert(dh->hits_queued >= UNSIGNED(count));

	/*
	 * Magic: we create an extended version of a pmsg_t that contains a
	 * free routine, which will be invoked when the message queue frees
	 * the message.
	 *
	 * This enables us to track how much results we already queued/sent.
	 */

	if (NODE_IS_UDP(dest)) {
		gnet_host_t to;
		pmsg_t *mbe;

		gnet_host_set(&to, dest->addr, dest->port);

		/*
		 * With GUESS we may route back a query hit to an UDP node.
		 */

		if (GNET_PROPERTY(guess_server_debug) > 19) {
			g_debug("GUESS sending %d hit%s (%s) for #%s to %s",
				count, plural(count),
				NODE_CAN_SR_UDP(dest) ? "reliably" :
				NODE_CAN_INFLATE(dest) ? "possibly deflated" : "uncompressed",
				guid_hex_str(muid), node_infostr(dest));
		}

		/*
		 * Attempt to compress query hit if the destination supports it.
		 *
		 * If we're going to send the hit using semi-reliable UDP, there's
		 * no need to compress beforehand, since the transport layer will
		 * attempt its own compression anyway.
		 */

		if (!NODE_CAN_SR_UDP(dest) && NODE_CAN_INFLATE(dest)) {
			mb = gmsg_split_to_deflated_pmsg(&src->header, src->data,
					src->size + GTA_HEADER_SIZE);

			if (gnutella_header_get_ttl(pmsg_start(mb)) & GTA_UDP_DEFLATED)
				gnet_stats_inc_general(GNR_UDP_TX_COMPRESSED);
		} else {
			mb = gmsg_split_to_pmsg(&src->header, src->data,
					src->size + GTA_HEADER_SIZE);
		}

		mbe = pmsg_clone_extend(mb, dh_pmsg_free, pmi);
		pmsg_free(mb);

		if (NODE_CAN_SR_UDP(dest))
			pmsg_mark_reliable(mbe);

		mq_udp_putq(mq, mbe, &to);
	} else {
		mb = gmsg_split_to_pmsg_extend(&src->header, src->data,
				src->size + GTA_HEADER_SIZE, dh_pmsg_free, pmi);
		mq_tcp_putq(mq, mb, src);

		if (GNET_PROPERTY(dh_debug) > 19) {
			g_debug("DH enqueued %d hit%s for #%s to %s",
				count, plural(count), guid_hex_str(muid),
				node_infostr(dest));
		}
	}

	return;

drop_shutdown:
	gnet_stats_count_dropped(src, MSG_DROP_SHUTDOWN);
	return;

drop_flow_control:
	gnet_stats_count_dropped(src, MSG_DROP_FLOW_CONTROL);
	gnet_stats_count_flowc(&src->header, TRUE);
	return;

drop_throttle:
	gnet_stats_count_dropped(src, MSG_DROP_THROTTLE);
	return;

drop_transient:
	gnet_stats_count_dropped(src, MSG_DROP_TRANSIENT);
	return;
}