Example #1
0
int main(int argc, char **argv)
{
  (void)argc; (void)argv;
  cortex_init();
  cmd_init(argc, argv);

  if(argc != 3) die("usage: ./debug <in.ctp> <in.ctx>");

  const char *out_path = argv[2];

  GPathReader pfile;
  memset(&pfile, 0, sizeof(GPathReader));
  gpath_reader_open(&pfile, argv[1], true);
  status("Got file with %zu colours", pfile.ncolours);

  size_t i, kmer_size = 7, ncols = 3;

  gpath_reader_check(&pfile, kmer_size, ncols);
  gzFile gzout = futil_gzopen_create(out_path, "w");

  dBGraph db_graph;
  db_graph_alloc(&db_graph, kmer_size, ncols, 1, 1024, DBG_ALLOC_EDGES);

  // Create a path store that tracks path counts
  gpath_store_alloc(&db_graph.gpstore,
                    db_graph.num_of_cols, db_graph.ht.capacity,
                    ONE_MEGABYTE, true, false);

  // Create path hash table for fast lookup
  gpath_hash_alloc(&db_graph.gphash, &db_graph.gpstore, ONE_MEGABYTE);

  // Set sample names
  for(i = 0; i < pfile.ncolours; i++) {
    const char *sample_name = gpath_reader_get_sample_name(&pfile, i);
    ctx_assert(sample_name != NULL);
    strbuf_set(&db_graph.ginfo[i].sample_name, sample_name);
  }

  // Load path files, add kmers that are missing
  gpath_reader_load(&pfile, GPATH_ADD_MISSING_KMERS, &db_graph);

  hash_table_print_stats(&db_graph.ht);

  // Write output file
  gpath_save(gzout, out_path, 1, true, NULL, NULL, &pfile.json, 1, &db_graph);
  gzclose(gzout);

  // Checks
  // gpath_checks_all_paths(&db_graph, 2); // use two threads
  gpath_checks_counts(&db_graph);

  // Clean up
  gpath_reader_close(&pfile);
  db_graph_dealloc(&db_graph);
  cortex_destroy();

  return EXIT_SUCCESS;
}
Example #2
0
void read_thread_args_dealloc(struct ReadThreadCmdArgs *args)
{
  size_t i;
  for(i = 0; i < args->inputs.len; i++) asyncio_task_close(&args->inputs.b[i].files);
  for(i = 0; i < args->gpfiles.len; i++) gpath_reader_close(&args->gpfiles.b[i]);

  correct_aln_input_buf_dealloc(&args->inputs);
  gpfile_buf_dealloc(&args->gpfiles);
}
Example #3
0
int ctx_correct(int argc, char **argv)
{
  size_t i;
  struct ReadThreadCmdArgs args;
  read_thread_args_alloc(&args);
  read_thread_args_parse(&args, argc, argv, longopts, true);

  GraphFileReader *gfile = &args.gfile;
  GPathFileBuffer *gpfiles = &args.gpfiles;
  CorrectAlnInputBuffer *inputs = &args.inputs;

  // Update colours in graph file - sample in 0, all others in 1
  size_t ncols = gpath_load_sample_pop(gfile, 1, gpfiles->b, gpfiles->len,
                                       args.colour);

  // Check for compatibility between graph files and link files
  graphs_gpaths_compatible(gfile, 1, gpfiles->b, gpfiles->len, 1);

  int64_t ctx_num_kmers = gfile->num_of_kmers;

  //
  // Decide on memory
  //
  size_t bits_per_kmer, kmers_in_hash, graph_mem, path_mem, total_mem;

  // 1 bit needed per kmer if we need to keep track of noreseed
  bits_per_kmer = sizeof(BinaryKmer)*8 + sizeof(Edges)*8 +
                  (gpfiles->len > 0 ? sizeof(GPath*)*8 : 0) +
                  ncols; // in colour

  kmers_in_hash = cmd_get_kmers_in_hash(args.memargs.mem_to_use,
                                        args.memargs.mem_to_use_set,
                                        args.memargs.num_kmers,
                                        args.memargs.num_kmers_set,
                                        bits_per_kmer,
                                        ctx_num_kmers, ctx_num_kmers,
                                        false, &graph_mem);

  // Paths memory
  size_t rem_mem = args.memargs.mem_to_use - MIN2(args.memargs.mem_to_use, graph_mem);
  path_mem = gpath_reader_mem_req(gpfiles->b, gpfiles->len, ncols, rem_mem, false,
                                  kmers_in_hash, false);

  cmd_print_mem(path_mem, "paths");

  // Shift path store memory from graphs->paths
  graph_mem -= sizeof(GPath*)*kmers_in_hash;
  path_mem  += sizeof(GPath*)*kmers_in_hash;

  // Total memory
  total_mem = graph_mem + path_mem;
  cmd_check_mem_limit(args.memargs.mem_to_use, total_mem);

  //
  // Check we can write all output files
  //
  // Open output files
  SeqOutput *outputs = ctx_calloc(inputs->len, sizeof(SeqOutput));
  bool err_occurred = false;

  for(i = 0; i < inputs->len && !err_occurred; i++)
  {
    CorrectAlnInput *input = &inputs->b[i];
    // We loaded target colour into colour zero
    input->crt_params.ctxcol = input->crt_params.ctpcol = 0;
    bool is_pe = asyncio_task_is_pe(&input->files);
    err_occurred = !seqout_open(&outputs[i], input->out_base, args.fmt, is_pe);
    input->output = &outputs[i];
  }

  // Abandon if some of the output files already exist
  if(err_occurred) {
    for(i = 0; i < inputs->len; i++)
      seqout_close(&outputs[i], true);
    die("Error creating output files");
  }

