Example #1
0
void MaterialsExporter::exportMaterials(Scene *sce, bool export_selected)
{
	if(hasMaterials(sce)) {
		openLibrary();

		MaterialFunctor mf;
		mf.forEachMaterialInScene<MaterialsExporter>(sce, *this, export_selected);

		closeLibrary();
	}
}
Example #2
0
void MaterialsExporter::exportMaterials(Scene *sce)
{
	if (hasMaterials(sce)) {
		openLibrary();

		MaterialFunctor mf;
		mf.forEachMaterialInExportSet<MaterialsExporter>(sce, *this, this->export_settings->export_set);

		closeLibrary();
	}
}
Example #3
0
void MaterialsExporter::exportMaterials(Scene *sce)
{
	if (this->export_settings->export_texture_type == BC_TEXTURE_TYPE_MAT)
	{
		if (hasMaterials(sce)) {
			openLibrary();

			MaterialFunctor mf;
			mf.forEachMaterialInExportSet<MaterialsExporter>(sce, *this, this->export_settings->export_set);

			closeLibrary();
		}
	}

	else {
		std::set<Image *> uv_images = bc_getUVImages(sce, !this->export_settings->active_uv_only);
		if (uv_images.size() > 0) {
			openLibrary();
			std::set<Image *>::iterator uv_images_iter;
			for (uv_images_iter = uv_images.begin();
				uv_images_iter != uv_images.end();
				uv_images_iter++) {

				Image *ima = *uv_images_iter;
				std::string matid(id_name(ima));

				openMaterial(get_material_id_from_id(matid), translate_id(matid));
				std::string efid = translate_id(matid) + "-effect";
				addInstanceEffect(COLLADASW::URI(COLLADABU::Utils::EMPTY_STRING, efid));
				closeMaterial();
			}
			closeLibrary();
		}
	}

}
Example #4
0
ccPointCloud* ccGenericMesh::samplePoints(	bool densityBased,
											double samplingParameter,
											bool withNormals,
											bool withRGB,
											bool withTexture,
											CCLib::GenericProgressCallback* pDlg/*=0*/)
{
	bool withFeatures = (withNormals || withRGB || withTexture);

	GenericChunkedArray<1,unsigned>* triIndices = (withFeatures ? new GenericChunkedArray<1,unsigned> : 0);

	CCLib::SimpleCloud* sampledCloud = 0;
	if (densityBased)
	{
		sampledCloud = CCLib::MeshSamplingTools::samplePointsOnMesh(this,samplingParameter,pDlg,triIndices);
	}
	else
	{
		sampledCloud = CCLib::MeshSamplingTools::samplePointsOnMesh(this,static_cast<unsigned>(samplingParameter),pDlg,triIndices);
	}

	//convert to real point cloud
	ccPointCloud* cloud = 0;
	
	if (sampledCloud)
	{
		cloud = ccPointCloud::From(sampledCloud);
		delete sampledCloud;
		sampledCloud = 0;
	}

	if (!cloud)
	{
		if (triIndices)
			triIndices->release();

		ccLog::Warning("[ccGenericMesh::samplePoints] Not enough memory!");
		return 0;
	}

	if (withFeatures && triIndices && triIndices->currentSize() >= cloud->size())
	{
		//generate normals
		if (withNormals && hasNormals())
		{
			if (cloud->reserveTheNormsTable())
			{
				for (unsigned i=0; i<cloud->size(); ++i)
				{
					unsigned triIndex = triIndices->getValue(i);
					const CCVector3* P = cloud->getPoint(i);

					CCVector3 N(0,0,1);
					interpolateNormals(triIndex,*P,N);
					cloud->addNorm(N);
				}

				cloud->showNormals(true);
			}
			else
			{
				ccLog::Warning("[ccGenericMesh::samplePoints] Failed to interpolate normals (not enough memory?)");
			}
		}

