Example #1
0
static irqreturn_t
timer_interrupt (int irq, void *dev_id)
{
	unsigned long new_itm;

	if (cpu_is_offline(smp_processor_id())) {
		return IRQ_HANDLED;
	}

	platform_timer_interrupt(irq, dev_id);

	new_itm = local_cpu_data->itm_next;

	if (!time_after(ia64_get_itc(), new_itm))
		printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
		       ia64_get_itc(), new_itm);

	profile_tick(CPU_PROFILING);

	while (1) {
		update_process_times(user_mode(get_irq_regs()));

		new_itm += local_cpu_data->itm_delta;

		if (smp_processor_id() == time_keeper_id)
			xtime_update(1);

		local_cpu_data->itm_next = new_itm;

		if (time_after(new_itm, ia64_get_itc()))
			break;

		/*
		 * Allow IPIs to interrupt the timer loop.
		 */
		local_irq_enable();
		local_irq_disable();
	}

	do {
		/*
		 * If we're too close to the next clock tick for
		 * comfort, we increase the safety margin by
		 * intentionally dropping the next tick(s).  We do NOT
		 * update itm.next because that would force us to call
		 * xtime_update() which in turn would let our clock run
		 * too fast (with the potentially devastating effect
		 * of losing monotony of time).
		 */
		while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
			new_itm += local_cpu_data->itm_delta;
		ia64_set_itm(new_itm);
		/* double check, in case we got hit by a (slow) PMI: */
	} while (time_after_eq(ia64_get_itc(), new_itm));
	return IRQ_HANDLED;
}
Example #2
0
void
pcpu_initclock(void)
{

	PCPU_SET(clockadj, 0);
	PCPU_SET(clock, ia64_get_itc());
	ia64_set_itm(PCPU_GET(clock) + ia64_clock_reload);
	ia64_set_itv(CLOCK_VECTOR);	/* highest priority class */
	ia64_srlz_d();
}
Example #3
0
/*
 * Encapsulate access to the itm structure for SMP.
 */
void
ia64_cpu_local_tick (void)
{
    int cpu = smp_processor_id();
    unsigned long shift = 0, delta;

    /* arrange for the cycle counter to generate a timer interrupt: */
    ia64_set_itv(IA64_TIMER_VECTOR);

    delta = local_cpu_data->itm_delta;
    /*
     * Stagger the timer tick for each CPU so they don't occur all at (almost) the
     * same time:
     */
    if (cpu) {
        unsigned long hi = 1UL << ia64_fls(cpu);
        shift = (2*(cpu - hi) + 1) * delta/hi/2;
    }
    local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
    ia64_set_itm(local_cpu_data->itm_next);
}
Example #4
0
static void __init
check_sal_cache_flush (void)
{
	unsigned long flags;
	int cpu;
	u64 vector;

	cpu = get_cpu();
	local_irq_save(flags);

	/*
	 * Schedule a timer interrupt, wait until it's reported, and see if
	 * SAL_CACHE_FLUSH drops it.
	 */
	ia64_set_itv(IA64_TIMER_VECTOR);
	ia64_set_itm(ia64_get_itc() + 1000);

	while (!ia64_get_irr(IA64_TIMER_VECTOR))
		cpu_relax();

	ia64_sal_cache_flush(3);

	if (ia64_get_irr(IA64_TIMER_VECTOR)) {
		vector = ia64_get_ivr();
		ia64_eoi();
		WARN_ON(vector != IA64_TIMER_VECTOR);
	} else {
		sal_cache_flush_drops_interrupts = 1;
		printk(KERN_ERR "SAL: SAL_CACHE_FLUSH drops interrupts; "
			"PAL_CACHE_FLUSH will be used instead\n");
		ia64_eoi();
	}

	local_irq_restore(flags);
	put_cpu();
}
Example #5
0
static irqreturn_t
timer_interrupt (int irq, void *dev_id)
{
	unsigned long new_itm;

	if (unlikely(cpu_is_offline(smp_processor_id()))) {
		return IRQ_HANDLED;
	}

	platform_timer_interrupt(irq, dev_id);

	new_itm = local_cpu_data->itm_next;

	if (!time_after(ia64_get_itc(), new_itm))
		printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
		       ia64_get_itc(), new_itm);

	profile_tick(CPU_PROFILING);

	if (paravirt_do_steal_accounting(&new_itm))
		goto skip_process_time_accounting;

	while (1) {
		update_process_times(user_mode(get_irq_regs()));

		new_itm += local_cpu_data->itm_delta;

		if (smp_processor_id() == time_keeper_id) {
			/*
			 * Here we are in the timer irq handler. We have irqs locally
			 * disabled, but we don't know if the timer_bh is running on
			 * another CPU. We need to avoid to SMP race by acquiring the
			 * xtime_lock.
			 */
			write_seqlock(&xtime_lock);
			do_timer(1);
			local_cpu_data->itm_next = new_itm;
			write_sequnlock(&xtime_lock);
		} else
			local_cpu_data->itm_next = new_itm;

		if (time_after(new_itm, ia64_get_itc()))
			break;

