static int do_sdr_decode(struct dab_state_t* dab, int frequency, int gain) { struct sigaction sigact; uint32_t dev_index = 0; int32_t device_count; int i,r; char vendor[256], product[256], serial[256]; uint32_t samp_rate = 2048000; memset(&sdr,0,sizeof(struct sdr_state_t)); sdr.frequency = frequency; //fprintf(stderr,"%i\n",sdr.frequency); /*--------------------------------------------------- Looking for device and open connection ----------------------------------------------------*/ if (dab->device_type == DAB_DEVICE_RTLSDR) { sdr.convert_unsigned = 1; device_count = rtlsdr_get_device_count(); if (!device_count) { fprintf(stderr, "No supported devices found.\n"); exit(1); } fprintf(stderr, "Found %d device(s):\n", device_count); for (i = 0; i < device_count; i++) { rtlsdr_get_device_usb_strings(i, vendor, product, serial); fprintf(stderr, " %d: %s, %s, SN: %s\n", i, vendor, product, serial); } fprintf(stderr, "\n"); fprintf(stderr, "Using device %d: %s\n",dev_index, rtlsdr_get_device_name(dev_index)); r = rtlsdr_open(&dev, dev_index); if (r < 0) { fprintf(stderr, "Failed to open rtlsdr device #%d.\n", dev_index); exit(1); } int gains[100]; int count = rtlsdr_get_tuner_gains(dev, gains); fprintf(stderr, "Supported gain values (%d): ", count); for (i = 0; i < count; i++) fprintf(stderr, "%.1f ", gains[i] / 10.0); fprintf(stderr, "\n"); } else if (dab->device_type == DAB_DEVICE_HACKRF) { sdr.convert_unsigned = 0; r = hackrf_init(); if( r != HACKRF_SUCCESS ) { hackrf_err("hackrf_init() failed", r); return EXIT_FAILURE; } const char* serial_number = nullptr; r = hackrf_open_by_serial(serial_number, &hackrf); if( r != HACKRF_SUCCESS ) { hackrf_err("hackrf_open() failed", r); return EXIT_FAILURE; } } else { r = -1; return EXIT_FAILURE; } /*------------------------------------------------- Set Frequency & Sample Rate --------------------------------------------------*/ if (dab->device_type == DAB_DEVICE_RTLSDR) { /* Set the sample rate */ r = rtlsdr_set_sample_rate(dev, samp_rate); if (r < 0) fprintf(stderr, "WARNING: Failed to set sample rate.\n"); /* Set the frequency */ r = rtlsdr_set_center_freq(dev, sdr.frequency); if (r < 0) fprintf(stderr, "WARNING: Failed to set center freq.\n"); else fprintf(stderr, "Tuned to %u Hz.\n", sdr.frequency); /*------------------------------------------------ Setting gain -------------------------------------------------*/ if (gain == AUTO_GAIN) { r = rtlsdr_set_tuner_gain_mode(dev, 0); } else { r = rtlsdr_set_tuner_gain_mode(dev, 1); r = rtlsdr_set_tuner_gain(dev, gain); } if (r != 0) { fprintf(stderr, "WARNING: Failed to set tuner gain.\n"); } else if (gain == AUTO_GAIN) { fprintf(stderr, "Tuner gain set to automatic.\n"); } else { fprintf(stderr, "Tuner gain set to %0.2f dB.\n", gain/10.0); } /*----------------------------------------------- / Reset endpoint (mandatory) ------------------------------------------------*/ r = rtlsdr_reset_buffer(dev); } else if (dab->device_type == DAB_DEVICE_HACKRF) { int sample_rate_hz = samp_rate; fprintf(stderr, "call hackrf_sample_rate_set(%u Hz/%.03f MHz)\n", sample_rate_hz, (sample_rate_hz/1e6)); int r = hackrf_set_sample_rate_manual(hackrf, sample_rate_hz, 1); if( r != HACKRF_SUCCESS ) { hackrf_err("hackrf_sample_rate_set() failed", r); return EXIT_FAILURE; } /* possible settings 1.75/2.5/3.5/5/5.5/6/7/8/9/10/12/14/15/20/24/28 */ int baseband_filter_bw_hz = 2500000; fprintf(stderr, "call hackrf_baseband_filter_bandwidth_set(%d Hz/%.03f