  //
  // Allocate memory
  //

  dBGraph db_graph;
  db_graph_alloc(&db_graph, gfile->hdr.kmer_size, ncols, 1, kmers_in_hash,
                 DBG_ALLOC_EDGES | DBG_ALLOC_NODE_IN_COL);

  // Create a path store that does not tracks path counts
  gpath_reader_alloc_gpstore(gpfiles->b, gpfiles->len, path_mem, false, &db_graph);

  //
  // Load Graph and link files
  //
  GraphLoadingPrefs gprefs = graph_loading_prefs(&db_graph);
  gprefs.empty_colours = true;

  // Load graph, print stats, close file
  graph_load(gfile, gprefs, NULL);
  hash_table_print_stats_brief(&db_graph.ht);
  graph_file_close(gfile);

  // Load link files
  for(i = 0; i < gpfiles->len; i++) {
    gpath_reader_load(&gpfiles->b[i], GPATH_DIE_MISSING_KMERS, &db_graph);
    gpath_reader_close(&gpfiles->b[i]);
  }

  //
  // Run alignment
  //
  correct_reads(inputs->b, inputs->len,
                args.dump_seq_sizes, args.dump_frag_sizes,
                args.fq_zero, args.append_orig_seq,
                args.nthreads, &db_graph);

  // Close and free output files
  for(i = 0; i < inputs->len; i++)
    seqout_close(&outputs[i], false);
  ctx_free(outputs);

  // Closes input files
  read_thread_args_dealloc(&args);
  db_graph_dealloc(&db_graph);

  return EXIT_SUCCESS;
}
Example #4
0
int ctx_links(int argc, char **argv)
{
  size_t limit = 0;
  const char *link_out_path = NULL, *csv_out_path = NULL, *plot_out_path = NULL;
  const char *thresh_path = NULL, *hist_path = NULL;

  size_t hist_distsize = 0, hist_covgsize = 0;
  size_t cutoff = 0;
  bool clean = false;

  // Arg parsing
  char cmd[100];
  char shortopts[300];
  cmd_long_opts_to_short(longopts, shortopts, sizeof(shortopts));
  int c;

  while((c = getopt_long_only(argc, argv, shortopts, longopts, NULL)) != -1) {
    cmd_get_longopt_str(longopts, c, cmd, sizeof(cmd));
    switch(c) {
      case 0: /* flag set */ break;
      case 'h': cmd_print_usage(NULL); break;
      case 'o': cmd_check(!link_out_path, cmd); link_out_path = optarg; break;
      case 'f': cmd_check(!futil_get_force(), cmd); futil_set_force(true); break;
      case 'l': cmd_check(!csv_out_path, cmd); csv_out_path = optarg; break;
      case 'c': cmd_check(!cutoff, cmd); cutoff = cmd_size(cmd, optarg); clean = true; break;
      case 'L': cmd_check(!limit, cmd); limit = cmd_size(cmd, optarg); break;
      case 'P': cmd_check(!plot_out_path, cmd); plot_out_path = optarg; break;
      case 'T': cmd_check(!thresh_path, cmd); thresh_path = optarg; break;
      case 'H': cmd_check(!hist_path, cmd); hist_path = optarg; break;
      case 'C': cmd_check(!hist_covgsize, cmd); hist_covgsize = cmd_size(cmd, optarg); break;
      case 'D': cmd_check(!hist_distsize, cmd); hist_distsize = cmd_size(cmd, optarg); break;
      case ':': /* BADARG */
      case '?': /* BADCH getopt_long has already printed error */
        // cmd_print_usage(NULL);
        die("`"CMD" links -h` for help. Bad option: %s", argv[optind-1]);
      default: ctx_assert2(0, "shouldn't reach here: %c", c);
    }
  }

  if(hist_distsize && !hist_path) cmd_print_usage("--max-dist without --covg-hist");
  if(hist_covgsize && !hist_path) cmd_print_usage("--max-covg without --covg-hist");

  // Defaults
  if(!hist_distsize) hist_distsize = DEFAULT_MAX_DIST;
  if(!hist_covgsize) hist_covgsize = DEFAULT_MAX_COVG;

  if(optind + 1 != argc) cmd_print_usage("Wrong number of arguments");
  const char *ctp_path = argv[optind];

  bool list = (csv_out_path != NULL);
  bool plot = (plot_out_path != NULL);
  bool save = (link_out_path != NULL);
  bool hist_covg = (thresh_path != NULL || hist_path != NULL);

  size_t plot_kmer_idx = (limit == 0 ? 0 : limit - 1);

  if(clean && !save)
    cmd_print_usage("Need to give --out <out.ctp.gz> with --clean");

  if(!save && !list && !plot && !hist_covg)
    cmd_print_usage("Please specify one of --plot, --list or --clean");

  if(link_out_path && hist_covg && strcmp(link_out_path,"-") == 0)
    cmd_print_usage("Outputing both cleaning threshold (-T) and links (-o) to STDOUT!");

  // Open input file
  FILE *list_fh = NULL, *plot_fh = NULL, *link_tmp_fh = NULL;
  FILE *thresh_fh = NULL, *hist_fh = NULL;
  gzFile link_gz = NULL;

  // Check file don't exist or that we can overwrite
  // Will ignore if path is null
  bool err = false;
  err |= futil_check_outfile(csv_out_path);
  err |= futil_check_outfile(plot_out_path);
  err |= futil_check_outfile(link_out_path);
  err |= futil_check_outfile(thresh_path);
  err |= futil_check_outfile(hist_path);
  if(err) die("Use -f,--force to overwrite files");

  StrBuf link_tmp_path;
  strbuf_alloc(&link_tmp_path, 1024);

