Example #1
0
/* Perform sky localization based on TDOAs alone. Returns log probability; not normalized. */
double bayestar_log_posterior_toa(
    double theta,
    double phi,
    double gmst,
    int nifos, /* Input: number of detectors. */
    const double **locs, /* Input: array of detector positions. */
    const double *toas, /* Input: array of times of arrival. */
    const double *w_toas /* Input: sum-of-squares weights, (1/TOA variance)^2. */
) {
    double dt[nifos];
    toa_errors(dt, theta, phi, gmst, nifos, locs, toas);
    return -0.5 * gsl_stats_wtss(w_toas, 1, dt, 1, nifos);
}
Example #2
0
int
main (void)
{
  const size_t n = N;
  const size_t ncoeffs = NCOEFFS;
  const size_t nbreak = NBREAK;
  size_t i, j;
  gsl_bspline_workspace *bw;
  gsl_vector *B;
  double dy;
  gsl_rng *r;
  gsl_vector *c, *w;
  gsl_vector *x, *y;
  gsl_matrix *X, *cov;
  gsl_multifit_linear_workspace *mw;
  double chisq;
  double Rsq;
  double dof;

  gsl_rng_env_setup();
  r = gsl_rng_alloc(gsl_rng_default);

  /* allocate a cubic bspline workspace (k = 4) */
  bw = gsl_bspline_alloc(4, nbreak);
  B = gsl_vector_alloc(ncoeffs);

  x = gsl_vector_alloc(n);
  y = gsl_vector_alloc(n);
  X = gsl_matrix_alloc(n, ncoeffs);
  c = gsl_vector_alloc(ncoeffs);
  w = gsl_vector_alloc(n);
  cov = gsl_matrix_alloc(ncoeffs, ncoeffs);
  mw = gsl_multifit_linear_alloc(n, ncoeffs);

  printf("#m=0,S=0\n");
  /* this is the data to be fitted */
  for (i = 0; i < n; ++i)
    {
      double sigma;
      double xi = (15.0 / (N - 1)) * i;
      double yi = cos(xi) * exp(-0.1 * xi);

      sigma = 0.1 * yi;
      dy = gsl_ran_gaussian(r, sigma);
      yi += dy;

      gsl_vector_set(x, i, xi);
      gsl_vector_set(y, i, yi);
      gsl_vector_set(w, i, 1.0 / (sigma * sigma));

      printf("%f %f\n", xi, yi);
    }

  /* use uniform breakpoints on [0, 15] */
  gsl_bspline_knots_uniform(0.0, 15.0, bw);

  /* construct the fit matrix X */
  for (i = 0; i < n; ++i)
    {
      double xi = gsl_vector_get(x, i);

      /* compute B_j(xi) for all j */
      gsl_bspline_eval(xi, B, bw);

      /* fill in row i of X */
      for (j = 0; j < ncoeffs; ++j)
        {
          double Bj = gsl_vector_get(B, j);
          gsl_matrix_set(X, i, j, Bj);
        }
    }

  /* do the fit */
  gsl_multifit_wlinear(X, w, y, c, cov, &chisq, mw);

  dof = n - ncoeffs;
  Rsq = 1.0 - chisq / gsl_stats_wtss(w->data, 1, y->data, 1, y->size);

  fprintf(stderr, "chisq/dof = %e, Rsq = %f\n", chisq / dof, Rsq);

  /* output the smoothed curve */
  {
    double xi, yi, yerr;

    printf("#m=1,S=0\n");
    for (xi = 0.0; xi < 15.0; xi += 0.1)
      {
        gsl_bspline_eval(xi, B, bw);
        gsl_multifit_linear_est(B, c, cov, &yi, &yerr);
        printf("%f %f\n", xi, yi);
      }
  }

  gsl_rng_free(r);
  gsl_bspline_free(bw);
  gsl_vector_free(B);
  gsl_vector_free(x);
  gsl_vector_free(y);
  gsl_matrix_free(X);
  gsl_vector_free(c);
  gsl_vector_free(w);
  gsl_matrix_free(cov);
  gsl_multifit_linear_free(mw);

  return 0;
} /* main() */
void bSplineGSLOriginalDemo ()
{
	  const size_t n = N;
	  const size_t ncoeffs = NCOEFFS;
	  const size_t nbreak = NBREAK;
	  size_t i, j;
	  gsl_bspline_workspace *bw;
	  gsl_vector *B;
	  double dy;
	  gsl_rng *r;
	  gsl_vector *c, *w;
	  gsl_vector *x, *y;
	  gsl_matrix *X, *cov;
	  gsl_multifit_linear_workspace *mw;
	  double chisq, Rsq, dof, tss;
	  vector<double> xControl, yControl, xFit, yFit;

	  gsl_rng_env_setup();
	  r = gsl_rng_alloc(gsl_rng_default);

