Example #1
0
/// called every 10ms from clock.c - check all temp sensors that are ready for checking
void temp_sensor_tick() {
	temp_sensor_t i = 0;
	for (; i < NUM_TEMP_SENSORS; i++) {
		if (temp_sensors_runtime[i].next_read_time) {
			temp_sensors_runtime[i].next_read_time--;
		}
		else {
			uint16_t	temp = 0;
			//time to deal with this temp sensor
			switch(temp_sensors[i].temp_type) {
				#ifdef	TEMP_MAX6675
				case TT_MAX6675:
					#ifdef	PRR
						PRR &= ~MASK(PRSPI);
					#elif defined PRR0
						PRR0 &= ~MASK(PRSPI);
					#endif
                    #ifdef NAL_REPRAP
                        /* This section is compatible with the mendel original implementation of the MAX6675.
                         * Not using the SPI as the MISO line is used to control our heater.
                         */

                        WRITE(MAX6675_CS, 0); // Enable device

                        // Read in 16 bits from the MAX6675 
                        for (uint8_t i=0; i<16; i++){
                            WRITE(MAX6675_SCK,1);                               // Set Clock to HIGH
                            temp <<= 1;                                         // shift left by one
                            // Read bit  and add it to our variable
                            temp +=  (READ(MAX6675_SO) != 0 );
                            WRITE(MAX6675_SCK,0);                               // Set Clock to LOW
                        }

                        WRITE(MAX6675_CS, 1);                                   //Disable Device
                    #else
                        SPCR = MASK(MSTR) | MASK(SPE) | MASK(SPR0);

                        // enable TT_MAX6675
                        WRITE(SS, 0);

                        // ensure 100ns delay - a bit extra is fine
                        delay(1);

                        // read MSB
                        SPDR = 0;
                        for (;(SPSR & MASK(SPIF)) == 0;);
                        temp = SPDR;
                        temp <<= 8;

                        // read LSB
                        SPDR = 0;
                        for (;(SPSR & MASK(SPIF)) == 0;);
                        temp |= SPDR;

                        // disable TT_MAX6675
                        WRITE(SS, 1);
                    #endif
					temp_sensors_runtime[i].temp_flags = 0;
					if ((temp & 0x8002) == 0) {
						// got "device id"
						temp_sensors_runtime[i].temp_flags |= PRESENT;
						if (temp & 4) {
							// thermocouple open
							temp_sensors_runtime[i].temp_flags |= TCOPEN;
						}
						else {
							temp = temp >> 3;
						}
					}

					// this number depends on how frequently temp_sensor_tick is called. the MAX6675 can give a reading every 0.22s, so set this to about 250ms
					temp_sensors_runtime[i].next_read_time = 25;

					break;
				#endif	/* TEMP_MAX6675	*/

				#ifdef	TEMP_THERMISTOR
				case TT_THERMISTOR:
					do {
						uint8_t j, table_num;
						//Read current temperature
						temp = analog_read(temp_sensors[i].temp_pin);
                        
                        // check for open circuit
                        if (temp ==1023){
                           temp = 0 ; // this should convert to max temperature and ensure the heaters are turned off
                           temp_sensors_runtime[i].temp_flags |= TCOPEN;
                        }
                        
						// for thermistors the thermistor table number is in the additional field
						table_num = temp_sensors[i].additional;
                        