MHz)\n", baseband_filter_bw_hz, ((float)baseband_filter_bw_hz/1e6)); r = hackrf_set_baseband_filter_bandwidth(hackrf, baseband_filter_bw_hz); if( r != HACKRF_SUCCESS ) { hackrf_err("hackrf_baseband_filter_bandwidth_set()", r); return EXIT_FAILURE; } r = hackrf_set_vga_gain(hackrf, hackrf_vga_gain); r |= hackrf_set_lna_gain(hackrf, hackrf_lna_gain); if( r != HACKRF_SUCCESS ) { hackrf_err("hackrf_vga gain/lna gain", r); return EXIT_FAILURE; } r = hackrf_set_freq(hackrf, sdr.frequency); if( r != HACKRF_SUCCESS ) { hackrf_err("hackrf_set_freq()", r); return EXIT_FAILURE; } } /*----------------------------------------------- / Signal handler ------------------------------------------------*/ sigact.sa_handler = sighandler; sigemptyset(&sigact.sa_mask); sigact.sa_flags = 0; sigaction(SIGINT, &sigact, NULL); sigaction(SIGTERM, &sigact, NULL); sigaction(SIGQUIT, &sigact, NULL); sigaction(SIGPIPE, &sigact, NULL); /*----------------------------------------------- / start demod thread & rtl read -----------------------------------------------*/ fprintf(stderr,"Waiting for sync...\n"); sdr_init(&sdr); //dab_fic_parser_init(&sinfo); //dab_analyzer_init(&ana); pthread_create(&demod_thread, NULL, demod_thread_fn, (void *)(dab)); if (dab->device_type == DAB_DEVICE_RTLSDR) { rtlsdr_read_async(dev, rtlsdr_callback, (void *)(&sdr), DEFAULT_ASYNC_BUF_NUMBER, DEFAULT_BUF_LENGTH); } else if (dab->device_type == DAB_DEVICE_HACKRF) { r = hackrf_start_rx(hackrf, hackrf_callback, (void *)(&sdr)); if( r != HACKRF_SUCCESS ) { hackrf_err("hackrf_start_x()", r); return EXIT_FAILURE; } while( ((r=hackrf_is_streaming(hackrf)) == HACKRF_TRUE) && (do_exit == false) ) { sleep(1); fprintf(stderr, "samples: low: %02.2f%%, saturating: %02.2f%%\n", num_low_power * 100.0 / DEFAULT_BUF_LENGTH, num_saturated * 100.0 / DEFAULT_BUF_LENGTH); } hackrf_err("hackrf_is_streaming", r); } if (do_exit) { fprintf(stderr, "\nUser cancel, exiting...\n");} else { fprintf(stderr, "\nLibrary error %d, exiting...\n", r);} if (dab->device_type == DAB_DEVICE_RTLSDR) { rtlsdr_cancel_async(dev); //dab_demod_close(&dab); rtlsdr_close(dev); } else if (dab->device_type == DAB_DEVICE_HACKRF) { if (hackrf != NULL) { r = hackrf_stop_rx(hackrf); if( r != HACKRF_SUCCESS ) { hackrf_err("hackrf_stop_rx() failed", r); } else { fprintf(stderr, "hackrf_stop_rx() done\n"); } r = hackrf_close(hackrf); if( r != HACKRF_SUCCESS ) { hackrf_err("hackrf_close() failed", r); } else { fprintf(stderr, "hackrf_close() done\n"); } } hackrf_exit(); } return 1; }
int main(int argc, char** argv) { int opt; char path_file[PATH_FILE_MAX_LEN]; char date_time[DATE_TIME_MAX_LEN]; const char* path = NULL; int result; time_t rawtime; struct tm * timeinfo; long int file_pos; int exit_code = EXIT_SUCCESS; struct timeval t_end; float time_diff; unsigned int lna_gain=8, vga_gain=20, txvga_gain=0; while( (opt = getopt(argc, argv, "wr:t:f:a:s:n:b:l:i:x:")) != EOF ) { result = HACKRF_SUCCESS; switch( opt ) { case 'w': receive_wav = true; break; case 'r': receive = true; path = optarg; break; case 't': transmit = true; path = optarg; break; case 'f': freq = true; result = parse_u64(optarg, &freq_hz); break; case 'a': amp = true; result = parse_u32(optarg, &_enable); break; case 'l': result = parse_u32(optarg, &lna_gain); break; case 'i': result = parse_u32(optarg, &vga_gain); break; case 'x': result = parse_u32(optarg, &txvga_gain); break; case 's': sample_rate = true; result = parse_u32(optarg, &sample_rate_hz); break; case 'n': limit_num_samples = true; result = parse_u64(optarg, &samples_to_xfer); bytes_to_xfer = samples_to_xfer * 2ull; break; case 'b': baseband_filter_bw = true; result = parse_u32(optarg, &baseband_filter_bw_hz); break; default: printf("unknown argument '-%c %s'\n", opt, optarg); usage(); return EXIT_FAILURE; } if( result != HACKRF_SUCCESS ) { printf("argument error: '-%c %s' %s (%d)\n", opt, optarg, hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } } if (samples_to_xfer >= SAMPLES_TO_XFER_MAX) { printf("argument error: num_samples must be less than %llu/%lluMio\n", SAMPLES_TO_XFER_MAX, SAMPLES_TO_XFER_MAX/FREQ_ONE_MHZ); usage(); return EXIT_FAILURE; } if( freq ) { if( (freq_hz >= FREQ_MAX_HZ) || (freq_hz < FREQ_MIN_HZ) ) { printf("argument error: set_freq_hz shall be between [%llu, %llu[.\n", FREQ_MIN_HZ, FREQ_MAX_HZ); usage(); return EXIT_FAILURE; } }else { /* Use default freq */ freq_hz = DEFAULT_FREQ_HZ; } if( amp ) { if( amp_enable > 1 ) { printf("argument error: set_amp shall be 0 or 1.\n"); usage(); return EXIT_FAILURE; } } if( sample_rate == false ) { sample_rate_hz = DEFAULT_SAMPLE_RATE_HZ; } if( baseband_filter_bw ) { /* Compute nearest freq for bw filter */ baseband_filter_bw_hz = hackrf_compute_baseband_filter_bw(baseband_filter_bw_hz); }else { /* Compute default value depending on sample rate */ baseband_filter_bw_hz = hackrf_compute_baseband_filter_bw_round_down_lt(sample_rate_hz); } if (baseband_filter_bw_hz > BASEBAND_FILTER_BW_MAX) { printf("argument error: baseband_filter_bw_hz must be less or equal to %u Hz/%.03f MHz\n", BASEBAND_FILTER_BW_MAX, (float)(BASEBAND_FILTER_BW_MAX/FREQ_ONE_MHZ)); usage(); return EXIT_FAILURE; } if (baseband_filter_bw_hz < BASEBAND_FILTER_BW_MIN) { printf("argument error: baseband_filter_bw_hz must be greater or equal to %u Hz/%.03f MHz\n", BASEBAND_FILTER_BW_MIN, (float)(BASEBAND_FILTER_BW_MIN/FREQ_ONE_MHZ)); usage(); return EXIT_FAILURE; } if( (transmit == false) && (receive == receive_wav) ) { printf("receive -r and receive_wav -w options are mutually exclusive\n"); usage(); return EXIT_FAILURE; } if( receive_wav == false ) { if( transmit == receive ) { if( transmit == true ) { printf("receive -r and transmit -t options are mutually exclusive\n"); } else { printf("specify either transmit -t or receive -r or receive_wav -w option\n"); } usage(); return EXIT_FAILURE; } } if( receive ) { transceiver_mode = TRANSCEIVER_MODE_RX; } if( transmit ) { transceiver_mode = TRANSCEIVER_MODE_TX; } if( receive_wav ) { time (&rawtime); timeinfo = localtime (&rawtime); transceiver_mode = TRANSCEIVER_MODE_RX; /* File format HackRF Year(2013), Month(11), Day(28), Hour Min Sec+Z, Freq kHz, IQ.wav */ strftime(date_time, DATE_TIME_MAX_LEN, "%Y%m%d_%H%M%S", timeinfo); snprintf(path_file, PATH_FILE_MAX_LEN, "HackRF_%sZ_%ukHz_IQ.wav", date_time, (uint32_t)(freq_hz/(1000ull)) ); path = path_file; printf("Receive wav file: %s\n", path); } if( path == NULL ) { printf("specify a path to a file to transmit/receive\n"); usage(); return EXIT_FAILURE; } result = hackrf_init(); if( result != HACKRF_SUCCESS ) { printf("hackrf_init() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } result = hackrf_open(&device); if( result != HACKRF_SUCCESS ) { printf("hackrf_open() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } if( transceiver_mode == TRANSCEIVER_MODE_RX ) { fd = fopen(path, "wb"); } else { fd = fopen(path, "rb"); } if( fd == NULL ) { printf("Failed to open file: %s\n", path); return EXIT_FAILURE; } /* Change fd buffer to have