	  /* allocate a cubic bspline workspace (k = 4) */
	  bw = gsl_bspline_alloc(4, nbreak);
	  B = gsl_vector_alloc(ncoeffs);

	  x = gsl_vector_alloc(n);
	  y = gsl_vector_alloc(n);
	  X = gsl_matrix_alloc(n, ncoeffs);
	  c = gsl_vector_alloc(ncoeffs);
	  w = gsl_vector_alloc(n);
	  cov = gsl_matrix_alloc(ncoeffs, ncoeffs);
	  mw = gsl_multifit_linear_alloc(n, ncoeffs);

	  printf("#m=0,S=0\n");
	  /* this is the data to be fitted */
	  for (i = 0; i < n; ++i)
		 {
		   double sigma;
		   double xi = (15.0 / (N - 1)) * i;
		   double yi = cos(xi) * exp(-0.1 * xi);

		   sigma = 0.1 * yi;
		   dy = gsl_ran_gaussian(r, sigma);
		   yi += dy;

		   gsl_vector_set(x, i, xi);
			xControl.push_back(xi);
		   gsl_vector_set(y, i, yi);
			yControl.push_back(yi);
		   gsl_vector_set(w, i, 1.0 / (sigma * sigma));

		   printf("%f %f\n", xi, yi);
		 }

	  /* use uniform breakpoints on [0, 15] */
	  gsl_bspline_knots_uniform(0.0, 15.0, bw);

	  /* construct the fit matrix X */
	  for (i = 0; i < n; ++i)
		 {
		   double xi = gsl_vector_get(x, i);

		   /* compute B_j(xi) for all j */
		   gsl_bspline_eval(xi, B, bw);

		   /* fill in row i of X */
		   for (j = 0; j < ncoeffs; ++j)
		     {
		       double Bj = gsl_vector_get(B, j);
		       gsl_matrix_set(X, i, j, Bj);
		     }
		 }

	  /* do the fit */
	  gsl_multifit_wlinear(X, w, y, c, cov, &chisq, mw);

	  dof = n - ncoeffs;
	  tss = gsl_stats_wtss(w->data, 1, y->data, 1, y->size);
	  Rsq = 1.0 - chisq / tss;

	  fprintf(stderr, "chisq/dof = %e, Rsq = %f\n", 
		                chisq / dof, Rsq);

	  /* output the smoothed curve */
	  {
		 double xi, yi, yerr;

		 printf("#m=1,S=0\n");
		 for (xi = 0.0; xi < 15.0; xi += 0.1)
		   {
		     gsl_bspline_eval(xi, B, bw);
		     gsl_multifit_linear_est(B, c, cov, &yi, &yerr);

			  xFit.push_back(xi);
			  yFit.push_back(yi);
		     printf("%f %f\n", xi, yi);
		   }
	  }

	  gsl_rng_free(r);
	  gsl_bspline_free(bw);
	  gsl_vector_free(B);
	  gsl_vector_free(x);
	  gsl_vector_free(y);
	  gsl_matrix_free(X);
	  gsl_vector_free(c);
	  gsl_vector_free(w);
	  gsl_matrix_free(cov);
	  gsl_multifit_linear_free(mw);

     TGraph *gr = LoadGraphFromVectors(xControl, yControl);
	  TGraph *grFit = LoadGraphFromVectors(xFit, yFit);
     gr->SetMarkerColor(kRed);
	  TCanvas *c1 = new TCanvas("c1", "Graph", 200, 10, 700, 500);
     gr->Draw("apz");
	  grFit->Draw("SAME");

     c1->Update();
} 
Example #4
0
// [[Rcpp::export]]
Rcpp::List fitData(Rcpp::DataFrame ds) {

    const size_t ncoeffs = NCOEFFS;
    const size_t nbreak = NBREAK;

    const size_t n = N;
    size_t i, j;