						//Calculate real temperature based on lookup table
						for (j = 1; j < NUMTEMPS; j++) {
							if (pgm_read_word(&(temptable[table_num][j][0])) > temp) {
								// Thermistor table is already in 14.2 fixed point
								#ifndef	EXTRUDER
								if (debug_flags & DEBUG_PID)
									sersendf_P(PSTR("pin:%d Raw ADC:%d table entry: %d"),temp_sensors[i].temp_pin,temp,j);
								#endif
								// Linear interpolating temperature value
								// y = ((x - x₀)y₁ + (x₁-x)y₀ ) / (x₁ - x₀)
								// y = temp
								// x = ADC reading
								// x₀= temptable[j-1][0]
								// x₁= temptable[j][0]
								// y₀= temptable[j-1][1]
								// y₁= temptable[j][1]
								// y =
								// Wikipedia's example linear interpolation formula.
								temp = (
								//     ((x - x₀)y₁
									((uint32_t)temp - pgm_read_word(&(temptable[table_num][j-1][0]))) * pgm_read_word(&(temptable[table_num][j][1]))
								//                 +
									+
								//                   (x₁-x)
									(pgm_read_word(&(temptable[table_num][j][0])) - (uint32_t)temp)
								//                         y₀ )
									* pgm_read_word(&(temptable[table_num][j-1][1])))
								//                              /
									/
								//                                (x₁ - x₀)
									(pgm_read_word(&(temptable[table_num][j][0])) - pgm_read_word(&(temptable[table_num][j-1][0])));
								#ifndef	EXTRUDER
								if (debug_flags & DEBUG_PID)
									sersendf_P(PSTR(" temp:%d.%d"),temp/4,(temp%4)*25);
								#endif
								break;
							}
						}
						#ifndef	EXTRUDER
						if (debug_flags & DEBUG_PID)
							sersendf_P(PSTR(" Sensor:%d\n"),i);
						#endif


						//Clamp for overflows
						if (j == NUMTEMPS)
							temp = temptable[table_num][NUMTEMPS-1][1];

						temp_sensors_runtime[i].next_read_time = 0;
					} while (0);
					break;
				#endif	/* TEMP_THERMISTOR */

				#ifdef	TEMP_AD595
				case TT_AD595:
					temp = analog_read(temp_sensors[i].temp_pin);

					// convert
					// >>8 instead of >>10 because internal temp is stored as 14.2 fixed point
					temp = (temp * 500L) >> 8;

					temp_sensors_runtime[i].next_read_time = 0;

					break;
				#endif	/* TEMP_AD595 */

				#ifdef	TEMP_PT100
				case TT_PT100:
					#warning TODO: PT100 code
					break
				#endif	/* TEMP_PT100 */

				#ifdef	TEMP_INTERCOM
				case TT_INTERCOM:
					temp = read_temperature(temp_sensors[i].temp_pin);

					temp_sensors_runtime[i].next_read_time = 25;

					break;
				#endif	/* TEMP_INTERCOM */

				#ifdef	TEMP_DUMMY
				case TT_DUMMY:
					temp = temp_sensors_runtime[i].last_read_temp;

					if (temp_sensors_runtime[i].target_temp > temp)
						temp++;
					else if (temp_sensors_runtime[i].target_temp < temp)
						temp--;

					temp_sensors_runtime[i].next_read_time = 0;

					break;
				#endif	/* TEMP_DUMMY */

				default: /* prevent compiler warning */
					break;
			}
			temp_sensors_runtime[i].last_read_temp = temp;

			if (labs((int16_t)(temp - temp_sensors_runtime[i].target_temp)) < (TEMP_HYSTERESIS*4)) {
				if (temp_sensors_runtime[i].temp_residency < (TEMP_RESIDENCY_TIME*100))
					temp_sensors_runtime[i].temp_residency++;
			}
			else {
				temp_sensors_runtime[i].temp_residency = 0;
			}

			if (temp_sensors[i].heater < NUM_HEATERS) {
				heater_tick(temp_sensors[i].heater, i, temp_sensors_runtime[i].last_read_temp, temp_sensors_runtime[i].target_temp);
			}
		}
	}
Example #2
0
void TIMER2_IRQHandler (void){
	T2IR |= (1<<0);
	heater_tick();
}
Example #3
0
File: temp.c Project: nmacs/print3d
/// called every 10ms from clock.c - check all temp sensors that are ready for checking
void temp_sensor_tick() {
	temp_sensor_t i = 0;
	for (; i < NUM_TEMP_SENSORS; i++) {
		if (temp_sensors_runtime[i].next_read_time) {
			temp_sensors_runtime[i].next_read_time--;
		}
		else {
			uint16_t	temp = 0;
			#ifdef	TEMP_MAX31855
			uint32_t value = 0;
			struct max31855_plat_data *max31855;
			#endif
			//time to deal with this temp sensor
			switch(temp_sensors[i].temp_type) {
				#ifdef	TEMP_MAX31855
				case TT_MAX31855:
				#ifdef __arm__
				        max31855 = (struct max31855_plat_data*)temp_sensors[i].plat_data;
					spiAcquireBus(max31855->bus);
					spiStart(max31855->bus, max31855->config);
					spiSelect(max31855->bus);
					spiReceive(max31855->bus, 4, &value);
					spiUnselect(max31855->bus);
					spiReleaseBus(max31855->bus);

