static int verify_io_u_sha1(struct verify_header *hdr, struct vcont *vc) { void *p = io_u_verify_off(hdr, vc); struct vhdr_sha1 *vh = hdr_priv(hdr); uint32_t sha1[5]; struct fio_sha1_ctx sha1_ctx = { .H = sha1, }; dprint(FD_VERIFY, "sha1 verify io_u %p, len %u\n", vc->io_u, hdr->len); fio_sha1_init(&sha1_ctx); fio_sha1_update(&sha1_ctx, p, hdr->len - hdr_size(vc->td, hdr)); fio_sha1_final(&sha1_ctx); if (!memcmp(vh->sha1, sha1_ctx.H, sizeof(sha1))) return 0; vc->name = "sha1"; vc->good_crc = vh->sha1; vc->bad_crc = sha1_ctx.H; vc->crc_len = sizeof(vh->sha1); log_verify_failure(hdr, vc); return EILSEQ; }
static int verify_io_u_md5(struct verify_header *hdr, struct vcont *vc) { void *p = io_u_verify_off(hdr, vc); struct vhdr_md5 *vh = hdr_priv(hdr); uint32_t hash[MD5_HASH_WORDS]; struct fio_md5_ctx md5_ctx = { .hash = hash, }; dprint(FD_VERIFY, "md5 verify io_u %p, len %u\n", vc->io_u, hdr->len); fio_md5_init(&md5_ctx); fio_md5_update(&md5_ctx, p, hdr->len - hdr_size(vc->td, hdr)); fio_md5_final(&md5_ctx); if (!memcmp(vh->md5_digest, md5_ctx.hash, sizeof(hash))) return 0; vc->name = "md5"; vc->good_crc = vh->md5_digest; vc->bad_crc = md5_ctx.hash; vc->crc_len = sizeof(hash); log_verify_failure(hdr, vc); return EILSEQ; }
static int verify_io_u_sha256(struct verify_header *hdr, struct vcont *vc) { void *p = io_u_verify_off(hdr, vc); struct vhdr_sha256 *vh = hdr_priv(hdr); uint8_t sha256[64]; struct fio_sha256_ctx sha256_ctx = { .buf = sha256, }; dprint(FD_VERIFY, "sha256 verify io_u %p, len %u\n", vc->io_u, hdr->len); fio_sha256_init(&sha256_ctx); fio_sha256_update(&sha256_ctx, p, hdr->len - hdr_size(vc->td, hdr)); fio_sha256_final(&sha256_ctx); if (!memcmp(vh->sha256, sha256_ctx.buf, sizeof(sha256))) return 0; vc->name = "sha256"; vc->good_crc = vh->sha256; vc->bad_crc = sha256_ctx.buf; vc->crc_len = sizeof(vh->sha256); log_verify_failure(hdr, vc); return EILSEQ; }
static int verify_io_u_meta(struct verify_header *hdr, struct vcont *vc) { struct thread_data *td = vc->td; struct vhdr_meta *vh = hdr_priv(hdr); struct io_u *io_u = vc->io_u; int ret = EILSEQ; dprint(FD_VERIFY, "meta verify io_u %p, len %u\n", io_u, hdr->len); if (vh->offset == io_u->offset + vc->hdr_num * td->o.verify_interval) ret = 0; if (td->o.verify_pattern_bytes) ret |= verify_io_u_pattern(hdr, vc); /* * For read-only workloads, the program cannot be certain of the * last numberio written to a block. Checking of numberio will be done * only for workloads that write data. * For verify_only, numberio will be checked in the last iteration when * the correct state of numberio, that would have been written to each * block in a previous run of fio, has been reached. */ if (td_write(td) || td_rw(td)) if (!td->o.verify_only || td->o.loops == 0) if (vh->numberio != io_u->numberio) ret = EILSEQ; if (!ret) return 0; vc->name = "meta"; log_verify_failure(hdr, vc); return ret; }
static void fill_xxhash(struct verify_header *hdr, void *p, unsigned int len) { struct vhdr_xxhash *vh = hdr_priv(hdr); void *state; state = XXH32_init(1); XXH32_update(state, p, len); vh->hash = XXH32_digest(state); }