    Rcpp::DataFrame D(ds);    		// construct the data.frame object
    RcppGSL::vector<double> y = D["y"];	// access columns by name, 
    RcppGSL::vector<double> x = D["x"];	// assigning to GSL vectors
    RcppGSL::vector<double> w = D["w"];

    gsl_bspline_workspace *bw;
    gsl_vector *B;
    gsl_vector *c; 
    gsl_matrix *X, *cov;
    gsl_multifit_linear_workspace *mw;
    double chisq, Rsq, dof, tss;

    bw = gsl_bspline_alloc(4, nbreak);	    // allocate a cubic bspline workspace (k = 4)
    B = gsl_vector_alloc(ncoeffs);

    X = gsl_matrix_alloc(n, ncoeffs);
    c = gsl_vector_alloc(ncoeffs);
    cov = gsl_matrix_alloc(ncoeffs, ncoeffs);
    mw = gsl_multifit_linear_alloc(n, ncoeffs);

    gsl_bspline_knots_uniform(0.0, 15.0, bw);	// use uniform breakpoints on [0, 15] 

    for (i = 0; i < n; ++i) {			// construct the fit matrix X 
        double xi = gsl_vector_get(x, i);

        gsl_bspline_eval(xi, B, bw);		// compute B_j(xi) for all j 

        for (j = 0; j < ncoeffs; ++j) {		// fill in row i of X 
            double Bj = gsl_vector_get(B, j);
            gsl_matrix_set(X, i, j, Bj);
        }
    }

    gsl_multifit_wlinear(X, w, y, c, cov, &chisq, mw);  // do the fit 
    
    dof = n - ncoeffs;
    tss = gsl_stats_wtss(w->data, 1, y->data, 1, y->size);
    Rsq = 1.0 - chisq / tss;
    
    Rcpp::NumericVector FX(151), FY(151);	// output the smoothed curve 
    double xi, yi, yerr;
    for (xi = 0.0, i=0; xi < 15.0; xi += 0.1, i++) {
        gsl_bspline_eval(xi, B, bw);
        gsl_multifit_linear_est(B, c, cov, &yi, &yerr);
        FX[i] = xi;
        FY[i] = yi;
    }

    Rcpp::List res =
      Rcpp::List::create(Rcpp::Named("X")=FX,
                         Rcpp::Named("Y")=FY,
			 Rcpp::Named("chisqdof")=Rcpp::wrap(chisq/dof),
			 Rcpp::Named("rsq")=Rcpp::wrap(Rsq));

    gsl_bspline_free(bw);
    gsl_vector_free(B);
    gsl_matrix_free(X);
    gsl_vector_free(c);
    gsl_matrix_free(cov);
    gsl_multifit_linear_free(mw);
    
    y.free();
    x.free();
    w.free();

    return(res);   
}
Example #5
0
File: fit.c Project: savila/HALOGEN
/*=============================================================================
 *                              FITTING CODE
 *=============================================================================*/
int find_best_alpha(){
	
	//double alpha_2pcf[num_alpha][nr], trials_2pcf[num_alpha][ntrials][total_nr], alpha_err[num_alpha][nr];
	double **alpha_2pcf, ***trials_2pcf, **alpha_err;
	double low, high, da;
	long i,nend,k,j,ir,jk;

	double chi2;

	double yi,yerr,xi,minerr;
	int nbreak, iii,ind,min_ind,max_ind;

	long thisseed[Nalpha*num_alpha*ntrials];
#ifdef ALLOUT
	char Output2PCF[LINELENGTH];
	char ThisFile[15];
#endif

	ncoeffs = num_alpha-1;
	nbreak =ncoeffs-2;
	// Allocate alphavec, which is our result
	//alphavec = (double *) calloc(Nalpha,sizeof(double));
	//betavec = (double *) calloc(Nalpha,sizeof(double));


	alpha_2pcf = (double **) calloc(num_alpha,sizeof(double *));
	alpha_err = (double **) calloc(num_alpha,sizeof(double *));
	trials_2pcf = (double ***) calloc(num_alpha,sizeof(double **));
	for (i=0;i<num_alpha;i++){
		alpha_2pcf[i] = (double *) calloc(nr,sizeof(double));
		alpha_err[i] = (double *) calloc(nr,sizeof(double));
		trials_2pcf[i] = (double **) calloc(ntrials,sizeof(double*));
		for (j=0;j<ntrials;j++)
			trials_2pcf[i][j] = (double *) calloc(total_nr,sizeof(double));