					value = SWAP_UINT32(value);

					temp_sensors_runtime[i].temp_flags = 0;
					if (value & (1 << 16)) {
                                        #ifdef HALT_ON_TERMOCOUPLE_FAILURE
						emergency_stop();
                                        #endif
					}
					else {
						temp = value >> 18;
						if (temp & (1 << 13))
							temp = 0;
					}
				#else
					temp = 0;
				#endif

					break;
				#endif
				#ifdef	TEMP_MAX6675
				case TT_MAX6675:
					#ifdef	PRR
						PRR &= ~MASK(PRSPI);
					#elif defined PRR0
						PRR0 &= ~MASK(PRSPI);
					#endif

					SPCR = MASK(MSTR) | MASK(SPE) | MASK(SPR0);

					// enable TT_MAX6675
					WRITE(SS, 0);

					// No delay required, see
					// https://github.com/triffid/Teacup_Firmware/issues/22

					// read MSB
					SPDR = 0;
					for (;(SPSR & MASK(SPIF)) == 0;);
					temp = SPDR;
					temp <<= 8;

					// read LSB
					SPDR = 0;
					for (;(SPSR & MASK(SPIF)) == 0;);
					temp |= SPDR;

					// disable TT_MAX6675
					WRITE(SS, 1);

					temp_sensors_runtime[i].temp_flags = 0;
					if ((temp & 0x8002) == 0) {
						// got "device id"
						temp_sensors_runtime[i].temp_flags |= PRESENT;
						if (temp & 4) {
							// thermocouple open
							temp_sensors_runtime[i].temp_flags |= TCOPEN;
						}
						else {
							temp = temp >> 3;
						}
					}

					// this number depends on how frequently temp_sensor_tick is called. the MAX6675 can give a reading every 0.22s, so set this to about 250ms
					temp_sensors_runtime[i].next_read_time = 25;

					break;
				#endif	/* TEMP_MAX6675	*/

				#ifdef	TEMP_THERMISTOR
				case TT_THERMISTOR:
					do {
						uint8_t j, table_num;
						//Read current temperature
						temp = analog_read(i);
						// for thermistors the thermistor table number is in the additional field
						table_num = temp_sensors[i].additional;

						//Calculate real temperature based on lookup table
						for (j = 1; j < NUMTEMPS; j++) {
							if (pgm_read_word(&(temptable[table_num][j][0])) > temp) {
								// Thermistor table is already in 14.2 fixed point
								#ifndef	EXTRUDER
								if (DEBUG_PID && (debug_flags & DEBUG_PID))
									sersendf_P(PSTR("pin:%d Raw ADC:%d table entry: %d"),temp_sensors[i].temp_pin,temp,j);
								#endif
								// Linear interpolating temperature value
								// y = ((x - x₀)y₁ + (x₁-x)y₀ ) / (x₁ - x₀)
								// y = temp
								// x = ADC reading
								// x₀= temptable[j-1][0]
								// x₁= temptable[j][0]
								// y₀= temptable[j-1][1]
								// y₁= temptable[j][1]
								// y =
								// Wikipedia's example linear interpolation formula.
								temp = (
								//     ((x - x₀)y₁
									((uint32_t)temp - pgm_read_word(&(temptable[table_num][j-1][0]))) * pgm_read_word(&(temptable[table_num][j][1]))
								//                 +
									+
								//                   (x₁-x)
									(pgm_read_word(&(temptable[table_num][j][0])) - (uint32_t)temp)
								//                         y₀ )
									* pgm_read_word(&(temptable[table_num][j-1][1])))
								//                              /
									/
								//                                (x₁ - x₀)
									(pgm_read_word(&(temptable[table_num][j][0])) - pgm_read_word(&(temptable[table_num][j-1][0])));
								#ifndef	EXTRUDER
								if (DEBUG_PID && (debug_flags & DEBUG_PID))
									sersendf_P(PSTR(" temp:%d.%d"),temp/4,(temp%4)*25);
								#endif
								break;
							}
						}
						#ifndef	EXTRUDER
						if (DEBUG_PID && (debug_flags & DEBUG_PID))
							sersendf_P(PSTR(" Sensor:%d\n"),i);
						#endif