bigger one to store or read data on/to HDD */ result = setvbuf(fd , NULL , _IOFBF , FD_BUFFER_SIZE); if( result != 0 ) { printf("setvbuf() failed: %d\n", result); usage(); return EXIT_FAILURE; } /* Write Wav header */ if( receive_wav ) { fwrite(&wave_file_hdr, 1, sizeof(t_wav_file_hdr), fd); } #ifdef _MSC_VER SetConsoleCtrlHandler( (PHANDLER_ROUTINE) sighandler, TRUE ); #else signal(SIGINT, &sigint_callback_handler); signal(SIGILL, &sigint_callback_handler); signal(SIGFPE, &sigint_callback_handler); signal(SIGSEGV, &sigint_callback_handler); signal(SIGTERM, &sigint_callback_handler); signal(SIGABRT, &sigint_callback_handler); #endif printf("call hackrf_sample_rate_set(%u Hz/%.03f MHz)\n", sample_rate_hz,((float)sample_rate_hz/(float)FREQ_ONE_MHZ)); result = hackrf_sample_rate_set(device, sample_rate_hz); if( result != HACKRF_SUCCESS ) { printf("hackrf_sample_rate_set() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } printf("call hackrf_baseband_filter_bandwidth_set(%d Hz/%.03f MHz)\n", baseband_filter_bw_hz, ((float)baseband_filter_bw_hz/(float)FREQ_ONE_MHZ)); result = hackrf_baseband_filter_bandwidth_set(device, baseband_filter_bw_hz); if( result != HACKRF_SUCCESS ) { printf("hackrf_baseband_filter_bandwidth_set() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } if( transceiver_mode == TRANSCEIVER_MODE_RX ) { result = hackrf_set_vga_gain(device, vga_gain); result |= hackrf_set_lna_gain(device, lna_gain); result |= hackrf_start_rx(device, rx_callback, NULL); } else { result = hackrf_set_txvga_gain(device, txvga_gain); result |= hackrf_start_tx(device, tx_callback, NULL); } if( result != HACKRF_SUCCESS ) { printf("hackrf_start_?x() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } printf("call hackrf_set_freq(%llu Hz/%.03f MHz)\n", freq_hz, ((float)freq_hz/(float)FREQ_ONE_MHZ) ); result = hackrf_set_freq(device, freq_hz); if( result != HACKRF_SUCCESS ) { printf("hackrf_set_freq() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } if( amp ) { printf("call hackrf_set_amp_enable(%u)\n", amp_enable); result = hackrf_set_amp_enable(device, (uint8_t)amp_enable); if( result != HACKRF_SUCCESS ) { printf("hackrf_set_amp_enable() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } } if( limit_num_samples ) { printf("samples_to_xfer %llu/%lluMio\n", samples_to_xfer, (samples_to_xfer/FREQ_ONE_MHZ) ); } gettimeofday(&t_start, NULL); gettimeofday(&time_start, NULL); printf("Stop with Ctrl-C\n"); while( (hackrf_is_streaming(device) == HACKRF_TRUE) && (do_exit == false) ) { uint32_t byte_count_now; struct timeval time_now; float time_difference, rate; sleep(1); gettimeofday(&time_now, NULL); byte_count_now = byte_count; byte_count = 0; time_difference = TimevalDiff(&time_now, &time_start); rate = (float)byte_count_now / time_difference; printf("%4.1f MiB / %5.3f sec = %4.1f MiB/second\n", (byte_count_now / 1e6f), time_difference, (rate / 1e6f) ); time_start = time_now; if (byte_count_now == 0) { exit_code = EXIT_FAILURE; printf("\nCouldn't transfer any bytes for one second.\n"); break; } } result = hackrf_is_streaming(device); if (do_exit) { printf("\nUser cancel, exiting...