	}

	// allocate a cubic bspline workspace (k = 4) 
	bw = gsl_bspline_alloc(4, nbreak);
	B = gsl_vector_alloc(ncoeffs);
	alpha_grid = gsl_vector_alloc(num_alpha);
	chi2_alpha = gsl_vector_alloc(num_alpha);
	X = gsl_matrix_alloc(num_alpha,ncoeffs);

	c = gsl_vector_alloc(ncoeffs);
	weights = gsl_vector_alloc(num_alpha);
	cov = gsl_matrix_alloc(ncoeffs, ncoeffs);
	mw = gsl_multifit_linear_alloc(num_alpha, ncoeffs);


	// Loop through each mass bin
	nend = 0;
	iii  = 0;

	seed = time(NULL);
	for (i=0;i<Nalpha;i++){
		for(j=0;j<num_alpha;j++){
			for(k=0;k<ntrials;k++){
				thisseed[iii] = seed + iii;
				iii++;
			}
		}
	}
	fprintf(stderr,"STARTING LOOPS...\n");
	iii = 0;
	for (i=0;i<Nalpha;i++){
		// Get where to place halos to
		nend += ncuts[i];
		
		// Calculate a more optimum alpha_grid for this bin
		if (i < 2)
			low = alpha_ratio_1*best_alpha;
		else{
			low = alpha_ratio*best_alpha;
		}
		high = 1.05*best_alpha;
		da = (high-low)/(num_alpha-1);

		fprintf(stderr,"STARTING THREADS\n");
	#ifndef NO_PAR_FIT
		#pragma omp parallel for  num_threads(nthreads) private(jk,j,k) \
		shared(num_alpha,ntrials,i,alpha_grid,low,da,stderr,Nalpha,alphavec,iii,mcuts,ListOfParticles,\
		NPartPerCell,x,y,z,Lbox,Npart,Nlin,HaloMass,nend,mpart,recalc_frac,betavec,thisseed,trials_2pcf,rho,maxr,\
		total_nr,Nhalos) default(none)
	#endif
		for(jk=0;jk<num_alpha*ntrials;jk++){
  			fprintf(stderr,"Thread %d/%d\n",omp_get_thread_num(),omp_get_num_threads());
			
			float *hx,*hy,*hz,*hR;			
			double *thisalphavec;
			double *ercorr;
			unsigned long long *DD;
			hx = (float *) calloc(Nhalos,sizeof(float));
			hy = (float *) calloc(Nhalos,sizeof(float));
			hz = (float *) calloc(Nhalos,sizeof(float));
			hR = (float *) calloc(Nhalos,sizeof(float));
			thisalphavec = (double *) calloc(Nalpha,sizeof(double));
			DD = (unsigned long long *) calloc(total_nr,sizeof(unsigned long long));
			ercorr = (double *) calloc(total_nr,sizeof(double));

			k=jk%ntrials;
			j=jk/ntrials;

			fprintf(stderr,"MOVED MEMORY\n");
			fprintf(stderr,"GOT k,j: %ld, %ld\n",k,j);
			
			fprintf(stderr,"sizeof M : %f MB\n",(Nlin*Nlin*Nlin*sizeof(double)/1024./1024.));
			//define the alpha grid for this mass bin
			gsl_vector_set(alpha_grid,j,low+j*da);
			

			// create a local alphavec, to which we add the current gridded alpha
			int itemp;
			for (itemp=0;itemp<Nalpha;itemp++)
				thisalphavec[itemp] = alphavec[itemp];


			//fprintf(stderr,"mem copied\n");
			thisalphavec[i] = gsl_vector_get(alpha_grid,j);

			// Place the halos

			#ifdef NO_PAR_FIT
			place_halos(nend,HaloMass, Nlin, Npart, x, y, z, NULL,NULL,NULL,Lbox,
					rho,thisseed[jk+i*num_alpha*ntrials],
					mpart,nthreads,thisalphavec, betavec, mcuts, Nalpha, recalc_frac,hx, hy, hz,
					NULL,NULL,NULL,hR,ListOfParticles,NPartPerCell);
			#else 
			place_halos(nend,HaloMass, Nlin, Npart, x, y, z, NULL,NULL,NULL,Lbox,
					rho,thisseed[jk+i*num_alpha*ntrials],
					mpart,1,thisalphavec, betavec, mcuts, Nalpha, recalc_frac,hx, hy, hz,
					NULL,NULL,NULL,hR,ListOfParticles,NPartPerCell);