		//generate colors
		if (withTexture && hasMaterials())
		{
			if (cloud->reserveTheRGBTable())
			{
				for (unsigned i=0; i<cloud->size(); ++i)
				{
					unsigned triIndex = triIndices->getValue(i);
					const CCVector3* P = cloud->getPoint(i);

					colorType C[3]={MAX_COLOR_COMP,MAX_COLOR_COMP,MAX_COLOR_COMP};
					getColorFromMaterial(triIndex,*P,C,withRGB);
					cloud->addRGBColor(C);
				}

				cloud->showColors(true);
			}
			else
			{
				ccLog::Warning("[ccGenericMesh::samplePoints] Failed to export texture colors (not enough memory?)");
			}
		}
		else if (withRGB && hasColors())
		{
			if (cloud->reserveTheRGBTable())
			{
				for (unsigned i=0; i<cloud->size(); ++i)
				{
					unsigned triIndex = triIndices->getValue(i);
					const CCVector3* P = cloud->getPoint(i);

					colorType C[3] = { MAX_COLOR_COMP, MAX_COLOR_COMP, MAX_COLOR_COMP };
					interpolateColors(triIndex,*P,C);
					cloud->addRGBColor(C);
				}

				cloud->showColors(true);
			}
			else
			{
				ccLog::Warning("[ccGenericMesh::samplePoints] Failed to interpolate colors (not enough memory?)");
			}
		}
	}

	//we rename the resulting cloud
	cloud->setName(getName()+QString(".sampled"));
	cloud->setDisplay(getDisplay());
	cloud->prepareDisplayForRefresh();
	
	//copy 'shift on load' information
	if (getAssociatedCloud())
	{
		const CCVector3d& shift = getAssociatedCloud()->getGlobalShift();
		cloud->setGlobalShift(shift);
		double scale = getAssociatedCloud()->getGlobalScale();
		cloud->setGlobalScale(scale);
	}

	if (triIndices)
		triIndices->release();

	return cloud;
}
Example #5
0
void ccGenericMesh::drawMeOnly(CC_DRAW_CONTEXT& context)
{
	ccGenericPointCloud* vertices = getAssociatedCloud();
	if (!vertices)
		return;

	handleColorRamp(context);

	//3D pass
	if (MACRO_Draw3D(context))
	{
		//any triangle?
		unsigned triNum = size();
		if (triNum == 0)
			return;

		//L.O.D.
		bool lodEnabled = (triNum > GET_MAX_LOD_FACES_NUMBER() && context.decimateMeshOnMove && MACRO_LODActivated(context));
		unsigned decimStep = (lodEnabled ? (unsigned)ceil((float)triNum*3 / (float)GET_MAX_LOD_FACES_NUMBER()) : 1);
		unsigned displayedTriNum = triNum / decimStep;

		//display parameters
		glDrawParams glParams;
		getDrawingParameters(glParams);
		glParams.showNorms &= bool(MACRO_LightIsEnabled(context));

		//vertices visibility
		const ccGenericPointCloud::VisibilityTableType* verticesVisibility = vertices->getTheVisibilityArray();
		bool visFiltering = (verticesVisibility && verticesVisibility->isAllocated());

		//wireframe ? (not compatible with LOD)
		bool showWired = isShownAsWire() && !lodEnabled;

		//per-triangle normals?
		bool showTriNormals = (hasTriNormals() && triNormsShown());
		//fix 'showNorms'
		glParams.showNorms = showTriNormals || (vertices->hasNormals() && m_normalsDisplayed);

		//materials & textures
		bool applyMaterials = (hasMaterials() && materialsShown());
		bool showTextures = (hasTextures() && materialsShown() && !lodEnabled);