\n"); } else { printf("\nExiting... hackrf_is_streaming() result: %s (%d)\n", hackrf_error_name(result), result); } gettimeofday(&t_end, NULL); time_diff = TimevalDiff(&t_end, &t_start); printf("Total time: %5.5f s\n", time_diff); if(device != NULL) { if( receive ) { result = hackrf_stop_rx(device); if( result != HACKRF_SUCCESS ) { printf("hackrf_stop_rx() failed: %s (%d)\n", hackrf_error_name(result), result); }else { printf("hackrf_stop_rx() done\n"); } } if( transmit ) { result = hackrf_stop_tx(device); if( result != HACKRF_SUCCESS ) { printf("hackrf_stop_tx() failed: %s (%d)\n", hackrf_error_name(result), result); }else { printf("hackrf_stop_tx() done\n"); } } result = hackrf_close(device); if( result != HACKRF_SUCCESS ) { printf("hackrf_close() failed: %s (%d)\n", hackrf_error_name(result), result); }else { printf("hackrf_close() done\n"); } hackrf_exit(); printf("hackrf_exit() done\n"); } if(fd != NULL) { if( receive_wav ) { /* Get size of file */ file_pos = ftell(fd); /* Update Wav Header */ wave_file_hdr.hdr.size = file_pos+8; wave_file_hdr.fmt_chunk.dwSamplesPerSec = sample_rate_hz; wave_file_hdr.fmt_chunk.dwAvgBytesPerSec = wave_file_hdr.fmt_chunk.dwSamplesPerSec*2; wave_file_hdr.data_chunk.chunkSize = file_pos - sizeof(t_wav_file_hdr); /* Overwrite header with updated data */ rewind(fd); fwrite(&wave_file_hdr, 1, sizeof(t_wav_file_hdr), fd); } fclose(fd); fd = NULL; printf("fclose(fd) done\n"); } printf("exit\n"); return exit_code; }
int main(int argc, char** argv) { int opt; char path_file[PATH_FILE_MAX_LEN]; char date_time[DATE_TIME_MAX_LEN]; const char* path = NULL; const char* serial_number = NULL; int result; time_t rawtime; struct tm * timeinfo; long int file_pos; int exit_code = EXIT_SUCCESS; struct timeval t_end; float time_diff; unsigned int lna_gain=8, vga_gain=20, txvga_gain=0; while( (opt = getopt(argc, argv, "wr:t:f:i:o:m:a:p:s:n:b:l:g:x:c:d:R")) != EOF ) { result = HACKRF_SUCCESS; switch( opt ) { case 'w': receive_wav = true; break; case 'r': receive = true; path = optarg; break; case 't': transmit = true; path = optarg; break; case 'd': serial_number = optarg; break; case 'f': automatic_tuning = true; result = parse_u64(optarg, &freq_hz); break; case 'i': if_freq = true; result = parse_u64(optarg, &if_freq_hz); break; case 'o': lo_freq = true; result = parse_u64(optarg, &lo_freq_hz); break; case 'm': image_reject = true; result = parse_u32(optarg, &image_reject_selection); break; case 'a': amp = true; result = parse_u32(optarg, &_enable); break; case 'p': antenna = true; result = parse_u32(optarg, &antenna_enable); break; case 'l': result = parse_u32(optarg, &lna_gain); break; case 'g': result = parse_u32(optarg, &vga_gain); break; case 'x': result = parse_u32(optarg, &txvga_gain); break; case 's': sample_rate = true; result = parse_u32(optarg, &sample_rate_hz); break; case 'n': limit_num_samples = true; result = parse_u64(optarg, &samples_to_xfer); bytes_to_xfer = samples_to_xfer * 2ull; break; case 'b': baseband_filter_bw = true; result = parse_u32(optarg, &baseband_filter_bw_hz); break; case 'c': transmit = true; signalsource = true; result = parse_u32(optarg, &litude); break; case 'R': repeat = true; break; default: printf("unknown argument '-%c %s'\n", opt, optarg); usage(); return EXIT_FAILURE; } if( result != HACKRF_SUCCESS ) { printf("argument error: '-%c %s' %s (%d)\n", opt, optarg, hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } } if (lna_gain % 8) printf("warning: lna_gain (-l) must be a multiple of 8\n"); if (vga_gain % 2) printf("warning: vga_gain (-g) must be a multiple of 2\n"); if (samples_to_xfer >= SAMPLES_TO_XFER_MAX) { printf("argument error: num_samples must be less than %s/%sMio\n", u64toa(SAMPLES_TO_XFER_MAX,&ascii_u64_data1), u64toa((SAMPLES_TO_XFER_MAX/FREQ_ONE_MHZ),&ascii_u64_data2)); usage(); return EXIT_FAILURE; } if (if_freq || lo_freq || image_reject) { /* explicit tuning selected */ if (!if_freq) { printf("argument error: if_freq_hz must be specified for explicit tuning.