						//Clamp for overflows
						if (j == NUMTEMPS)
							temp = temptable[table_num][NUMTEMPS-1][1];

						temp_sensors_runtime[i].next_read_time = 0;
					} while (0);
					break;
				#endif	/* TEMP_THERMISTOR */

				#ifdef	TEMP_AD595
				case TT_AD595:
					temp = analog_read(i);

					// convert
					// >>8 instead of >>10 because internal temp is stored as 14.2 fixed point
					temp = (temp * 500L) >> 8;

					temp_sensors_runtime[i].next_read_time = 0;

					break;
				#endif	/* TEMP_AD595 */

				#ifdef	TEMP_PT100
				case TT_PT100:
					#warning TODO: PT100 code
					break
				#endif	/* TEMP_PT100 */

				#ifdef	TEMP_INTERCOM
				case TT_INTERCOM:
					temp = read_temperature(temp_sensors[i].temp_pin);

					temp_sensors_runtime[i].next_read_time = 25;

					break;
				#endif	/* TEMP_INTERCOM */

				#ifdef	TEMP_DUMMY
				case TT_DUMMY:
					temp = temp_sensors_runtime[i].last_read_temp;

					if (temp_sensors_runtime[i].target_temp > temp)
						temp++;
					else if (temp_sensors_runtime[i].target_temp < temp)
						temp--;

					temp_sensors_runtime[i].next_read_time = 0;

					break;
				#endif	/* TEMP_DUMMY */

				default: /* prevent compiler warning */
					break;
			}
			/* Exponentially Weighted Moving Average alpha constant for smoothing
			   noisy sensors. Instrument Engineer's Handbook, 4th ed, Vol 2 p126
			   says values of 0.05 to 0.1 for TEMP_EWMA are typical. */
			#ifndef TEMP_EWMA
				#define TEMP_EWMA 1.0
			#endif
			#define EWMA_SCALE  1024L
			#define EWMA_ALPHA  ((long) (TEMP_EWMA * EWMA_SCALE))
			temp_sensors_runtime[i].last_read_temp = (uint16_t) ((EWMA_ALPHA * temp +
			  (EWMA_SCALE-EWMA_ALPHA) * temp_sensors_runtime[i].last_read_temp
			                                         ) / EWMA_SCALE);
		}
		if (labs((int16_t)(temp_sensors_runtime[i].last_read_temp - temp_sensors_runtime[i].target_temp)) < (TEMP_HYSTERESIS*4)) {
			if (temp_sensors_runtime[i].temp_residency < (TEMP_RESIDENCY_TIME*120))
				temp_sensors_runtime[i].temp_residency++;
		}
		else {
			// Deal with flakey sensors which occasionally report a wrong value
			// by setting residency back, but not entirely to zero.
			if (temp_sensors_runtime[i].temp_residency > 10)
				temp_sensors_runtime[i].temp_residency -= 10;
			else
				temp_sensors_runtime[i].temp_residency = 0;
		}

		if (temp_sensors[i].heater < NUM_HEATERS) {
			heater_tick(temp_sensors[i].heater, temp_sensors[i].temp_type, temp_sensors_runtime[i].last_read_temp, temp_sensors_runtime[i].target_temp);
		}