		//GL name pushing
		bool pushName = MACRO_DrawEntityNames(context);
		//special case: triangle names pushing (for picking)
		bool pushTriangleNames = MACRO_DrawTriangleNames(context);
		pushName |= pushTriangleNames;

		if (pushName)
		{
			//not fast at all!
			if (MACRO_DrawFastNamesOnly(context))
				return;
			glPushName(getUniqueIDForDisplay());
			//minimal display for picking mode!
			glParams.showNorms = false;
			glParams.showColors = false;
			//glParams.showSF --> we keep it only if SF 'NaN' values are hidden
			showTriNormals = false;
			applyMaterials = false;
			showTextures = false;
		}

		//in the case we need to display scalar field colors
		ccScalarField* currentDisplayedScalarField = 0;
		bool greyForNanScalarValues = true;
		unsigned colorRampSteps = 0;
		ccColorScale::Shared colorScale(0);

		if (glParams.showSF)
		{
			assert(vertices->isA(CC_TYPES::POINT_CLOUD));
			ccPointCloud* cloud = static_cast<ccPointCloud*>(vertices);

			greyForNanScalarValues = (cloud->getCurrentDisplayedScalarField() && cloud->getCurrentDisplayedScalarField()->areNaNValuesShownInGrey());
			if (greyForNanScalarValues && pushName)
			{
				//in picking mode, no need to take SF into account if we don't hide any points!
				glParams.showSF = false;
			}
			else
			{
				currentDisplayedScalarField = cloud->getCurrentDisplayedScalarField();
				colorScale = currentDisplayedScalarField->getColorScale();
				colorRampSteps = currentDisplayedScalarField->getColorRampSteps();

				assert(colorScale);
				//get default color ramp if cloud has no scale associated?!
				if (!colorScale)
					colorScale = ccColorScalesManager::GetUniqueInstance()->getDefaultScale(ccColorScalesManager::BGYR);
			}
		}

		//materials or color?
		bool colorMaterial = false;
		if (glParams.showSF || glParams.showColors)
		{
			applyMaterials = false;
			colorMaterial = true;
			glColorMaterial(GL_FRONT_AND_BACK, GL_DIFFUSE);
			glEnable(GL_COLOR_MATERIAL);
		}

		//in the case we need to display vertex colors
		ColorsTableType* rgbColorsTable = 0;
		if (glParams.showColors)
		{
			if (isColorOverriden())
			{
				glColor3ubv(m_tempColor);
				glParams.showColors = false;
			}
			else
			{
				assert(vertices->isA(CC_TYPES::POINT_CLOUD));
				rgbColorsTable = static_cast<ccPointCloud*>(vertices)->rgbColors();
			}
		}
		else
		{
			glColor3fv(context.defaultMat.diffuseFront);
		}

		if (glParams.showNorms)
		{
			//DGM: Strangely, when Qt::renderPixmap is called, the OpenGL version can fall to 1.0!
			glEnable((QGLFormat::openGLVersionFlags() & QGLFormat::OpenGL_Version_1_2 ? GL_RESCALE_NORMAL : GL_NORMALIZE));
			glEnable(GL_LIGHTING);
			context.defaultMat.applyGL(true,colorMaterial);
		}

		//in the case we need normals (i.e. lighting)
		NormsIndexesTableType* normalsIndexesTable = 0;
		ccNormalVectors* compressedNormals = 0;
		if (glParams.showNorms)
		{
			assert(vertices->isA(CC_TYPES::POINT_CLOUD));
			normalsIndexesTable = static_cast<ccPointCloud*>(vertices)->normals();
			compressedNormals = ccNormalVectors::GetUniqueInstance();
		}

		//stipple mask
		if (stipplingEnabled())
			EnableGLStippleMask(true);

		if (!pushTriangleNames && !visFiltering && !(applyMaterials || showTextures) && (!glParams.showSF || greyForNanScalarValues))
		{
			//the GL type depends on the PointCoordinateType 'size' (float or double)
			GLenum GL_COORD_TYPE = sizeof(PointCoordinateType) == 4 ? GL_FLOAT : GL_DOUBLE;
			
			glEnableClientState(GL_VERTEX_ARRAY);
			glVertexPointer(3,GL_COORD_TYPE,0,GetVertexBuffer());

			if (glParams.showNorms)
			{
				glEnableClientState(GL_NORMAL_ARRAY);
				glNormalPointer(GL_COORD_TYPE,0,GetNormalsBuffer());
			}
			if (glParams.showSF || glParams.showColors)
			{
				glEnableClientState(GL_COLOR_ARRAY);
				glColorPointer(3,GL_UNSIGNED_BYTE,0,GetColorsBuffer());
			}