static void fill_meta(struct verify_header *hdr, struct thread_data *td, struct io_u *io_u, unsigned int header_num) { struct vhdr_meta *vh = hdr_priv(hdr); vh->thread = td->thread_number; vh->time_sec = io_u->start_time.tv_sec; vh->time_usec = io_u->start_time.tv_usec; vh->numberio = io_u->numberio; vh->offset = io_u->offset + header_num * td->o.verify_interval; }
static int verify_io_u_crc32c(struct verify_header *hdr, struct vcont *vc) { void *p = io_u_verify_off(hdr, vc); struct vhdr_crc32 *vh = hdr_priv(hdr); uint32_t c; dprint(FD_VERIFY, "crc32c verify io_u %p, len %u\n", vc->io_u, hdr->len); c = fio_crc32c(p, hdr->len - hdr_size(vc->td, hdr)); if (c == vh->crc32) return 0; vc->name = "crc32c"; vc->good_crc = &vh->crc32; vc->bad_crc = &c; vc->crc_len = 4; log_verify_failure(hdr, vc); return EILSEQ; }
static int verify_io_u_crc64(struct verify_header *hdr, struct vcont *vc) { void *p = io_u_verify_off(hdr, vc); struct vhdr_crc64 *vh = hdr_priv(hdr); unsigned long long c; dprint(FD_VERIFY, "crc64 verify io_u %p, len %u\n", vc->io_u, hdr->len); c = fio_crc64(p, hdr->len - hdr_size(vc->td, hdr)); if (c == vh->crc64) return 0; vc->name = "crc64"; vc->good_crc = &vh->crc64; vc->bad_crc = &c; vc->crc_len = 8; log_verify_failure(hdr, vc); return EILSEQ; }
static int verify_io_u_meta(struct verify_header *hdr, struct vcont *vc) { struct thread_data *td = vc->td; struct vhdr_meta *vh = hdr_priv(hdr); struct io_u *io_u = vc->io_u; int ret = EILSEQ; dprint(FD_VERIFY, "meta verify io_u %p, len %u\n", io_u, hdr->len); if (vh->offset == io_u->offset + vc->hdr_num * td->o.verify_interval) ret = 0; if (td->o.verify_pattern_bytes) ret |= verify_io_u_pattern(hdr, vc); if (!ret) return 0; vc->name = "meta"; log_verify_failure(hdr, vc); return ret; }
static int verify_io_u_xxhash(struct verify_header *hdr, struct vcont *vc) { void *p = io_u_verify_off(hdr, vc); struct vhdr_xxhash *vh = hdr_priv(hdr); uint32_t hash; void *state; dprint(FD_VERIFY, "xxhash verify io_u %p, len %u\n", vc->io_u, hdr->len); state = XXH32_init(1); XXH32_update(state, p, hdr->len - hdr_size(vc->td, hdr)); hash = XXH32_digest(state); if (vh->hash == hash) return 0; vc->name = "xxhash"; vc->good_crc = &vh->hash; vc->bad_crc = &hash; vc->crc_len = sizeof(hash); log_verify_failure(hdr, vc); return EILSEQ; }
static void fill_sha512(struct verify_header *hdr, void *p, unsigned int len) { struct vhdr_sha512 *vh = hdr_priv(hdr); struct fio_sha512_ctx sha512_ctx = { .buf = vh->sha512, }; fio_sha512_init(&sha512_ctx); fio_sha512_update(&sha512_ctx, p, len); } static void fill_sha256(struct verify_header *hdr, void *p, unsigned int len) { struct vhdr_sha256 *vh = hdr_priv(hdr); struct fio_sha256_ctx sha256_ctx = { .buf = vh->sha256, }; fio_sha256_init(&sha256_ctx); fio_sha256_update(&sha256_ctx, p, len); fio_sha256_final(&sha256_ctx); } static void fill_sha1(struct verify_header *hdr, void *p, unsigned int len) { struct vhdr_sha1 *vh = hdr_priv(hdr); struct fio_sha1_ctx sha1_ctx = { .H = vh->sha1, }; fio_sha1_init(&sha1_ctx); fio_sha1_update(&sha1_ctx, p, len); fio_sha1_final(&sha1_ctx); } static void fill_crc7(struct verify_header *hdr, void *p, unsigned int len) { struct vhdr_crc7 *vh = hdr_priv(hdr); vh->crc7 = fio_crc7(p, len); } static void fill_crc16(struct verify_header *hdr, void *p, unsigned