			#endif			
			fprintf(stderr,"correlating...\n");
			//Get the 2PCF
			correlate(nend, Lbox,hx,hy,hz,trials_2pcf[j][k], ercorr, DD,total_nr,maxr,1);
			fprintf(stderr,"...correlated\n");
			
			free(hx);
			free(hy);
			free(hz);
			free(hR);
			free(thisalphavec);
			free(ercorr);
			free(DD);

		}

		for (jk=0;jk<num_alpha*ntrials;jk++){
			k=jk%ntrials;
			j=jk/ntrials;
			fprintf(stderr,"RAWCORR %ld, %ld: %e\n",j,k,trials_2pcf[j][k][0]);
		}

	//	#pragma omp parallel for private(ir,j,chi2,k) shared(num_alpha,stderr,i,nr,alpha_2pcf) default(none)
		fprintf(stderr,"GOT CORRELATIONS , GETTING CHI2...\n");
		for(j=0;j<num_alpha;j++){
			//Get mean and stdev of trials_2pcf
			chi2 = 0.0;
			for (ir=0;ir<nr;ir++){
				alpha_2pcf[j][ir] = 0.0;
				for(k=0;k<ntrials;k++){
					alpha_2pcf[j][ir] += trials_2pcf[j][k][ir+total_nr-nr-2];
				}
				alpha_2pcf[j][ir] = alpha_2pcf[j][ir]/ntrials; 
				alpha_err[j][ir] = 0.0;
				for(k=0;k<ntrials;k++){
					alpha_err[j][ir] += pow((trials_2pcf[j][k][ir+total_nr-nr-2]-alpha_2pcf[j][ir]),2);
				}
				alpha_err[j][ir] = pow((alpha_err[j][ir]/(ntrials-1)),0.5);

				// Now get chi^2 values
				#ifdef REL_CHI2
				chi2 += pow(((alpha_2pcf[j][ir]-nbody_2pcf[i][ir+total_nr-nr-2])/nbody_2pcf[i][ir+total_nr-nr-2]),2);
				#else
				chi2 += pow(((alpha_2pcf[j][ir]-nbody_2pcf[i][ir+total_nr-nr-2])/alpha_err[j][ir]),2);
				#endif

				fprintf(stderr,"%ld, %ld, %e, %e, %e, %e\n",j,ir,alpha_2pcf[j][ir],nbody_2pcf[i][ir+total_nr-nr-2],alpha_err[j][ir],chi2);
			}
			gsl_vector_set(chi2_alpha,j,chi2/nr);
			gsl_vector_set(weights,j,nr/chi2);
		}
	//	#endif //NO_PARALLEL_FIT
//*/

#ifdef ALLOUT
		//OUTPUT SOME THINGS FOR CHECKING
		sprintf(ThisFile,"/raw.2pcf.%ld",i);
		strcpy(Output2PCF,OutputDir);
		strcat(Output2PCF,ThisFile);
		FILE* output_2pcf;
		output_2pcf = fopen(Output2PCF,"w");

		//header
		fprintf(output_2pcf,"# r, ");
		for (k=0;k<num_alpha;k++){
			fprintf(output_2pcf,"%e\t",gsl_vector_get(alpha_grid,k));
		}
		fprintf(output_2pcf,"\n");

		//table
		for (ir=0;ir<nr;ir++){
			fprintf(output_2pcf,"%e\t",(ir+total_nr-nr+0.5)*maxr/total_nr);
			for(k=0;k<num_alpha-1;k++){
				fprintf(output_2pcf,"%e\t",alpha_2pcf[k][ir]);
			}
			fprintf(output_2pcf,"%e\n",alpha_2pcf[num_alpha-1][ir]);
		}
		fclose(output_2pcf);

		sprintf(ThisFile,"/raw.err.%ld",i);
		strcpy(Output2PCF,OutputDir);
		strcat(Output2PCF,ThisFile);
		FILE* output_err;
		output_err = fopen(Output2PCF,"w");