			//we can scan and process each chunk separately in an optimized way
			//we mimic the way ccMesh beahves by using virtual chunks!
			unsigned chunks = static_cast<unsigned>(ceil((double)displayedTriNum/(double)MAX_NUMBER_OF_ELEMENTS_PER_CHUNK));
			unsigned chunkStart = 0;
			const colorType* col = 0;
			for (unsigned k=0; k<chunks; ++k, chunkStart += MAX_NUMBER_OF_ELEMENTS_PER_CHUNK)
			{
				//virtual chunk size
				const unsigned chunkSize = k+1 < chunks ? MAX_NUMBER_OF_ELEMENTS_PER_CHUNK : (displayedTriNum % MAX_NUMBER_OF_ELEMENTS_PER_CHUNK);

				//vertices
				PointCoordinateType* _vertices = GetVertexBuffer();
				for (unsigned n=0; n<chunkSize; n+=decimStep)
				{
					const CCLib::TriangleSummitsIndexes* ti = getTriangleIndexes(chunkStart + n);
					memcpy(_vertices,vertices->getPoint(ti->i1)->u,sizeof(PointCoordinateType)*3);
					_vertices+=3;
					memcpy(_vertices,vertices->getPoint(ti->i2)->u,sizeof(PointCoordinateType)*3);
					_vertices+=3;
					memcpy(_vertices,vertices->getPoint(ti->i3)->u,sizeof(PointCoordinateType)*3);
					_vertices+=3;
				}

				//scalar field
				if (glParams.showSF)
				{
					colorType* _rgbColors = GetColorsBuffer();
					assert(colorScale);
					for (unsigned n=0; n<chunkSize; n+=decimStep)
					{
						const CCLib::TriangleSummitsIndexes* ti = getTriangleIndexes(chunkStart + n);
						col = currentDisplayedScalarField->getValueColor(ti->i1);
						memcpy(_rgbColors,col,sizeof(colorType)*3);
						_rgbColors += 3;
						col = currentDisplayedScalarField->getValueColor(ti->i2);
						memcpy(_rgbColors,col,sizeof(colorType)*3);
						_rgbColors += 3;
						col = currentDisplayedScalarField->getValueColor(ti->i3);
						memcpy(_rgbColors,col,sizeof(colorType)*3);
						_rgbColors += 3;
					}
				}
				//colors
				else if (glParams.showColors)
				{
					colorType* _rgbColors = GetColorsBuffer();

					for (unsigned n=0; n<chunkSize; n+=decimStep)
					{
						const CCLib::TriangleSummitsIndexes* ti = getTriangleIndexes(chunkStart + n);
						memcpy(_rgbColors,rgbColorsTable->getValue(ti->i1),sizeof(colorType)*3);
						_rgbColors += 3;
						memcpy(_rgbColors,rgbColorsTable->getValue(ti->i2),sizeof(colorType)*3);
						_rgbColors += 3;
						memcpy(_rgbColors,rgbColorsTable->getValue(ti->i3),sizeof(colorType)*3);
						_rgbColors += 3;
					}
				}