    if (DEBUG_PID && (debug_flags & DEBUG_PID))
      sersendf_P(PSTR("DU temp: {%d %d %d.%d}"), i,
                 temp_sensors_runtime[i].last_read_temp,
                 temp_sensors_runtime[i].last_read_temp / 4,
                 (temp_sensors_runtime[i].last_read_temp & 0x03) * 25);
	}
Example #4
0
/// called every 10ms from clock.c - check all temp sensors that are ready for checking
void temp_sensor_tick() {
	temp_sensor_t i = 0;
	for (; i < NUM_TEMP_SENSORS; i++) {
		if (temp_sensors_runtime[i].next_read_time) {
			temp_sensors_runtime[i].next_read_time--;
		}
		else {
			uint16_t	temp = 0;
			//time to deal with this temp sensor
			switch(temp_sensors[i].temp_type) {
				#ifdef	TEMP_MAX6675
				case TT_MAX6675:
					#ifdef	PRR
						PRR &= ~MASK(PRSPI);
					#elif defined PRR0
						PRR0 &= ~MASK(PRSPI);
					#endif

					SPCR = MASK(MSTR) | MASK(SPE) | MASK(SPR0);

					// enable TT_MAX6675
					WRITE(SS, 0);

					// No delay required, see
					// https://github.com/triffid/Teacup_Firmware/issues/22

					// read MSB
					SPDR = 0;
					for (;(SPSR & MASK(SPIF)) == 0;);
					temp = SPDR;
					temp <<= 8;

					// read LSB
					SPDR = 0;
					for (;(SPSR & MASK(SPIF)) == 0;);
					temp |= SPDR;

					// disable TT_MAX6675
					WRITE(SS, 1);

					temp_sensors_runtime[i].temp_flags = 0;
					if ((temp & 0x8002) == 0) {
						// got "device id"
						temp_sensors_runtime[i].temp_flags |= PRESENT;
						if (temp & 4) {
							// thermocouple open
							temp_sensors_runtime[i].temp_flags |= TCOPEN;
						}
						else {
							temp = temp >> 3;
						}
					}

					// this number depends on how frequently temp_sensor_tick is called. the MAX6675 can give a reading every 0.22s, so set this to about 250ms
					temp_sensors_runtime[i].next_read_time = 25;

					break;
				#endif	/* TEMP_MAX6675	*/

				#ifdef	TEMP_THERMISTOR
				case TT_THERMISTOR:
					do {
						uint8_t j, table_num;
						//Read current temperature
						temp = analog_read(temp_sensors[i].temp_pin);
						// for thermistors the thermistor table number is in the additional field
						table_num = temp_sensors[i].additional;

						//Calculate real temperature based on lookup table
						for (j = 1; j < NUMTEMPS; j++) {
							if (pgm_read_word(&(temptable[table_num][j][0])) > temp) {
								// Thermistor table is already in 14.2 fixed point
								#ifndef	EXTRUDER
								if (DEBUG_PID && (debug_flags & DEBUG_PID))
									sersendf_P(PSTR("pin:%d Raw ADC:%d table entry: %d"),temp_sensors[i].temp_pin,temp,j);
								#endif
								// Linear interpolating temperature value
								// y = ((x - x₀)y₁ + (x₁-x)y₀ ) / (x₁ - x₀)
								// y = temp
								// x = ADC reading
								// x₀= temptable[j-1][0]
								// x₁= temptable[j][0]
								// y₀= temptable[j-1][1]
								// y₁= temptable[j][1]
								// y =
								// Wikipedia's example linear interpolation formula.
								temp = (
								//     ((x - x₀)y₁
									((uint32_t)temp - pgm_read_word(&(temptable[table_num][j-1][0]))) * pgm_read_word(&(temptable[table_num][j][1]))
								//                 +
									+
								//                   (x₁-x)
									(pgm_read_word(&(temptable[table_num][j][0])) - (uint32_t)temp)
								//                         y₀ )
									* pgm_read_word(&(temptable[table_num][j-1][1])))
								//                              /
									/
								//                                (x₁ - x₀)
									(pgm_read_word(&(temptable[table_num][j][0])) - pgm_read_word(&(temptable[table_num][j-1][0])));
								#ifndef	EXTRUDER
								if (DEBUG_PID && (debug_flags & DEBUG_PID))
									sersendf_P(PSTR(" temp:%d.%d"),temp/4,(temp%4)*25);
								#endif
								break;
							}
						}
						#ifndef	EXTRUDER
						if (DEBUG_PID && (debug_flags & DEBUG_PID))
							sersendf_P(PSTR(" Sensor:%d\n"),i);
						#endif