  GPathReader ctpin;
  memset(&ctpin, 0, sizeof(ctpin));
  gpath_reader_open(&ctpin, ctp_path);

  size_t ncols = file_filter_into_ncols(&ctpin.fltr);
  size_t kmer_size = gpath_reader_get_kmer_size(&ctpin);
  cJSON *newhdr = cJSON_Duplicate(ctpin.json, 1);

  if(ncols != 1) die("Can only clean a single colour at a time. Sorry.");

  uint64_t (*hists)[hist_covgsize] = NULL;

  if(hist_covg) {
    hists = ctx_calloc(hist_distsize, sizeof(hists[0]));
  }

  if(hist_path && (hist_fh = futil_fopen_create(hist_path, "w")) == NULL)
      die("Cannot open file: %s", hist_path);

  if(thresh_path && (thresh_fh = futil_fopen_create(thresh_path, "w")) == NULL)
      die("Cannot open file: %s", thresh_path);

  if(limit)
    status("Limiting to the first %zu kmers", limit);

  if(clean)
  {
    timestamp();
    message(" Cleaning coverage below %zu", cutoff);
    message("\n");
  }

  if(save)
  {
    // Check we can find the fields we need
    cJSON *links_json  = json_hdr_get(newhdr, "paths", cJSON_Object, link_out_path);
    cJSON *nkmers_json = json_hdr_get(links_json, "num_kmers_with_paths", cJSON_Number, link_out_path);
    cJSON *nlinks_json = json_hdr_get(links_json, "num_paths",            cJSON_Number, link_out_path);
    cJSON *nbytes_json = json_hdr_get(links_json, "path_bytes",           cJSON_Number, link_out_path);
    if(!nkmers_json || !nlinks_json || !nbytes_json)
      die("Cannot find required header entries");

    // Create a random temporary file
    link_tmp_fh = create_tmp_file(&link_tmp_path, link_out_path);

    status("Saving output to: %s", link_out_path);
    status("Temporary output: %s", link_tmp_path.b);

    // Open output file
    if((link_gz = futil_gzopen_create(link_out_path, "w")) == NULL)
      die("Cannot open output link file: %s", link_out_path);

    // Need to open output file first so we can get absolute path
    // Update the header to include this command
    json_hdr_add_curr_cmd(newhdr, link_out_path);
  }

  if(list)
  {
    status("Listing to %s", csv_out_path);
    if((list_fh = futil_fopen_create(csv_out_path, "w")) == NULL)
      die("Cannot open output CSV file %s", csv_out_path);

    // Print csv header
    fprintf(list_fh, "SeqLen,Covg\n");
  }

  if(plot)
  {
    status("Plotting kmer %zu to %s", plot_kmer_idx, plot_out_path);
    if((plot_fh = futil_fopen_create(plot_out_path, "w")) == NULL)
      die("Cannot open output .dot file %s", plot_out_path);
  }

  SizeBuffer countbuf, jposbuf;
  size_buf_alloc(&countbuf, 16);
  size_buf_alloc(&jposbuf, 1024);

  StrBuf kmerbuf, juncsbuf, seqbuf, outbuf;
  strbuf_alloc(&kmerbuf, 1024);
  strbuf_alloc(&juncsbuf, 1024);
  strbuf_alloc(&seqbuf, 1024);
  strbuf_alloc(&outbuf, 1024);

  bool link_fw;
  size_t njuncs;
  size_t knum, nlinks, num_links_exp = 0;

  LinkTree ltree;
  ltree_alloc(&ltree, kmer_size);

  LinkTreeStats tree_stats;
  memset(&tree_stats, 0, sizeof(tree_stats));
  size_t init_num_links = 0, num_links = 0;

  for(knum = 0; !limit || knum < limit; knum++)
  {
    ltree_reset(&ltree);
    if(!gpath_reader_read_kmer(&ctpin, &kmerbuf, &num_links_exp)) break;
    ctx_assert2(kmerbuf.end == kmer_size, "Kmer incorrect length %zu != %zu",
                kmerbuf.end, kmer_size);
    // status("kmer: %s", kmerbuf.b);

    for(nlinks = 0;
        gpath_reader_read_link(&ctpin, &link_fw, &njuncs,
                               &countbuf, &juncsbuf,
                               &seqbuf, &jposbuf);
        nlinks++)
    {
      ltree_add(&ltree, link_fw, countbuf.b[0], jposbuf.b,
                juncsbuf.b, seqbuf.b);
    }

    if(nlinks != num_links_exp)
      warn("Links count mismatch %zu != %zu", nlinks, num_links_exp);

    if(hist_covg)
    {
      ltree_update_covg_hists(&ltree, (uint64_t*)hists,
                              hist_distsize, hist_covgsize);
    }
    if(clean)
    {
      ltree_clean(&ltree, cutoff);
    }

    // Accumulate statistics
    ltree_get_stats(&ltree, &tree_stats);
    num_links = tree_stats.num_links - init_num_links;
    init_num_links = tree_stats.num_links;

    if(list)
    {
      ltree_write_list(&ltree, &outbuf);
      if(fwrite(outbuf.b, 1, outbuf.end, list_fh) != outbuf.end)
        die("Cannot write CSV file to: %s", csv_out_path);
      strbuf_reset(&outbuf);
    }
    if(save && num_links)
    {
      ltree_write_ctp(&ltree, kmerbuf.b, num_links, &outbuf);
      if(fwrite(outbuf.b, 1, outbuf.end, link_tmp_fh) != outbuf.end)
        die("Cannot write ctp file to: %s", link_tmp_path.b);
      strbuf_reset(&outbuf);
    }
    if(plot && knum == plot_kmer_idx)
    {
      status("Plotting tree...");
      ltree_write_dot(&ltree, &outbuf);
      if(fwrite(outbuf.b, 1, outbuf.end, plot_fh) != outbuf.end)
        die("Cannot write plot DOT file to: %s", plot_out_path);
      strbuf_reset(&outbuf);
    }
  }