				//normals
				if (glParams.showNorms)
				{
					PointCoordinateType* _normals = GetNormalsBuffer();
					if (showTriNormals)
					{
						for (unsigned n=0; n<chunkSize; n+=decimStep)
						{
							CCVector3 Na, Nb, Nc;
							getTriangleNormals(chunkStart + n, Na, Nb, Nc);
							memcpy(_normals,Na.u,sizeof(PointCoordinateType)*3);
							_normals+=3;
							memcpy(_normals,Nb.u,sizeof(PointCoordinateType)*3);
							_normals+=3;
							memcpy(_normals,Nc.u,sizeof(PointCoordinateType)*3);
							_normals+=3;
						}
					}
					else
					{
						for (unsigned n=0; n<chunkSize; n+=decimStep)
						{
							const CCLib::TriangleSummitsIndexes* ti = getTriangleIndexes(chunkStart + n);
							memcpy(_normals,vertices->getPointNormal(ti->i1).u,sizeof(PointCoordinateType)*3);
							_normals+=3;
							memcpy(_normals,vertices->getPointNormal(ti->i2).u,sizeof(PointCoordinateType)*3);
							_normals+=3;
							memcpy(_normals,vertices->getPointNormal(ti->i3).u,sizeof(PointCoordinateType)*3);
							_normals+=3;
						}
					}
				}

				if (!showWired)
				{
					glDrawArrays(lodEnabled ? GL_POINTS : GL_TRIANGLES,0,(chunkSize/decimStep)*3);
				}
				else
				{
					glDrawElements(GL_LINES,(chunkSize/decimStep)*6,GL_UNSIGNED_INT,GetWireVertexIndexes());
				}
			}

			//disable arrays
			glDisableClientState(GL_VERTEX_ARRAY);
			if (glParams.showNorms)
				glDisableClientState(GL_NORMAL_ARRAY);
			if (glParams.showSF || glParams.showColors)
				glDisableClientState(GL_COLOR_ARRAY);
		}
		else
		{
			//current vertex color
			const colorType *col1=0,*col2=0,*col3=0;
			//current vertex normal
			const PointCoordinateType *N1=0,*N2=0,*N3=0;
			//current vertex texture coordinates
			float *Tx1=0,*Tx2=0,*Tx3=0;

			//loop on all triangles
			int lasMtlIndex = -1;

			if (showTextures)
			{
				//#define TEST_TEXTURED_BUNDLER_IMPORT
#ifdef TEST_TEXTURED_BUNDLER_IMPORT
				glPushAttrib(GL_COLOR_BUFFER_BIT);
				glEnable(GL_BLEND);
				glBlendFunc(context.sourceBlend, context.destBlend);
#endif

				glEnable(GL_TEXTURE_2D);
			}

			if (pushTriangleNames)
				glPushName(0);

			GLenum triangleDisplayType = lodEnabled ? GL_POINTS : showWired ? GL_LINE_LOOP : GL_TRIANGLES;
			glBegin(triangleDisplayType);

			//per-triangle normals
			const NormsIndexesTableType* triNormals = getTriNormsTable();
			//materials
			const ccMaterialSet* materials = getMaterialSet();

			for (unsigned n=0; n<triNum; ++n)
			{
				//current triangle vertices
				const CCLib::TriangleSummitsIndexes* tsi = getTriangleIndexes(n);

				//LOD: shall we display this triangle?
				if (n % decimStep)
					continue;

				if (visFiltering)
				{
					//we skip the triangle if at least one vertex is hidden
					if ((verticesVisibility->getValue(tsi->i1) != POINT_VISIBLE) ||
						(verticesVisibility->getValue(tsi->i2) != POINT_VISIBLE) ||
						(verticesVisibility->getValue(tsi->i3) != POINT_VISIBLE))
						continue;
				}

				if (glParams.showSF)
				{
					assert(colorScale);
					col1 = currentDisplayedScalarField->getValueColor(tsi->i1);
					if (!col1)
						continue;
					col2 = currentDisplayedScalarField->getValueColor(tsi->i2);
					if (!col2)
						continue;
					col3 = currentDisplayedScalarField->getValueColor(tsi->i3);
					if (!col3)
						continue;
				}
				else if (glParams.showColors)
				{
					col1 = rgbColorsTable->getValue(tsi->i1);
					col2 = rgbColorsTable->getValue(tsi->i2);
					col3 = rgbColorsTable->getValue(tsi->i3);
				}