\n"); usage(); return EXIT_FAILURE; } if (!image_reject) { printf("argument error: image_reject must be specified for explicit tuning.\n"); usage(); return EXIT_FAILURE; } if (!lo_freq && (image_reject_selection != RF_PATH_FILTER_BYPASS)) { printf("argument error: lo_freq_hz must be specified for explicit tuning unless image_reject is set to bypass.\n"); usage(); return EXIT_FAILURE; } if ((if_freq_hz > IF_MAX_HZ) || (if_freq_hz < IF_MIN_HZ)) { printf("argument error: if_freq_hz shall be between %s and %s.\n", u64toa(IF_MIN_HZ,&ascii_u64_data1), u64toa(IF_MAX_HZ,&ascii_u64_data2)); usage(); return EXIT_FAILURE; } if ((lo_freq_hz > LO_MAX_HZ) || (lo_freq_hz < LO_MIN_HZ)) { printf("argument error: lo_freq_hz shall be between %s and %s.\n", u64toa(LO_MIN_HZ,&ascii_u64_data1), u64toa(LO_MAX_HZ,&ascii_u64_data2)); usage(); return EXIT_FAILURE; } if (image_reject_selection > 2) { printf("argument error: image_reject must be 0, 1, or 2 .\n"); usage(); return EXIT_FAILURE; } if (automatic_tuning) { printf("warning: freq_hz ignored by explicit tuning selection.\n"); automatic_tuning = false; } switch (image_reject_selection) { case RF_PATH_FILTER_BYPASS: freq_hz = if_freq_hz; break; case RF_PATH_FILTER_LOW_PASS: freq_hz = abs(if_freq_hz - lo_freq_hz); break; case RF_PATH_FILTER_HIGH_PASS: freq_hz = if_freq_hz + lo_freq_hz; break; default: freq_hz = DEFAULT_FREQ_HZ; break; } printf("explicit tuning specified for %s Hz.\n", u64toa(freq_hz,&ascii_u64_data1)); } else if (automatic_tuning) { if( (freq_hz > FREQ_MAX_HZ) || (freq_hz < FREQ_MIN_HZ) ) { printf("argument error: freq_hz shall be between %s and %s.\n", u64toa(FREQ_MIN_HZ,&ascii_u64_data1), u64toa(FREQ_MAX_HZ,&ascii_u64_data2)); usage(); return EXIT_FAILURE; } } else { /* Use default freq */ freq_hz = DEFAULT_FREQ_HZ; automatic_tuning = true; } if( amp ) { if( amp_enable > 1 ) { printf("argument error: amp_enable shall be 0 or 1.\n"); usage(); return EXIT_FAILURE; } } if (antenna) { if (antenna_enable > 1) { printf("argument error: antenna_enable shall be 0 or 1.\n"); usage(); return EXIT_FAILURE; } } if( sample_rate == false ) { sample_rate_hz = DEFAULT_SAMPLE_RATE_HZ; } if( baseband_filter_bw ) { /* Compute nearest freq for bw filter */ baseband_filter_bw_hz = hackrf_compute_baseband_filter_bw(baseband_filter_bw_hz); }else { /* Compute default value depending on sample rate */ baseband_filter_bw_hz = hackrf_compute_baseband_filter_bw_round_down_lt(sample_rate_hz); } if (baseband_filter_bw_hz > BASEBAND_FILTER_BW_MAX) { printf("argument error: baseband_filter_bw_hz must be less or equal to %u Hz/%.03f MHz\n", BASEBAND_FILTER_BW_MAX, (float)(BASEBAND_FILTER_BW_MAX/FREQ_ONE_MHZ)); usage(); return EXIT_FAILURE; } if (baseband_filter_bw_hz < BASEBAND_FILTER_BW_MIN) { printf("argument error: baseband_filter_bw_hz must be greater or equal to %u Hz/%.03f MHz\n", BASEBAND_FILTER_BW_MIN, (float)(BASEBAND_FILTER_BW_MIN/FREQ_ONE_MHZ)); usage(); return EXIT_FAILURE; } if( (transmit == false) && (receive == receive_wav) ) { printf("receive -r and receive_wav -w options are mutually exclusive\n"); usage(); return EXIT_FAILURE; } if( receive_wav == false ) { if( transmit == receive ) { if( transmit == true ) { printf("receive -r and transmit -t options are mutually exclusive\n"); } else { printf("specify either transmit -t or receive -r or receive_wav -w option\n"); } usage(); return EXIT_FAILURE; } } if( receive ) { transceiver_mode = TRANSCEIVER_MODE_RX; } if( transmit ) { transceiver_mode = TRANSCEIVER_MODE_TX; } if (signalsource) { transceiver_mode = TRANSCEIVER_MODE_SS; if (amplitude >127) { printf("argument error: amplitude shall be in between 0 and 128.