  gpath_reader_close(&ctpin);

  cJSON *links_json = json_hdr_get(newhdr, "paths", cJSON_Object, link_out_path);
  cJSON *nkmers_json = json_hdr_get(links_json, "num_kmers_with_paths", cJSON_Number, link_out_path);
  cJSON *nlinks_json = json_hdr_get(links_json, "num_paths",            cJSON_Number, link_out_path);
  cJSON *nbytes_json = json_hdr_get(links_json, "path_bytes",           cJSON_Number, link_out_path);

  status("Number of kmers with links %li -> %zu", nkmers_json->valueint, tree_stats.num_trees_with_links);
  status("Number of links %li -> %zu", nlinks_json->valueint, tree_stats.num_links);
  status("Number of bytes %li -> %zu", nbytes_json->valueint, tree_stats.num_link_bytes);

  if(save)
  {
    // Update JSON
    nkmers_json->valuedouble = nkmers_json->valueint = tree_stats.num_trees_with_links;
    nlinks_json->valuedouble = nlinks_json->valueint = tree_stats.num_links;
    nbytes_json->valuedouble = nbytes_json->valueint = tree_stats.num_link_bytes;

    char *json_str = cJSON_Print(newhdr);
    if(gzputs(link_gz, json_str) != (int)strlen(json_str))
      die("Cannot write ctp file to: %s", link_out_path);
    free(json_str);

    gzputs(link_gz, "\n\n");
    gzputs(link_gz, ctp_explanation_comment);
    gzputs(link_gz, "\n");

    fseek(link_tmp_fh, 0, SEEK_SET);
    char *tmp = ctx_malloc(4*ONE_MEGABYTE);
    size_t s;
    while((s = fread(tmp, 1, 4*ONE_MEGABYTE, link_tmp_fh)) > 0) {
      if(gzwrite(link_gz, tmp, s) != (int)s)
        die("Cannot write to output: %s", link_out_path);
    }
    ctx_free(tmp);

    gzclose(link_gz);
    fclose(link_tmp_fh);
  }

  // Write histogram to file
  if(hist_fh)
  {
    size_t i, j;
    fprintf(hist_fh, "  ");
    for(j = 1; j < hist_covgsize; j++) fprintf(hist_fh, ",covg.%02zu", j);
    fprintf(hist_fh, "\n");
    for(i = 1; i < hist_distsize; i++) {
      fprintf(hist_fh, "dist.%02zu", i);
      for(j = 1; j < hist_covgsize; j++) {
        fprintf(hist_fh, ",%"PRIu64, hists[i][j]);
      }
      fprintf(hist_fh, "\n");
    }
  }

  if(thresh_fh)
  {
    // Use median of first five cutoffs
    print_suggest_cutoff(6, hist_covgsize, hists, thresh_fh);
  }

  if(hist_fh && hist_fh != stdout) fclose(hist_fh);

  if(list)
  {
    fclose(list_fh);
  }

  if(plot)
  {
    fclose(plot_fh);
  }

  ctx_free(hists);
  cJSON_Delete(newhdr);
  strbuf_dealloc(&link_tmp_path);
  ltree_dealloc(&ltree);
  size_buf_dealloc(&countbuf);
  size_buf_dealloc(&jposbuf);
  strbuf_dealloc(&kmerbuf);
  strbuf_dealloc(&juncsbuf);
  strbuf_dealloc(&seqbuf);
  strbuf_dealloc(&outbuf);

  return EXIT_SUCCESS;
}
Example #5
0
int ctx_contigs(int argc, char **argv)
{
  size_t nthreads = 0;
  struct MemArgs memargs = MEM_ARGS_INIT;
  const char *out_path = NULL;
  size_t i, contig_limit = 0, colour = 0;
  bool cmd_reseed = false, cmd_no_reseed = false; // -r, -R
  const char *conf_table_path = NULL; // save confidence table to here
  bool use_missing_info_check = true, seed_with_unused_paths = false;
  double min_step_confid = -1.0, min_cumul_confid = -1.0; // < 0 => no min

  // Read length and expected depth for calculating confidences
  size_t genome_size = 0;

  seq_file_t *tmp_seed_file = NULL;
  SeqFilePtrBuffer seed_buf;
  seq_file_ptr_buf_alloc(&seed_buf, 16);

  GPathReader tmp_gpfile;
  GPathFileBuffer gpfiles;
  gpfile_buf_alloc(&gpfiles, 8);

  // Arg parsing
  char cmd[100], shortopts[300];
  cmd_long_opts_to_short(longopts, shortopts, sizeof(shortopts));
  int c;

  // silence error messages from getopt_long
  // opterr = 0;