				if (glParams.showNorms)
				{
					if (showTriNormals)
					{
						assert(triNormals);
						int n1,n2,n3;
						getTriangleNormalIndexes(n,n1,n2,n3);
						N1 = (n1>=0 ? ccNormalVectors::GetNormal(triNormals->getValue(n1)).u : 0);
						N2 = (n1==n2 ? N1 : n1>=0 ? ccNormalVectors::GetNormal(triNormals->getValue(n2)).u : 0);
						N3 = (n1==n3 ? N1 : n3>=0 ? ccNormalVectors::GetNormal(triNormals->getValue(n3)).u : 0);

					}
					else
					{
						N1 = compressedNormals->getNormal(normalsIndexesTable->getValue(tsi->i1)).u;
						N2 = compressedNormals->getNormal(normalsIndexesTable->getValue(tsi->i2)).u;
						N3 = compressedNormals->getNormal(normalsIndexesTable->getValue(tsi->i3)).u;
					}
				}

				if (applyMaterials || showTextures)
				{
					assert(materials);
					int newMatlIndex = this->getTriangleMtlIndex(n);

					//do we need to change material?
					if (lasMtlIndex != newMatlIndex)
					{
						assert(newMatlIndex<(int)materials->size());
						glEnd();
						if (showTextures)
						{
							GLuint texID = (newMatlIndex>=0 ? (*materials)[newMatlIndex].texID : 0);
							if (texID>0)
								assert(glIsTexture(texID));
							glBindTexture(GL_TEXTURE_2D, texID);
						}

						//if we don't have any current material, we apply default one
						(newMatlIndex>=0 ? (*materials)[newMatlIndex] : context.defaultMat).applyGL(glParams.showNorms,false);
						glBegin(triangleDisplayType);
						lasMtlIndex=newMatlIndex;
					}

					if (showTextures)
					{
						getTriangleTexCoordinates(n,Tx1,Tx2,Tx3);
					}
				}

				if (pushTriangleNames)
				{
					glEnd();
					glLoadName(n);
					glBegin(triangleDisplayType);
				}
				else if (showWired)
				{
					glEnd();
					glBegin(triangleDisplayType);
				}

				//vertex 1
				if (N1)
					ccGL::Normal3v(N1);
				if (col1)
					glColor3ubv(col1);
				if (Tx1)
					glTexCoord2fv(Tx1);
				ccGL::Vertex3v(vertices->getPoint(tsi->i1)->u);

				//vertex 2
				if (N2)
					ccGL::Normal3v(N2);
				if (col2)
					glColor3ubv(col2);
				if (Tx2)
					glTexCoord2fv(Tx2);
				ccGL::Vertex3v(vertices->getPoint(tsi->i2)->u);

				//vertex 3
				if (N3)
					ccGL::Normal3v(N3);
				if (col3)
					glColor3ubv(col3);
				if (Tx3)
					glTexCoord2fv(Tx3);
				ccGL::Vertex3v(vertices->getPoint(tsi->i3)->u);
			}

			glEnd();

			if (pushTriangleNames)
				glPopName();

			if (showTextures)
			{
#ifdef TEST_TEXTURED_BUNDLER_IMPORT
				glPopAttrib(); //GL_COLOR_BUFFER_BIT 
#endif
				glBindTexture(GL_TEXTURE_2D, 0);
				glDisable(GL_TEXTURE_2D);
			}
		}

		if (stipplingEnabled())
			EnableGLStippleMask(false);

		if (colorMaterial)
			glDisable(GL_COLOR_MATERIAL);

		if (glParams.showNorms)
		{
			glDisable(GL_LIGHTING);
			glDisable((QGLFormat::openGLVersionFlags() & QGLFormat::OpenGL_Version_1_2 ? GL_RESCALE_NORMAL : GL_NORMALIZE));
		}

		if (pushName)
			glPopName();
	}
}