\n"); usage(); return EXIT_FAILURE; } } if( receive_wav ) { time (&rawtime); timeinfo = localtime (&rawtime); transceiver_mode = TRANSCEIVER_MODE_RX; /* File format HackRF Year(2013), Month(11), Day(28), Hour Min Sec+Z, Freq kHz, IQ.wav */ strftime(date_time, DATE_TIME_MAX_LEN, "%Y%m%d_%H%M%S", timeinfo); snprintf(path_file, PATH_FILE_MAX_LEN, "HackRF_%sZ_%ukHz_IQ.wav", date_time, (uint32_t)(freq_hz/(1000ull)) ); path = path_file; printf("Receive wav file: %s\n", path); } // In signal source mode, the PATH argument is neglected. if (transceiver_mode != TRANSCEIVER_MODE_SS) { if( path == NULL ) { printf("specify a path to a file to transmit/receive\n"); usage(); return EXIT_FAILURE; } } result = hackrf_init(); if( result != HACKRF_SUCCESS ) { printf("hackrf_init() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } result = hackrf_open_by_serial(serial_number, &device); if( result != HACKRF_SUCCESS ) { printf("hackrf_open() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } if (transceiver_mode != TRANSCEIVER_MODE_SS) { if( transceiver_mode == TRANSCEIVER_MODE_RX ) { fd = fopen(path, "wb"); } else { fd = fopen(path, "rb"); } if( fd == NULL ) { printf("Failed to open file: %s\n", path); return EXIT_FAILURE; } /* Change fd buffer to have bigger one to store or read data on/to HDD */ result = setvbuf(fd , NULL , _IOFBF , FD_BUFFER_SIZE); if( result != 0 ) { printf("setvbuf() failed: %d\n", result); usage(); return EXIT_FAILURE; } } /* Write Wav header */ if( receive_wav ) { fwrite(&wave_file_hdr, 1, sizeof(t_wav_file_hdr), fd); } #ifdef _MSC_VER SetConsoleCtrlHandler( (PHANDLER_ROUTINE) sighandler, TRUE ); #else signal(SIGINT, &sigint_callback_handler); signal(SIGILL, &sigint_callback_handler); signal(SIGFPE, &sigint_callback_handler); signal(SIGSEGV, &sigint_callback_handler); signal(SIGTERM, &sigint_callback_handler); signal(SIGABRT, &sigint_callback_handler); #endif printf("call hackrf_sample_rate_set(%u Hz/%.03f MHz)\n", sample_rate_hz,((float)sample_rate_hz/(float)FREQ_ONE_MHZ)); result = hackrf_set_sample_rate_manual(device, sample_rate_hz, 1); if( result != HACKRF_SUCCESS ) { printf("hackrf_sample_rate_set() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } printf("call hackrf_baseband_filter_bandwidth_set(%d Hz/%.03f MHz)\n", baseband_filter_bw_hz, ((float)baseband_filter_bw_hz/(float)FREQ_ONE_MHZ)); result = hackrf_set_baseband_filter_bandwidth(device, baseband_filter_bw_hz); if( result != HACKRF_SUCCESS ) { printf("hackrf_baseband_filter_bandwidth_set() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } if( transceiver_mode == TRANSCEIVER_MODE_RX ) { result = hackrf_set_vga_gain(device, vga_gain); result |= hackrf_set_lna_gain(device, lna_gain); result |= hackrf_start_rx(device, rx_callback, NULL); } else { result = hackrf_set_txvga_gain(device, txvga_gain); result |= hackrf_start_tx(device, tx_callback, NULL); } if( result != HACKRF_SUCCESS ) { printf("hackrf_start_?x() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } if (automatic_tuning) { printf("call hackrf_set_freq(%s Hz/%.03f MHz)\n", u64toa(freq_hz, &ascii_u64_data1),((double)freq_hz/(double)FREQ_ONE_MHZ) ); result = hackrf_set_freq(device, freq_hz); if( result != HACKRF_SUCCESS ) { printf("hackrf_set_freq() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } } else { printf("call hackrf_set_freq_explicit() with %s Hz IF, %s Hz LO, %s\n", u64toa(if_freq_hz,&ascii_u64_data1), u64toa(lo_freq_hz,&ascii_u64_data2), hackrf_filter_path_name(image_reject_selection)); result = hackrf_set_freq_explicit(device, if_freq_hz, lo_freq_hz, image_reject_selection); if (result != HACKRF_SUCCESS) { printf("hackrf_set_freq_explicit() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } } if( amp ) { printf("call hackrf_set_amp_enable(%u)\n", amp_enable); result = hackrf_set_amp_enable(device, (uint8_t)amp_enable); if( result != HACKRF_SUCCESS ) { printf("hackrf_set_amp_enable() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } } if (antenna) { printf("call hackrf_set_antenna_enable(%u)\n", antenna_enable); result = hackrf_set_antenna_enable(device, (uint8_t)antenna_enable); if (result != HACKRF_SUCCESS) { printf("hackrf_set_antenna_enable() failed: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } } if( limit_num_samples ) { printf("samples_to_xfer %s/%sMio\n", u64toa(samples_to_xfer,&ascii_u64_data1), u64toa((samples_to_xfer/FREQ_ONE_MHZ),&ascii_u64_data2) ); } gettimeofday(&t_start, NULL); gettimeofday(&time_start, NULL); printf("Stop with Ctrl-C\n"); while( (hackrf_is_streaming(device) == HACKRF_TRUE) && (do_exit == false) ) { uint32_t byte_count_now; struct timeval time_now; float time_difference, rate; sleep(1); gettimeofday(&time_now, NULL); byte_count_now = byte_count; byte_count = 0; time_difference = TimevalDiff(&time_now, &time_start); rate = (float)byte_count_now / time_difference; printf("%4.1f MiB / %5.3f sec = %4.1f MiB/second\n", (byte_count_now / 1e6f), time_difference, (rate / 1e6f) ); time_start = time_now; if (byte_count_now == 0) { exit_code = EXIT_FAILURE; printf("\nCouldn't transfer any bytes for one second.\n"); break; } } result = hackrf_is_streaming(device); if (do_exit) { printf("\nUser cancel, exiting...\n"); } else { printf("\nExiting... hackrf_is_streaming() result: %s (%d)\n", hackrf_error_name(result), result); } gettimeofday(&t_end, NULL); time_diff = TimevalDiff(&t_end, &t_start); printf("Total time: %5.5f s\n", time_diff); if(device != NULL) { if( receive ) { result = hackrf_stop_rx(device); if( result != HACKRF_SUCCESS ) { printf("hackrf_stop_rx() failed: %s (%d)\n", hackrf_error_name(result), result); }else { printf("hackrf_stop_rx() done\n"); } } if( transmit ) { result = hackrf_stop_tx(device); if( result != HACKRF_SUCCESS ) { printf("hackrf_stop_tx() failed: %s (%d)\n", hackrf_error_name(result), result); }else { printf("hackrf_stop_tx() done\n"); } } result = hackrf_close(device); if( result != HACKRF_SUCCESS ) { printf("hackrf_close() failed: %s (%d)\n", hackrf_error_name(result), result); }else { printf("hackrf_close() done\n"); } hackrf_exit(); printf("hackrf_exit() done\n"); } if(fd != NULL) { if( receive_wav ) { /* Get size of file */ file_pos = ftell(fd); /* Update Wav Header */ wave_file_hdr.hdr.size = file_pos-8; wave_file_hdr.fmt_chunk.dwSamplesPerSec = sample_rate_hz; wave_file_hdr.fmt_chunk.dwAvgBytesPerSec = wave_file_hdr.fmt_chunk.dwSamplesPerSec*2; wave_file_hdr.data_chunk.chunkSize = file_pos - sizeof(t_wav_file_hdr); /* Overwrite header with updated data */ rewind(fd); fwrite(&wave_file_hdr, 1, sizeof(t_wav_file_hdr), fd); } fclose(fd); fd = NULL; printf("fclose(fd) done\n"); } printf("exit\n"); return exit_code; }