						//Clamp for overflows
						if (j == NUMTEMPS)
							temp = temptable[table_num][NUMTEMPS-1][1];

						temp_sensors_runtime[i].next_read_time = 0;
					} while (0);
					break;
				#endif	/* TEMP_THERMISTOR */

				#ifdef	TEMP_AD595
				case TT_AD595:
					temp = analog_read(temp_sensors[i].temp_pin);

					// convert
					// >>8 instead of >>10 because internal temp is stored as 14.2 fixed point
					temp = (temp * 500L) >> 8;

					temp_sensors_runtime[i].next_read_time = 0;

					break;
				#endif	/* TEMP_AD595 */

				#ifdef	TEMP_PT100
				case TT_PT100:
					#warning TODO: PT100 code
					break
				#endif	/* TEMP_PT100 */

				#ifdef	TEMP_INTERCOM
				case TT_INTERCOM:
					temp = read_temperature(temp_sensors[i].temp_pin);

					temp_sensors_runtime[i].next_read_time = 25;

					break;
				#endif	/* TEMP_INTERCOM */

				#ifdef	TEMP_NONE
				case TT_NONE:
					temp_sensors_runtime[i].last_read_temp =
					  temp_sensors_runtime[i].target_temp; // for get_temp()
					temp_sensors_runtime[i].next_read_time = 25;

					break;
				#endif	/* TEMP_NONE */

				#ifdef	TEMP_DUMMY
				case TT_DUMMY:
					temp = temp_sensors_runtime[i].last_read_temp;

					if (temp_sensors_runtime[i].target_temp > temp)
						temp++;
					else if (temp_sensors_runtime[i].target_temp < temp)
						temp--;

					temp_sensors_runtime[i].next_read_time = 0;

					break;
				#endif	/* TEMP_DUMMY */

				default: /* prevent compiler warning */
					break;
			}
			temp_sensors_runtime[i].last_read_temp = temp;
		}
		if (labs((int16_t)(temp_sensors_runtime[i].last_read_temp - temp_sensors_runtime[i].target_temp)) < (TEMP_HYSTERESIS*4)) {
			if (temp_sensors_runtime[i].temp_residency < (TEMP_RESIDENCY_TIME*100))
				temp_sensors_runtime[i].temp_residency++;
		}
		else {
			temp_sensors_runtime[i].temp_residency = 0;
		}

		if (temp_sensors[i].heater < NUM_HEATERS) {
			heater_tick(temp_sensors[i].heater, temp_sensors[i].temp_type, temp_sensors_runtime[i].last_read_temp, temp_sensors_runtime[i].target_temp);
		}
	}
Example #5
0
void temp_sensor_tick() {
	temp_sensor_t i = 0;
	for (; i < NUM_TEMP_SENSORS; i++) {
		if (temp_sensors_runtime[i].next_read_time) {
			temp_sensors_runtime[i].next_read_time--;
		}
		else {
			uint16_t	temp = 0;
			//time to deal with this temp sensor
			switch(temp_sensors[i].temp_type) {
				#ifdef	TEMP_MAX6675
				case TT_MAX6675:
					#ifdef	PRR
						PRR &= ~MASK(PRSPI);
					#elif defined PRR0
						PRR0 &= ~MASK(PRSPI);
					#endif
					
					SPCR = MASK(MSTR) | MASK(SPE) | MASK(SPR0);
					
					// enable TT_MAX6675
					WRITE(SS, 0);
					
					// ensure 100ns delay - a bit extra is fine
					delay(1);
					