  while((c = getopt_long_only(argc, argv, shortopts, longopts, NULL)) != -1) {
    cmd_get_longopt_str(longopts, c, cmd, sizeof(cmd));
    switch(c) {
      case 0: /* flag set */ break;
      case 'h': cmd_print_usage(NULL); break;
      case 'f': cmd_check(!futil_get_force(), cmd); futil_set_force(true); break;
      case 'o': cmd_check(!out_path,cmd); out_path = optarg; break;
      case 't': cmd_check(!nthreads,cmd); nthreads = cmd_uint32_nonzero(cmd, optarg); break;
      case 'm': cmd_mem_args_set_memory(&memargs, optarg); break;
      case 'n': cmd_mem_args_set_nkmers(&memargs, optarg); break;
      case 'p':
        memset(&tmp_gpfile, 0, sizeof(GPathReader));
        gpath_reader_open(&tmp_gpfile, optarg);
        gpfile_buf_push(&gpfiles, &tmp_gpfile, 1);
        break;
      case '1':
      case 's': // --seed <in.fa>
        if((tmp_seed_file = seq_open(optarg)) == NULL)
          die("Cannot read --seed file: %s", optarg);
        seq_file_ptr_buf_add(&seed_buf, tmp_seed_file);
        break;
      case 'r': cmd_check(!cmd_reseed,cmd); cmd_reseed = true; break;
      case 'R': cmd_check(!cmd_no_reseed,cmd); cmd_no_reseed = true; break;
      case 'N':
        cmd_check(!contig_limit,cmd);
        contig_limit = cmd_uint32_nonzero(cmd, optarg);
        break;
      case 'c': cmd_check(!colour,cmd); colour = cmd_uint32(cmd, optarg); break;
      case 'G': cmd_check(!genome_size,cmd); genome_size = cmd_bases(cmd, optarg); break;
      case 'S': cmd_check(!conf_table_path,cmd); conf_table_path = optarg; break;
      case 'M': cmd_check(use_missing_info_check,cmd); use_missing_info_check = false; break;
      case 'P': cmd_check(!seed_with_unused_paths,cmd); seed_with_unused_paths = true; break;
      case 'C':
        cmd_check(min_cumul_confid < 0,cmd);
        min_cumul_confid = cmd_udouble(cmd,optarg);
        if(min_cumul_confid > 1) die("%s must be 0 <= x <= 1", cmd);
        break;
      case 'T':
        cmd_check(min_step_confid < 0,cmd);
        min_step_confid = cmd_udouble(cmd,optarg);
        if(min_step_confid > 1) die("%s must be 0 <= x <= 1", cmd);
        break;
      case ':': /* BADARG */
      case '?': /* BADCH getopt_long has already printed error */
        die("`"CMD" contigs -h` for help. Bad option: %s", argv[optind-1]);
      default: abort();
    }
  }

  if(cmd_no_reseed && cmd_reseed)
    cmd_print_usage("Cannot specify both -r and -R");

  if(contig_limit && seed_with_unused_paths)
    cmd_print_usage("Cannot combine --ncontigs with --use-seed-paths");

  bool sample_with_replacement = cmd_reseed;

  // Defaults
  if(nthreads == 0) nthreads = DEFAULT_NTHREADS;

  if(!seed_buf.len && !contig_limit && sample_with_replacement) {
    cmd_print_usage("Please specify one or more of: "
                    "--no-reseed | --ncontigs | --seed <in.fa>");
  }

  if(optind >= argc) cmd_print_usage("Require input graph files (.ctx)");

  //
  // Open graph files
  //
  const size_t num_gfiles = argc - optind;
  char **graph_paths = argv + optind;
  ctx_assert(num_gfiles > 0);

  GraphFileReader *gfiles = ctx_calloc(num_gfiles, sizeof(GraphFileReader));
  size_t ncols, ctx_max_kmers = 0, ctx_sum_kmers = 0;

  graph_files_open(graph_paths, gfiles, num_gfiles,
                   &ctx_max_kmers, &ctx_sum_kmers);

  // char *ctx_path = argv[optind];

  //
  // Open Graph file
  //
  // GraphFileReader gfile;
  // memset(&gfile, 0, sizeof(GraphFileReader));
  // graph_file_open(&gfile, ctx_path);

  // Update colours in graph file - sample in 0, all others in 1
  // never need more than two colours
  ncols = gpath_load_sample_pop(gfiles, num_gfiles,
                                gpfiles.b, gpfiles.len, colour);

  // Check for compatibility between graph files and path files
  // pop_colour is colour 1
  graphs_gpaths_compatible(gfiles, num_gfiles, gpfiles.b, gpfiles.len, 1);

  if(!genome_size)
  {
    char nk_str[50];
    if(ctx_max_kmers <= 0) die("Please pass --genome <G> if streaming");
    genome_size = ctx_max_kmers;
    ulong_to_str(genome_size, nk_str);
    status("Taking number of kmers as genome size: %s", nk_str);
  }

  //
  // Decide on memory
  //
  size_t bits_per_kmer, kmers_in_hash, graph_mem, path_mem, total_mem;

  // 1 bit needed per kmer if we need to keep track of kmer usage
  bits_per_kmer = sizeof(BinaryKmer)*8 + sizeof(Edges)*8 + sizeof(GPath*)*8 +
                  ncols + !sample_with_replacement;

  kmers_in_hash = cmd_get_kmers_in_hash(memargs.mem_to_use,
                                        memargs.mem_to_use_set,
                                        memargs.num_kmers,
                                        memargs.num_kmers_set,
                                        bits_per_kmer,
                                        ctx_max_kmers, ctx_sum_kmers,
                                        false, &graph_mem);

  // Paths memory
  size_t rem_mem = memargs.mem_to_use - MIN2(memargs.mem_to_use, graph_mem);
  path_mem = gpath_reader_mem_req(gpfiles.b, gpfiles.len, ncols, rem_mem, false);

  // Shift path store memory from graphs->paths
  graph_mem -= sizeof(GPath*)*kmers_in_hash;
  path_mem  += sizeof(GPath*)*kmers_in_hash;
  cmd_print_mem(path_mem, "paths");

  // Total memory
  total_mem = graph_mem + path_mem;
  cmd_check_mem_limit(memargs.mem_to_use, total_mem);

  // Load contig hist distribution from ctp files
  ZeroSizeBuffer contig_hist;
  memset(&contig_hist, 0, sizeof(contig_hist));

  for(i = 0; i < gpfiles.len; i++) {
    gpath_reader_load_contig_hist(gpfiles.b[i].json,
                                  gpfiles.b[i].fltr.path.b,
                                  file_filter_fromcol(&gpfiles.b[i].fltr, 0),
                                  &contig_hist);
  }