int len) { struct vhdr_crc16 *vh = hdr_priv(hdr); vh->crc16 = fio_crc16(p, len); } static void fill_crc32(struct verify_header *hdr, void *p, unsigned int len) { struct vhdr_crc32 *vh = hdr_priv(hdr); vh->crc32 = fio_crc32(p, len); } static void fill_crc32c(struct verify_header *hdr, void *p, unsigned int len) { struct vhdr_crc32 *vh = hdr_priv(hdr); vh->crc32 = fio_crc32c(p, len); } static void fill_crc64(struct verify_header *hdr, void *p, unsigned int len) { struct vhdr_crc64 *vh = hdr_priv(hdr); vh->crc64 = fio_crc64(p, len); } static void fill_md5(struct verify_header *hdr, void *p, unsigned int len) { struct vhdr_md5 *vh = hdr_priv(hdr); struct fio_md5_ctx md5_ctx = { .hash = (uint32_t *) vh->md5_digest, }; fio_md5_init(&md5_ctx); fio_md5_update(&md5_ctx, p, len); fio_md5_final(&md5_ctx); } static void __fill_hdr(struct verify_header *hdr, int verify_type, uint32_t len, uint64_t rand_seed) { void *p = hdr; hdr->magic = FIO_HDR_MAGIC; hdr->verify_type = verify_type; hdr->len = len; hdr->rand_seed = rand_seed; hdr->crc32 = fio_crc32c(p, offsetof(struct verify_header, crc32)); } static void fill_hdr(struct verify_header *hdr, int verify_type, uint32_t len, uint64_t rand_seed) { if (verify_type != VERIFY_PATTERN_NO_HDR) __fill_hdr(hdr, verify_type, len, rand_seed); } static void populate_hdr(struct thread_data *td, struct io_u *io_u, struct verify_header *hdr, unsigned int header_num, unsigned int header_len) { unsigned int data_len; void *data, *p; p = (void *) hdr; fill_hdr(hdr, td->o.verify, header_len, io_u->rand_seed); data_len = header_len - hdr_size(td, hdr); data = p + hdr_size(td, hdr); switch (td->o.verify) { case VERIFY_MD5: dprint(FD_VERIFY, "fill md5 io_u %p, len %u\n", io_u, hdr->len); fill_md5(hdr, data, data_len); break; case VERIFY_CRC64: dprint(FD_VERIFY, "fill crc64 io_u %p, len %u\n", io_u, hdr->len); fill_crc64(hdr, data, data_len); break; case VERIFY_CRC32C: case VERIFY_CRC32C_INTEL: dprint(FD_VERIFY, "fill crc32c io_u %p, len %u\n", io_u, hdr->len); fill_crc32c(hdr, data, data_len); break; case VERIFY_CRC32: dprint(FD_VERIFY, "fill crc32 io_u %p, len %u\n", io_u, hdr->len); fill_crc32(hdr, data, data_len); break; case VERIFY_CRC16: dprint(FD_VERIFY, "fill crc16 io_u %p, len %u\n", io_u, hdr->len); fill_crc16(hdr, data, data_len); break; case VERIFY_CRC7: dprint(FD_VERIFY, "fill crc7 io_u %p, len %u\n", io_u, hdr->len); fill_crc7(hdr, data, data_len); break; case VERIFY_SHA256: dprint(FD_VERIFY, "fill sha256 io_u %p, len %u\n", io_u, hdr->len); fill_sha256(hdr, data, data_len); break; case VERIFY_SHA512: dprint(FD_VERIFY, "fill sha512 io_u %p, len %u\n", io_u, hdr->len); fill_sha512(hdr, data, data_len); break; case VERIFY_XXHASH: dprint(FD_VERIFY, "fill xxhash io_u %p, len %u\n", io_u, hdr->len); fill_xxhash(hdr, data, data_len); break; case VERIFY_META: dprint(FD_VERIFY, "fill meta io_u %p, len %u\n", io_u, hdr->len); fill_meta(hdr, td, io_u, header_num); break; case VERIFY_SHA1: dprint(FD_VERIFY, "fill sha1 io_u %p, len %u\n", io_u, hdr->len); fill_sha1(hdr, data, data_len); break; case VERIFY_PATTERN: case VERIFY_PATTERN_NO_HDR: /* nothing to do here */ break; default: log_err("fio: bad verify type: %d\n", td->o.verify); assert(0); } if (td->o.verify_offset && hdr_size(td, hdr)) memswp(p, p + td->o.verify_offset, hdr_size(td, hdr)); } /* * fill body of io_u->buf with random data and add a header with the * checksum of choice */ void populate_verify_io_u(struct thread_data *td, struct io_u *io_u) { if (td->o.verify == VERIFY_NULL) return; io_u->numberio = td->io_issues[io_u->ddir]; fill_pattern_headers(td, io_u, 0, 0); } int get_next_verify(struct thread_data *td, struct io_u *io_u) { struct io_piece *ipo = NULL; /* * this io_u is from a requeue, we already filled the offsets */ if (io_u->file) return 0; if (!RB_EMPTY_ROOT(&td->io_hist_tree)) { struct rb_node *n = rb_first(&td->io_hist_tree); ipo = rb_entry(n, struct io_piece, rb_node); /* * Ensure that the associated IO has completed */ read_barrier(); if (ipo->flags & IP_F_IN_FLIGHT) goto nothing; rb_erase(n, &td->io_hist_tree); assert(ipo->flags & IP_F_ONRB); ipo->flags &= ~IP_F_ONRB; } else if (!flist_empty(&td->io_hist_list)) { ipo = flist_first_entry(&td->io_hist_list, struct io_piece, list); /* * Ensure that the associated IO has completed */ read_barrier(); if (ipo->flags & IP_F_IN_FLIGHT) goto nothing; flist_del(&ipo->list); assert(ipo->flags & IP_F_ONLIST); ipo->flags &= ~IP_F_ONLIST; } if (ipo) { td->io_hist_len--; io_u->offset = ipo->offset; io_u->buflen = ipo->len; io_u->numberio = ipo->numberio; io_u->file = ipo->file; io_u_set(io_u, IO_U_F_VER_LIST); if (ipo->flags & IP_F_TRIMMED) io_u_set(io_u, IO_U_F_TRIMMED); if (!fio_file_open(io_u->file)) { int r = td_io_open_file(td, io_u->file); if (r) { dprint(FD_VERIFY, "failed file %s open\n", io_u->file->file_name); return 1; } } get_file(ipo->file); assert(fio_file_open(io_u->file)); io_u->ddir = DDIR_READ; io_u->xfer_buf = io_u->buf; io_u->xfer_buflen = io_u->buflen; remove_trim_entry(td, ipo); free(ipo); dprint(FD_VERIFY, "get_next_verify: ret io_u %p\n", io_u); if (!td->o.verify_pattern_bytes) { io_u->rand_seed = __rand(&td->verify_state); if (sizeof(int) != sizeof(long *)) io_u->rand_seed *= __rand(&td->verify_state); } return 0; } nothing: dprint(FD_VERIFY, "get_next_verify: empty\n"); return 1; }
static void fill_sha512(struct verify_header *hdr, void *p, unsigned int len) { struct vhdr_sha512 *vh = hdr_priv(hdr); struct fio_sha512_ctx sha512_ctx = { .buf = vh->sha512, }; fio_sha512_init(&sha512_ctx); fio_sha512_update(&sha512_ctx, p, len); } static void fill_sha256(struct verify_header *hdr, void *p, unsigned int len) { struct vhdr_sha256 *vh = hdr_priv(hdr); struct fio_sha256_ctx sha256_ctx = { .buf = vh->sha256, }; fio_sha256_init(&sha256_ctx); fio_sha256_update(&sha256_ctx, p, len); } static void fill_sha1(struct verify_header *hdr, void *p, unsigned int len) { struct vhdr_sha1 *vh = hdr_priv(hdr); struct fio_sha1_ctx sha1_ctx = { .H = vh->sha1, }; fio_sha1_init(&sha1_ctx); fio_sha1_update(&sha1_ctx, p, len); } static void fill_crc7(struct verify_header *hdr, void *p, unsigned int len) { struct vhdr_crc7 *vh = hdr_priv(hdr); vh->crc7 = fio_crc7(p, len); } static void fill_crc16(struct verify_header *hdr, void *p, unsigned int len) { struct vhdr_crc16 *vh = hdr_priv(hdr); vh->crc16 = fio_crc16(p, len); } static void fill_crc32(struct verify_header *hdr, void *p, unsigned int len) { struct vhdr_crc32 *vh = hdr_priv(hdr); vh->crc32 = fio_crc32(p, len); } static void fill_crc32c(struct verify_header *hdr, void *p, unsigned int len) { struct vhdr_crc32 *vh = hdr_priv(hdr); vh->crc32 = fio_crc32c(p, len); } static void fill_crc64(struct verify_header *hdr, void *p, unsigned int len) { struct vhdr_crc64 *vh = hdr_priv(hdr); vh->crc64 = fio_crc64(p, len); } static void fill_md5(struct verify_header *hdr, void *p, unsigned int len) { struct vhdr_md5 *vh = hdr_priv(hdr); struct fio_md5_ctx md5_ctx = { .hash = (uint32_t *) vh->md5_digest, }; fio_md5_init(&md5_ctx); fio_md5_update(&md5_ctx, p, len); } static void populate_hdr(struct thread_data *td, struct io_u *io_u, struct verify_header *hdr, unsigned int header_num, unsigned int header_len) { unsigned int data_len; void *data, *p; p = (void *) hdr; hdr->magic = FIO_HDR_MAGIC; hdr->verify_type = td->o.verify; hdr->len = header_len; hdr->rand_seed = io_u->rand_seed; hdr->crc32 = fio_crc32c(p, offsetof(struct verify_header, crc32)); data_len = header_len - hdr_size(hdr); data = p + hdr_size(hdr); switch (td->o.verify) { case VERIFY_MD5: dprint(FD_VERIFY, "fill md5 io_u %p, len %u\n", io_u, hdr->len); fill_md5(hdr, data, data_len); break; case VERIFY_CRC64: dprint(FD_VERIFY, "fill crc64 io_u %p, len %u\n", io_u, hdr->len); fill_crc64(hdr, data, data_len); break; case VERIFY_CRC32C: case VERIFY_CRC32C_INTEL: dprint(FD_VERIFY, "fill crc32c io_u %p, len %u\n", io_u, hdr->len); fill_crc32c(hdr, data, data_len); break; case VERIFY_CRC32: dprint(FD_VERIFY, "fill crc32 io_u %p, len %u\n", io_u, hdr->len); fill_crc32(hdr, data, data_len); break; case VERIFY_CRC16: dprint(FD_VERIFY, "fill crc16 io_u %p, len %u\n", io_u, hdr->len); fill_crc16(hdr, data, data_len); break; case VERIFY_CRC7: dprint(FD_VERIFY, "fill crc7 io_u %p, len %u\n", io_u, hdr->len); fill_crc7(hdr, data, data_len); break; case VERIFY_SHA256: dprint(FD_VERIFY, "fill sha256 io_u %p, len %u\n", io_u, hdr->len); fill_sha256(hdr, data, data_len); break; case VERIFY_SHA512: dprint(FD_VERIFY, "fill sha512 io_u %p, len %u\n", io_u, hdr->len); fill_sha512(hdr, data, data_len); break; case VERIFY_META: dprint(FD_VERIFY, "fill meta io_u %p, len %u\n", io_u, hdr->len); fill_meta(hdr, td, io_u, header_num); break; case VERIFY_SHA1: dprint(FD_VERIFY, "fill sha1 io_u %p, len %u\n", io_u, hdr->len); fill_sha1(hdr, data, data_len); break; case VERIFY_PATTERN: /* nothing to do here */ break; default: log_err("fio: bad verify type: %d\n", td->o.verify); assert(0); } if (td->o.verify_offset) memswp(p, p + td->o.verify_offset, hdr_size(hdr)); } /* * fill body of io_u->buf with random data and add a header with the * checksum of choice */ void populate_verify_io_u(struct thread_data *td, struct io_u *io_u) { if (td->o.verify == VERIFY_NULL) return; fill_pattern_headers(td, io_u, 0, 0); } int get_next_verify(struct thread_data *td, struct io_u *io_u) { struct io_piece *ipo = NULL; /* * this io_u is from a requeue, we already filled the offsets */ if (io_u->file) return 0; if (!RB_EMPTY_ROOT(&td->io_hist_tree)) { struct rb_node *n = rb_first(&td->io_hist_tree); ipo = rb_entry(n, struct