					// read MSB
					SPDR = 0;
					for (;(SPSR & MASK(SPIF)) == 0;);
					temp = SPDR;
					temp <<= 8;
					
					// read LSB
					SPDR = 0;
					for (;(SPSR & MASK(SPIF)) == 0;);
					temp |= SPDR;
					
					// disable TT_MAX6675
					WRITE(SS, 1);
					
					temp_sensors_runtime[i].temp_flags = 0;
					if ((temp & 0x8002) == 0) {
						// got "device id"
						temp_sensors_runtime[i].temp_flags |= PRESENT;
						if (temp & 4) {
							// thermocouple open
							temp_sensors_runtime[i].temp_flags |= TCOPEN;
						}
						else {
							temp = temp >> 3;
						}
					}
					
					// this number depends on how frequently temp_sensor_tick is called. the MAX6675 can give a reading every 0.22s, so set this to about 250ms
					temp_sensors_runtime[i].next_read_time = 25;
					
					break;
				#endif	/* TEMP_MAX6675	*/
					
				#ifdef	TEMP_THERMISTOR
				case TT_THERMISTOR:
					do {
						uint8_t j;
						//Read current temperature
						temp = analog_read(temp_sensors[i].temp_pin);

						//Calculate real temperature based on lookup table
						for (j = 1; j < NUMTEMPS; j++) {
							if (pgm_read_word(&(temptable[j][0])) > temp) {
								// multiply by 4 because internal temp is stored as 14.2 fixed point
								temp = pgm_read_word(&(temptable[j][1])) * 4 + (temp - pgm_read_word(&(temptable[j-1][0]))) * 4 * (pgm_read_word(&(temptable[j][1])) - pgm_read_word(&(temptable[j-1][1]))) / (pgm_read_word(&(temptable[j][0])) - pgm_read_word(&(temptable[j-1][0])));
								break;
							}
						}

						//Clamp for overflows
						if (j == NUMTEMPS)
							temp = temptable[NUMTEMPS-1][1] * 4;

						temp_sensors_runtime[i].next_read_time = 0;
					} while (0);
					break;
				#endif	/* TEMP_THERMISTOR */
					
				#ifdef	TEMP_AD595
				case TT_AD595:
					temp = analog_read(temp_pin);
					
					// convert
					// >>8 instead of >>10 because internal temp is stored as 14.2 fixed point
					temp = (temp * 500L) >> 8;
					
					temp_sensors_runtime[i].next_read_time = 0;
					
					break;
				#endif	/* TEMP_AD595 */

				#ifdef	TEMP_PT100
				case TT_PT100:
					#warning TODO: PT100 code
					break
				#endif	/* TEMP_PT100 */

				#ifdef	TEMP_INTERCOM
				case TT_INTERCOM:
					temp = get_read_cmd() << 2;

					start_send();

					temp_sensors_runtime[i].next_read_time = 0;

					break;
				#endif	/* TEMP_INTERCOM */
				
				#ifdef	TEMP_DUMMY
				case TT_DUMMY:
					temp = temp_sensors_runtime[i].last_read_temp;

					if (temp_sensors_runtime[i].target_temp > temp)
						temp++;
					else if (temp_sensors_runtime[i].target_temp < temp)
						temp--;

					temp_sensors_runtime[i].next_read_time = 0;

					break;
				#endif	/* TEMP_DUMMY */
			}
			temp_sensors_runtime[i].last_read_temp = temp;
			
			if (labs(temp - temp_sensors_runtime[i].target_temp) < TEMP_HYSTERESIS) {
				if (temp_sensors_runtime[i].temp_residency < TEMP_RESIDENCY_TIME)
					temp_sensors_runtime[i].temp_residency++;
			}
			else {
				temp_sensors_runtime[i].temp_residency = 0;
			}
			
			if (temp_sensors[i].heater_index < NUM_HEATERS) {
				heater_tick(temp_sensors[i].heater_index, i, temp_sensors_runtime[i].last_read_temp, temp_sensors_runtime[i].target_temp);
			}
		}
	}