  // Calculate confidences, only for one colour
  ContigConfidenceTable conf_table;
  conf_table_alloc(&conf_table, 1);
  conf_table_update_hist(&conf_table, 0, genome_size,
                         contig_hist.b, contig_hist.len);

  if(conf_table_path != NULL) {
    conf_table_save(&conf_table, conf_table_path);
  }

  zsize_buf_dealloc(&contig_hist);

  //
  // Output file if printing
  //
  FILE *fout = out_path ? futil_fopen_create(out_path, "w") : NULL;

  // Allocate
  dBGraph db_graph;
  db_graph_alloc(&db_graph, gfiles[0].hdr.kmer_size, ncols, 1, kmers_in_hash,
                 DBG_ALLOC_EDGES | DBG_ALLOC_NODE_IN_COL);

  // Paths
  gpath_reader_alloc_gpstore(gpfiles.b, gpfiles.len, path_mem,
                             false, &db_graph);

  uint8_t *visited = NULL;

  if(!sample_with_replacement)
    visited = ctx_calloc(roundup_bits2bytes(db_graph.ht.capacity), 1);

  // Load graph
  LoadingStats stats = LOAD_STATS_INIT_MACRO;

  GraphLoadingPrefs gprefs = {.db_graph = &db_graph,
                              .boolean_covgs = false,
                              .must_exist_in_graph = false,
                              .empty_colours = true};

  for(i = 0; i < num_gfiles; i++) {
    graph_load(&gfiles[i], gprefs, &stats);
    graph_file_close(&gfiles[i]);
    gprefs.empty_colours = false;
  }
  ctx_free(gfiles);

  hash_table_print_stats(&db_graph.ht);

  // Load path files
  for(i = 0; i < gpfiles.len; i++) {
    gpath_reader_load(&gpfiles.b[i], GPATH_DIE_MISSING_KMERS, &db_graph);
    gpath_reader_close(&gpfiles.b[i]);
  }
  gpfile_buf_dealloc(&gpfiles);

  AssembleContigStats assem_stats;
  assemble_contigs_stats_init(&assem_stats);

  assemble_contigs(nthreads, seed_buf.b, seed_buf.len,
                   contig_limit, visited,
                   use_missing_info_check, seed_with_unused_paths,
                   min_step_confid, min_cumul_confid,
                   fout, out_path, &assem_stats, &conf_table,
                   &db_graph, 0); // Sample always loaded into colour zero

  if(fout && fout != stdout) fclose(fout);

  assemble_contigs_stats_print(&assem_stats);
  assemble_contigs_stats_destroy(&assem_stats);

  conf_table_dealloc(&conf_table);

  for(i = 0; i < seed_buf.len; i++)
    seq_close(seed_buf.b[i]);

  seq_file_ptr_buf_dealloc(&seed_buf);

  ctx_free(visited);
  db_graph_dealloc(&db_graph);

  return EXIT_SUCCESS;
}
Example #6
0
int ctx_bubbles(int argc, char **argv)
{
  size_t nthreads = 0;
  struct MemArgs memargs = MEM_ARGS_INIT;
  const char *out_path = NULL;
  size_t max_allele_len = 0, max_flank_len = 0;
  bool remove_serial_bubbles = true;

  // List of haploid colours
  size_t *hapcols = NULL;
  int nhapcols = 0;
  char *hapcols_arg = NULL;

  GPathReader tmp_gpfile;
  GPathFileBuffer gpfiles;
  gpfile_buf_alloc(&gpfiles, 8);

  // Arg parsing
  char cmd[100];
  char shortopts[300];
  cmd_long_opts_to_short(longopts, shortopts, sizeof(shortopts));
  int c;

  // silence error messages from getopt_long
  // opterr = 0;

  while((c = getopt_long_only(argc, argv, shortopts, longopts, NULL)) != -1) {
    cmd_get_longopt_str(longopts, c, cmd, sizeof(cmd));
    switch(c) {
      case 0: /* flag set */ break;
      case 'h': cmd_print_usage(NULL); break;
      case 'o': cmd_check(!out_path, cmd); out_path = optarg; break;
      case 'f': cmd_check(!futil_get_force(), cmd); futil_set_force(true); break;
      case 'p':
        memset(&tmp_gpfile, 0, sizeof(GPathReader));
        gpath_reader_open(&tmp_gpfile, optarg);
        gpfile_buf_push(&gpfiles, &tmp_gpfile, 1);
        break;
      case 't': cmd_check(!nthreads, cmd); nthreads = cmd_uint32_nonzero(cmd, optarg); break;
      case 'm': cmd_mem_args_set_memory(&memargs, optarg); break;
      case 'n': cmd_mem_args_set_nkmers(&memargs, optarg); break;
      case 'H': cmd_check(!hapcols_arg, cmd); hapcols_arg = optarg; break;
      case 'A': cmd_check(!max_allele_len, cmd); max_allele_len = cmd_uint32_nonzero(cmd, optarg); break;
      case 'F': cmd_check(!max_flank_len, cmd); max_flank_len = cmd_uint32_nonzero(cmd, optarg); break;
      case 'S': cmd_check(remove_serial_bubbles,cmd); remove_serial_bubbles = false; break;
      case ':': /* BADARG */
      case '?': /* BADCH getopt_long has already printed error */
        // cmd_print_usage(NULL);
        die("`"CMD" "SUBCMD" -h` for help. Bad option: %s", argv[optind-1]);
      default: abort();
    }
  }

  // Defaults for unset values
  if(out_path == NULL) out_path = "-";
  if(nthreads == 0) nthreads = DEFAULT_NTHREADS;
  if(max_allele_len == 0) max_allele_len = DEFAULT_MAX_ALLELE;
  if(max_flank_len == 0) max_flank_len = DEFAULT_MAX_FLANK;

  if(optind >= argc) cmd_print_usage("Require input graph files (.ctx)");