io_piece, rb_node); rb_erase(n, &td->io_hist_tree); assert(ipo->flags & IP_F_ONRB); ipo->flags &= ~IP_F_ONRB; } else if (!flist_empty(&td->io_hist_list)) { ipo = flist_entry(td->io_hist_list.next, struct io_piece, list); flist_del(&ipo->list); assert(ipo->flags & IP_F_ONLIST); ipo->flags &= ~IP_F_ONLIST; } if (ipo) { td->io_hist_len--; io_u->offset = ipo->offset; io_u->buflen = ipo->len; io_u->file = ipo->file; io_u->flags |= IO_U_F_VER_LIST; if (ipo->flags & IP_F_TRIMMED) io_u->flags |= IO_U_F_TRIMMED; if (!fio_file_open(io_u->file)) { int r = td_io_open_file(td, io_u->file); if (r) { dprint(FD_VERIFY, "failed file %s open\n", io_u->file->file_name); return 1; } } get_file(ipo->file); assert(fio_file_open(io_u->file)); io_u->ddir = DDIR_READ; io_u->xfer_buf = io_u->buf; io_u->xfer_buflen = io_u->buflen; remove_trim_entry(td, ipo); free(ipo); dprint(FD_VERIFY, "get_next_verify: ret io_u %p\n", io_u); return 0; } dprint(FD_VERIFY, "get_next_verify: empty\n"); return 1; } void fio_verify_init(struct thread_data *td) { if (td->o.verify == VERIFY_CRC32C_INTEL || td->o.verify == VERIFY_CRC32C) { crc32c_intel_probe(); } } static void *verify_async_thread(void *data) { struct thread_data *td = data; struct io_u *io_u; int ret = 0; if (td->o.verify_cpumask_set && fio_setaffinity(td->pid, td->o.verify_cpumask)) { log_err("fio: failed setting verify thread affinity\n"); goto done; } do { FLIST_HEAD(list); read_barrier(); if (td->verify_thread_exit) break; pthread_mutex_lock(&td->io_u_lock); while (flist_empty(&td->verify_list) && !td->verify_thread_exit) { ret = pthread_cond_wait(&td->verify_cond, &td->io_u_lock); if (ret) { pthread_mutex_unlock(&td->io_u_lock); break; } } flist_splice_init(&td->verify_list, &list); pthread_mutex_unlock(&td->io_u_lock); if (flist_empty(&list)) continue; while (!flist_empty(&list)) { io_u = flist_entry(list.next, struct io_u, verify_list); flist_del(&io_u->verify_list); ret = verify_io_u(td, io_u); put_io_u(td, io_u); if (!ret) continue; if (td_non_fatal_error(td, ERROR_TYPE_VERIFY_BIT, ret)) { update_error_count(td, ret); td_clear_error(td); ret = 0; } } } while (!ret); if (ret) { td_verror(td, ret, "async_verify"); if (td->o.verify_fatal) td->terminate = 1; } done: pthread_mutex_lock(&td->io_u_lock); td->nr_verify_threads--; pthread_mutex_unlock(&td->io_u_lock); pthread_cond_signal(&td->free_cond); return NULL; } int verify_async_init(struct thread_data *td) { int i, ret; pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setstacksize(&attr, PTHREAD_STACK_MIN); td->verify_thread_exit = 0; td->verify_threads = malloc(sizeof(pthread_t) * td->o.verify_async); for (i = 0; i < td->o.verify_async; i++) { ret = pthread_create(&td->verify_threads[i], &attr, verify_async_thread, td); if (ret) { log_err("fio: async verify creation failed: %s\n", strerror(ret)); break; } ret = pthread_detach(td->verify_threads[i]); if (ret) { log_err("fio: async verify thread detach failed: %s\n", strerror(ret)); break; } td->nr_verify_threads++; } pthread_attr_destroy(&attr); if (i != td->o.verify_async) { log_err("fio: only %d verify threads started, exiting\n", i); td->verify_thread_exit = 1; write_barrier(); pthread_cond_broadcast(&td->verify_cond); return 1; } return 0; }