		/*
		 * Allow IPIs to interrupt the timer loop.
		 */
		local_irq_enable();
		local_irq_disable();
	}

skip_process_time_accounting:

	do {
		/*
		 * If we're too close to the next clock tick for
		 * comfort, we increase the safety margin by
		 * intentionally dropping the next tick(s).  We do NOT
		 * update itm.next because that would force us to call
		 * do_timer() which in turn would let our clock run
		 * too fast (with the potentially devastating effect
		 * of losing monotony of time).
		 */
		while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
			new_itm += local_cpu_data->itm_delta;
		ia64_set_itm(new_itm);
		/* double check, in case we got hit by a (slow) PMI: */
	} while (time_after_eq(ia64_get_itc(), new_itm));
	return IRQ_HANDLED;
}
Example #6
0
static irqreturn_t
timer_interrupt (int irq, void *dev_id, struct pt_regs *regs)
{
	unsigned long new_itm;

	if (unlikely(cpu_is_offline(smp_processor_id()))) {
		return IRQ_HANDLED;
	}

	platform_timer_interrupt(irq, dev_id, regs);

	new_itm = local_cpu_data->itm_next;

	if (!time_after(ia64_get_itc(), new_itm))
		printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
		       ia64_get_itc(), new_itm);

	profile_tick(CPU_PROFILING, regs);

	while (1) {
#ifdef CONFIG_SMP
		/*
		 * For UP, this is done in do_timer().  Weird, but
		 * fixing that would require updates to all
		 * platforms.
		 */
		update_process_times(user_mode(regs));
#endif
		new_itm += local_cpu_data->itm_delta;

		if (smp_processor_id() == TIME_KEEPER_ID) {
			/*
			 * Here we are in the timer irq handler. We have irqs locally
			 * disabled, but we don't know if the timer_bh is running on
			 * another CPU. We need to avoid to SMP race by acquiring the
			 * xtime_lock.
			 */
			write_seqlock(&xtime_lock);
			do_timer(regs);
			local_cpu_data->itm_next = new_itm;
			write_sequnlock(&xtime_lock);
		} else
			local_cpu_data->itm_next = new_itm;

		if (time_after(new_itm, ia64_get_itc()))
			break;
	}

	do {
		/*
		 * If we're too close to the next clock tick for
		 * comfort, we increase the safety margin by
		 * intentionally dropping the next tick(s).  We do NOT
		 * update itm.next because that would force us to call
		 * do_timer() which in turn would let our clock run
		 * too fast (with the potentially devastating effect
		 * of losing monotony of time).
		 */
		while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
			new_itm += local_cpu_data->itm_delta;
		ia64_set_itm(new_itm);
		/* double check, in case we got hit by a (slow) PMI: */
	} while (time_after_eq(ia64_get_itc(), new_itm));
	return IRQ_HANDLED;
}
Example #7
0
void
interrupt(u_int64_t vector, struct trapframe *framep)
{
	struct thread *td;
	volatile struct ia64_interrupt_block *ib = IA64_INTERRUPT_BLOCK;

	td = curthread;
	atomic_add_int(&td->td_intr_nesting_level, 1);

	/*
	 * Handle ExtINT interrupts by generating an INTA cycle to
	 * read the vector.
	 */
	if (vector == 0) {
		vector = ib->ib_inta;
		printf("ExtINT interrupt: vector=%ld\n", vector);
	}

	if (vector == 255) {/* clock interrupt */
		/* CTR0(KTR_INTR, "clock interrupt"); */
			
		cnt.v_intr++;
#ifdef EVCNT_COUNTERS
		clock_intr_evcnt.ev_count++;
#else
		intrcnt[INTRCNT_CLOCK]++;
#endif
		critical_enter();
#ifdef SMP
		clks[PCPU_GET(cpuid)]++;
		/* Only the BSP runs the real clock */
		if (PCPU_GET(cpuid) == 0) {
#endif
			handleclock(framep);
			/* divide hz (1024) by 8 to get stathz (128) */
			if ((++schedclk2 & 0x7) == 0)
				statclock((struct clockframe *)framep);
#ifdef SMP
		} else {
			ia64_set_itm(ia64_get_itc() + itm_reload);
			mtx_lock_spin(&sched_lock);
			hardclock_process(curthread, TRAPF_USERMODE(framep));
			if ((schedclk2 & 0x7) == 0)
				statclock_process(curkse, TRAPF_PC(framep),
				    TRAPF_USERMODE(framep));
			mtx_unlock_spin(&sched_lock);
		}
#endif
		critical_exit();
#ifdef SMP
	} else if (vector == ipi_vector[IPI_AST]) {
		asts[PCPU_GET(cpuid)]++;
		CTR1(KTR_SMP, "IPI_AST, cpuid=%d", PCPU_GET(cpuid));
	} else if (vector == ipi_vector[IPI_RENDEZVOUS]) {
		rdvs[PCPU_GET(cpuid)]++;
		CTR1(KTR_SMP, "IPI_RENDEZVOUS, cpuid=%d", PCPU_GET(cpuid));
		smp_rendezvous_action();
	} else if (vector == ipi_vector[IPI_STOP]) {
		u_int32_t mybit = PCPU_GET(cpumask);

		CTR1(KTR_SMP, "IPI_STOP, cpuid=%d", PCPU_GET(cpuid));
		savectx(PCPU_GET(pcb));
		stopped_cpus |= mybit;
		while ((started_cpus & mybit) == 0)
			/* spin */;
		started_cpus &= ~mybit;
		stopped_cpus &= ~mybit;
		if (PCPU_GET(cpuid) == 0 && cpustop_restartfunc != NULL) {
			void (*f)(void) = cpustop_restartfunc;
			cpustop_restartfunc = NULL;
			(*f)();
		}
	} else if (vector == ipi_vector[IPI_TEST]) {
		CTR1(KTR_SMP, "IPI_TEST, cpuid=%d", PCPU_GET(cpuid));
		mp_ipi_test++;
#endif
	} else {
		ints[PCPU_GET(cpuid)]++;
		ia64_dispatch_intr(framep, vector);
	}

	atomic_subtract_int(&td->td_intr_nesting_level, 1);
}