		//header
		fprintf(output_err,"# r, ");
		for (k=0;k<num_alpha;k++){
			fprintf(output_err,"%e\t",gsl_vector_get(alpha_grid,k));
		}
		fprintf(output_err,"\n");

		//table
		for (ir=0;ir<nr;ir++){
			fprintf(output_err,"%e\t",(ir+total_nr-nr+0.5)*maxr/total_nr);
			for(k=0;k<num_alpha-1;k++){
				fprintf(output_err,"%e\t",alpha_err[k][ir]);
			}
			fprintf(output_err,"%e\n",alpha_err[num_alpha-1][ir]);
		}
		fclose(output_err);

		sprintf(ThisFile,"/chi2.%ld",i);
		strcpy(Output2PCF,OutputDir);
		strcat(Output2PCF,ThisFile);
		FILE* chifile;
		chifile = fopen(Output2PCF,"w");
		fprintf(chifile,"# alpha, chi2, weight\n");
		for (k=0;k<num_alpha;k++){
			fprintf(chifile,"%e\t%e\t%e\n",gsl_vector_get(alpha_grid,k),gsl_vector_get(chi2_alpha,k),
					gsl_vector_get(weights,k));
		}
		fclose(chifile);

#endif


		// Check if final value or initial value is the smallest
		minerr = gsl_vector_get(chi2_alpha,0);
		ind = 0;
		for(k=1;k<num_alpha;k++){
			if(minerr>gsl_vector_get(chi2_alpha,k)){
				minerr = gsl_vector_get(chi2_alpha,k);
				ind = k;
			}
		}
		if(ind==0){
			fprintf(stderr,"ERROR: alpha_grid doesn't extend low enough, set alpha_ratio lower");
		}
		if(ind==num_alpha-1){
			fprintf(stderr,"ERROR: alpha_grid doesn't extend high enough, set best_alpha higher");
		}
		if (ind>=2){
			min_ind = ind-2;
		}else{
			min_ind = 0;
		}
		if (ind<=num_alpha-3){
			max_ind = ind+2;
		}else{
			max_ind = num_alpha-1;
		}

		/* use uniform breakpoints on interval */
		gsl_bspline_knots_uniform(gsl_vector_get(alpha_grid,0), gsl_vector_get(alpha_grid,num_alpha-1), bw);

		/* construct the fit matrix X */
		for (k = 0; k < num_alpha; ++k){
			double xi = gsl_vector_get(alpha_grid, k);

			/* compute B_j(xi) for all j */
			gsl_bspline_eval(xi, B, bw);

			/* fill in row i of X */
			for (j = 0; j < ncoeffs; ++j){
				double Bj = gsl_vector_get(B, j);
				gsl_matrix_set(X, k, j, Bj);
		    }
		}

		fprintf(stderr,"Got to the fit part\n");
		/* do the fit */
		gsl_multifit_wlinear(X, weights, chi2_alpha, c, cov, &chisq, mw);

		// PRINT OUT EVERYTHING WE HAVE SO FAR
		fprintf(stderr,"alpha\tchi2_alpha\t\n");
		for (k=0;k<num_alpha;k++){
			fprintf(stderr,"%e\t%e\t\n",gsl_vector_get(alpha_grid,k),
					gsl_vector_get(chi2_alpha,k));
		}

#ifdef VERB
		dof = num_alpha - ncoeffs;
		tss = gsl_stats_wtss(weights->data, 1, chi2_alpha->data, 1, chi2_alpha->size);
		Rsq = 1.0 - chisq / tss;

		fprintf(stderr, "chisq/dof = %e, Rsq = %f\n",chisq / dof, Rsq);
#endif

		for (xi=gsl_vector_get(alpha_grid,0);xi<gsl_vector_get(alpha_grid,num_alpha-1);xi+=0.01){
			gsl_bspline_eval(xi, B, bw);
			gsl_multifit_linear_est(B, c, cov, &yi, &yerr);
			fprintf(stderr,"%e\t%e\t%e\n",xi,yi,gsl_vector_get(B,0));
		}
		//DO THE MINIMIZATION
		alphavec[i] = minimize(gsl_vector_get(alpha_grid,min_ind), gsl_vector_get(alpha_grid,max_ind),
									   gsl_vector_get(alpha_grid,ind));
		best_alpha = alphavec[i];

		fprintf(stderr,"\n Best alpha: %f\n\n",best_alpha);
	}

	return 0;

}