  //
  // Open graph files
  //
  const size_t num_gfiles = argc - optind;
  char **graph_paths = argv + optind;
  ctx_assert(num_gfiles > 0);

  GraphFileReader *gfiles = ctx_calloc(num_gfiles, sizeof(GraphFileReader));
  size_t i, ncols, ctx_max_kmers = 0, ctx_sum_kmers = 0;

  ncols = graph_files_open(graph_paths, gfiles, num_gfiles,
                           &ctx_max_kmers, &ctx_sum_kmers);

  // Check graph + paths are compatible
  graphs_gpaths_compatible(gfiles, num_gfiles, gpfiles.b, gpfiles.len, -1);

  //
  // Check haploid colours are valid
  //
  if(hapcols_arg != NULL) {
    if((nhapcols = range_get_num(hapcols_arg, ncols)) < 0)
      die("Invalid haploid colour list: %s", hapcols_arg);

    hapcols = ctx_calloc(nhapcols, sizeof(hapcols[0]));
    if(range_parse_array(hapcols_arg, hapcols, ncols) < 0)
      die("Invalid haploid colour list: %s", hapcols_arg);
  }

  //
  // Decide on memory
  //
  size_t bits_per_kmer, kmers_in_hash, graph_mem, path_mem, thread_mem;
  char thread_mem_str[100];

  // edges(1bytes) + kmer_paths(8bytes) + in_colour(1bit/col) +
  // visitedfw/rv(2bits/thread)

  bits_per_kmer = sizeof(BinaryKmer)*8 + sizeof(Edges)*8 +
                  (gpfiles.len > 0 ? sizeof(GPath*)*8 : 0) +
                  ncols + 2*nthreads;

  kmers_in_hash = cmd_get_kmers_in_hash(memargs.mem_to_use,
                                        memargs.mem_to_use_set,
                                        memargs.num_kmers,
                                        memargs.num_kmers_set,
                                        bits_per_kmer,
                                        ctx_max_kmers, ctx_sum_kmers,
                                        false, &graph_mem);

  // Thread memory
  thread_mem = roundup_bits2bytes(kmers_in_hash) * 2;
  bytes_to_str(thread_mem * nthreads, 1, thread_mem_str);
  status("[memory] (of which threads: %zu x %zu = %s)\n",
          nthreads, thread_mem, thread_mem_str);

  // Paths memory
  size_t rem_mem = memargs.mem_to_use - MIN2(memargs.mem_to_use, graph_mem+thread_mem);
  path_mem = gpath_reader_mem_req(gpfiles.b, gpfiles.len, ncols, rem_mem, false,
                                  kmers_in_hash, false);

  // Shift path store memory from graphs->paths
  graph_mem -= sizeof(GPath*)*kmers_in_hash;
  path_mem  += sizeof(GPath*)*kmers_in_hash;
  cmd_print_mem(path_mem, "paths");

  size_t total_mem = graph_mem + thread_mem + path_mem;
  cmd_check_mem_limit(memargs.mem_to_use, total_mem);

  //
  // Open output file
  //
  gzFile gzout = futil_gzopen_create(out_path, "w");

  // Allocate memory
  dBGraph db_graph;
  db_graph_alloc(&db_graph, gfiles[0].hdr.kmer_size, ncols, 1, kmers_in_hash,
                 DBG_ALLOC_EDGES | DBG_ALLOC_NODE_IN_COL);

  // Paths
  gpath_reader_alloc_gpstore(gpfiles.b, gpfiles.len, path_mem, false, &db_graph);

  //
  // Load graphs
  //
  GraphLoadingPrefs gprefs = graph_loading_prefs(&db_graph);
  gprefs.empty_colours = true;

  for(i = 0; i < num_gfiles; i++) {
    graph_load(&gfiles[i], gprefs, NULL);
    graph_file_close(&gfiles[i]);
    gprefs.empty_colours = false;
  }
  ctx_free(gfiles);

  hash_table_print_stats(&db_graph.ht);

  // Load link files
  for(i = 0; i < gpfiles.len; i++)
    gpath_reader_load(&gpfiles.b[i], GPATH_DIE_MISSING_KMERS, &db_graph);

  // Create array of cJSON** from input files
  cJSON **hdrs = ctx_malloc(gpfiles.len * sizeof(cJSON*));
  for(i = 0; i < gpfiles.len; i++) hdrs[i] = gpfiles.b[i].json;

  // Now call variants
  BubbleCallingPrefs call_prefs = {.max_allele_len = max_allele_len,
                                   .max_flank_len = max_flank_len,
                                   .haploid_cols = hapcols,
                                   .nhaploid_cols = nhapcols,
                                   .remove_serial_bubbles = remove_serial_bubbles};

  invoke_bubble_caller(nthreads, &call_prefs,
                       gzout, out_path,
                       hdrs, gpfiles.len,
                       &db_graph);

  status("  saved to: %s\n", out_path);
  gzclose(gzout);
  ctx_free(hdrs);

  // Close input link files
  for(i = 0; i < gpfiles.len; i++)
    gpath_reader_close(&gpfiles.b[i]);
  gpfile_buf_dealloc(&gpfiles);

  ctx_free(hapcols);
  db_graph_dealloc(&db_graph);

  return EXIT_SUCCESS;
}
Example #7
0
int ctx_exp_abc(int argc, char **argv)
{
  size_t i, nthreads = 0, num_repeats = 0, max_AB_dist = 0;
  struct MemArgs memargs = MEM_ARGS_INIT;
  bool print_failed_contigs = false;

  GPathReader tmp_gpfile;
  GPathFileBuffer gpfiles;
  gpfile_buf_alloc(&gpfiles, 8);

  // Arg parsing
  char cmd[100];
  char shortopts[300];
  cmd_long_opts_to_short(longopts, shortopts, sizeof(shortopts));
  int c;

  // silence error messages from getopt_long
  // opterr = 0;

  while((c = getopt_long_only(argc, argv, shortopts, longopts, NULL)) != -1) {
    cmd_get_longopt_str(longopts, c, cmd, sizeof(cmd));
    switch(c) {
      case 0: /* flag set */ break;
      case 'h': cmd_print_usage(NULL); break;
      case 't': cmd_check(!nthreads,cmd); nthreads = cmd_uint32_nonzero(cmd, optarg); break;
      case 'm': cmd_mem_args_set_memory(&memargs, optarg); break;
      case 'n': cmd_mem_args_set_nkmers(&memargs, optarg); break;
      case 'p':
        memset(&tmp_gpfile, 0, sizeof(GPathReader));
        gpath_reader_open(&tmp_gpfile, optarg);
        gpfile_buf_push(&gpfiles, &tmp_gpfile, 1);
        break;
      case 'N': cmd_check(!num_repeats,cmd); num_repeats = cmd_uint32_nonzero(cmd, optarg); break;
      case 'M': cmd_check(!max_AB_dist,cmd); max_AB_dist = cmd_uint32_nonzero(cmd, optarg); break;
      case 'P': cmd_check(!print_failed_contigs,cmd); print_failed_contigs = true; break;
      case ':': /* BADARG */
      case '?': /* BADCH getopt_long has already printed error */
        // cmd_print_usage(NULL);
        die("`"CMD" exp_abc -h` for help. Bad option: %s", argv[optind-1]);
      default: abort();
    }
  }

  // Defaults
  if(nthreads == 0) nthreads = DEFAULT_NTHREADS;
  if(num_repeats == 0) num_repeats = DEFAULT_NUM_REPEATS;
  if(max_AB_dist == 0) max_AB_dist = DEFAULT_MAX_AB_DIST;

  if(print_failed_contigs && nthreads != 1) {
    warn("--print forces nthreads to be one. soz.");
    nthreads = 1;
  }

  if(optind+1 != argc) cmd_print_usage("Require exactly one input graph file (.ctx)");

  const char *ctx_path = argv[optind];

  //
  // Open Graph file
  //
  GraphFileReader gfile;
  memset(&gfile, 0, sizeof(GraphFileReader));
  graph_file_open(&gfile, ctx_path);

  size_t ncols = file_filter_into_ncols(&gfile.fltr);

  // Check only loading one colour
  if(ncols > 1) die("Only implemented for one colour currently");

  // Check graph + paths are compatible
  graphs_gpaths_compatible(&gfile, 1, gpfiles.b, gpfiles.len, -1);

  //
  // Decide on memory
  //
  size_t bits_per_kmer, kmers_in_hash, graph_mem, path_mem, total_mem;

  // 1 bit needed per kmer if we need to keep track of kmer usage
  bits_per_kmer = sizeof(BinaryKmer)*8 + sizeof(Edges)*8 + sizeof(GPath*)*8 +
                  ncols;

  kmers_in_hash = cmd_get_kmers_in_hash(memargs.mem_to_use,
                                        memargs.mem_to_use_set,
                                        memargs.num_kmers,
                                        memargs.num_kmers_set,
                                        bits_per_kmer,
                                        gfile.num_of_kmers, gfile.num_of_kmers,
                                        false, &graph_mem);

  // Paths memory
  size_t rem_mem = memargs.mem_to_use - MIN2(memargs.mem_to_use, graph_mem);
  path_mem = gpath_reader_mem_req(gpfiles.b, gpfiles.len, ncols, rem_mem, false,
                                  kmers_in_hash, false);

  // Shift path store memory from graphs->paths
  graph_mem -= sizeof(GPath*)*kmers_in_hash;
  path_mem  += sizeof(GPath*)*kmers_in_hash;
  cmd_print_mem(path_mem, "paths");

  total_mem = graph_mem + path_mem;
  cmd_check_mem_limit(memargs.mem_to_use, total_mem);

  //
  // Allocate memory
  //
  dBGraph db_graph;
  db_graph_alloc(&db_graph, gfile.hdr.kmer_size, 1, 1, kmers_in_hash,
                 DBG_ALLOC_EDGES | DBG_ALLOC_NODE_IN_COL);

  // Paths
  gpath_reader_alloc_gpstore(gpfiles.b, gpfiles.len, path_mem, false, &db_graph);

  // Load the graph
  GraphLoadingPrefs gprefs = graph_loading_prefs(&db_graph);
  gprefs.empty_colours = true;

  graph_load(&gfile, gprefs, NULL);
  graph_file_close(&gfile);

  hash_table_print_stats(&db_graph.ht);

  // Load link files
  for(i = 0; i < gpfiles.len; i++) {
    gpath_reader_load(&gpfiles.b[i], GPATH_DIE_MISSING_KMERS, &db_graph);
    gpath_reader_close(&gpfiles.b[i]);
  }
  gpfile_buf_dealloc(&gpfiles);

  status("\n");
  status("Test 1: Priming region A->B (n: %zu max_AB_dist: %zu)",
         num_repeats, max_AB_dist);

  run_exp_abc(&db_graph, true, nthreads, num_repeats,
              max_AB_dist, print_failed_contigs);

  status("\n");
  status("Test 2: Trying to traverse A->B (n: %zu max_AB_dist: %zu)",
         num_repeats, max_AB_dist);

  run_exp_abc(&db_graph, false, nthreads, num_repeats,
              max_AB_dist, print_failed_contigs);

  db_graph_dealloc(&db_graph);

  return EXIT_SUCCESS;
}