Example #1
0
void METIS_NodeRefine(int nvtxs, idxtype *xadj, idxtype *vwgt, idxtype *adjncy, 
           idxtype *adjwgt, idxtype *where, idxtype *hmarker, float ubfactor)
{
  GraphType *graph;
  CtrlType ctrl;

  ctrl.dbglvl    = ONMETIS_DBGLVL;
  ctrl.optype    = OP_ONMETIS;

  graph = CreateGraph();
  SetUpGraph(graph, OP_ONMETIS, nvtxs, 1, xadj, adjncy, vwgt, adjwgt, 3);

  AllocateWorkSpace(&ctrl, graph, 2);

  Allocate2WayNodePartitionMemory(&ctrl, graph);
  idxcopy(nvtxs, where, graph->where);

  Compute2WayNodePartitionParams(&ctrl, graph);

  FM_2WayNodeRefine_OneSidedP(&ctrl, graph, hmarker, ubfactor, 10); 
  /* FM_2WayNodeRefine_TwoSidedP(&ctrl, graph, hmarker, ubfactor, 10); */

  FreeWorkSpace(&ctrl, graph);

  idxcopy(nvtxs, graph->where, where);

  FreeGraph(graph);

}
Example #2
0
/*************************************************************************
* This function takes a bisection and constructs a minimum weight vertex 
* separator out of it. It uses the node-based separator refinement for it.
**************************************************************************/
void ConstructSeparator(CtrlType *ctrl, GraphType *graph, float ubfactor)
{
  int i, j, k, nvtxs, nbnd;
  idxtype *xadj, *where, *bndind;

  nvtxs = graph->nvtxs;
  xadj = graph->xadj;
  nbnd = graph->nbnd;
  bndind = graph->bndind;

  where = idxcopy(nvtxs, graph->where, idxwspacemalloc(ctrl, nvtxs));

  /* Put the nodes in the boundary into the separator */
  for (i=0; i<nbnd; i++) {
    j = bndind[i];
    if (xadj[j+1]-xadj[j] > 0)  /* Ignore islands */
      where[j] = 2;
  }

  GKfree(&graph->rdata, LTERM);
  Allocate2WayNodePartitionMemory(ctrl, graph);
  idxcopy(nvtxs, where, graph->where);
  idxwspacefree(ctrl, nvtxs);

  ASSERT(IsSeparable(graph));

  Compute2WayNodePartitionParams(ctrl, graph);

  ASSERT(CheckNodePartitionParams(graph));

  FM_2WayNodeRefine(ctrl, graph, ubfactor, 8); 

  ASSERT(IsSeparable(graph));
}
Example #3
0
/******************************************************************************
* This function takes a partition vector that is distributed and reads in
* the original graph and computes the edgecut
*******************************************************************************/
int ComputeRealCut2(idxtype *vtxdist, idxtype *mvtxdist, idxtype *part, idxtype *mpart, char *filename, MPI_Comm comm)
{
  int i, j, nvtxs, mype, npes, cut;
  idxtype *xadj, *adjncy, *gpart, *gmpart, *perm, *sizes;
  MPI_Status status;


  MPI_Comm_size(comm, &npes);
  MPI_Comm_rank(comm, &mype);

  if (mype != 0) {
    MPI_Send((void *)part, vtxdist[mype+1]-vtxdist[mype], IDX_DATATYPE, 0, 1, comm);
    MPI_Send((void *)mpart, mvtxdist[mype+1]-mvtxdist[mype], IDX_DATATYPE, 0, 1, comm);
  }
  else {  /* Processor 0 does all the rest */
    gpart = idxmalloc(vtxdist[npes], "ComputeRealCut: gpart");
    idxcopy(vtxdist[1], part, gpart);
    gmpart = idxmalloc(mvtxdist[npes], "ComputeRealCut: gmpart");
    idxcopy(mvtxdist[1], mpart, gmpart);

    for (i=1; i<npes; i++) {
      MPI_Recv((void *)(gpart+vtxdist[i]), vtxdist[i+1]-vtxdist[i], IDX_DATATYPE, i, 1, comm, &status);
      MPI_Recv((void *)(gmpart+mvtxdist[i]), mvtxdist[i+1]-mvtxdist[i], IDX_DATATYPE, i, 1, comm, &status);
    }

    /* OK, now go and reconstruct the permutation to go from the graph to mgraph */
    perm = idxmalloc(vtxdist[npes], "ComputeRealCut: perm");
    sizes = idxsmalloc(npes+1, 0, "ComputeRealCut: sizes");

    for (i=0; i<vtxdist[npes]; i++)
      sizes[gpart[i]]++;
    MAKECSR(i, npes, sizes);
    for (i=0; i<vtxdist[npes]; i++)
      perm[i] = sizes[gpart[i]]++;

    /* Ok, now read the graph from the file */
    ReadMetisGraph(filename, &nvtxs, &xadj, &adjncy);

    /* OK, now compute the cut */
    for (cut=0, i=0; i<nvtxs; i++) {
      for (j=xadj[i]; j<xadj[i+1]; j++) {
        if (gmpart[perm[i]] != gmpart[perm[adjncy[j]]])
          cut++;
      }
    }
    cut = cut/2;

    GKfree(&gpart, &gmpart, &perm, &sizes, &xadj, &adjncy, LTERM);

    return cut;
  }

  return 0;
}
Example #4
0
Matrix* setupCanonicalMatrix(int nvtxs, int nedges, idxtype* xadj,
	idxtype* adjncy, idxtype* adjwgt, int ncutify)
{
	int i,j;
	Matrix* ret;

	if ( ncutify )
		ret=allocMatrix(nvtxs,nedges,1,0,0);
	else
		ret=allocMatrix(nvtxs,nedges,0,0,0);
		
	idxcopy(nvtxs+1, xadj, ret->xadj); 
	idxcopy(nedges, adjncy, ret->adjncy);
	if ( adjwgt != NULL )
	{
		if ( ncutify )
		{
			for(i=0;i<ret->nvtxs;i++)
			{
				ret->adjwgtsum[i]=0;
				for(j=ret->xadj[i];j<ret->xadj[i+1];j++)
				{

					ret->adjwgt[j]=(wgttype)adjwgt[j];
				
					ret->adjwgtsum[i]+=ret->adjwgt[j];
				}
			}
			//ncutifyWeights(ret,1,ncutify);  //YK removed
		}
		else
		{
			for(i=0;i<nedges;i++)
				ret->adjwgt[i]=(wgttype)adjwgt[i];
		}
		

		normalizeColumns(ret,1,0);
	}
	else
	{
		if ( ncutify )
			ncutifyWeights(ret,0,ncutify);
		normalizeColumns(ret,0,0);
	}

	// sort each column in ascending order. This is necessary for
	// getDprAdjMatrix. 
	for(i=0;i<nvtxs;i++)
	{
		ParallelQSort(ret->adjncy,ret->adjwgt,ret->xadj[i],ret->xadj[i+1]-1);
	}
	return ret;
}
Example #5
0
void AllocateNodePartitionParams(CtrlType *ctrl, GraphType *graph, WorkSpaceType *wspace)
{
  int nparts, nvtxs;
  idxtype *vwgt;
  NRInfoType *rinfo, *myrinfo;

  IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->KWayInitTmr));

  nvtxs  = graph->nvtxs;
  nparts = ctrl->nparts;

  graph->nrinfo  = (NRInfoType *)GKmalloc(sizeof(NRInfoType)*nvtxs, "AllocateNodePartitionParams: rinfo");
  graph->lpwgts  = idxmalloc(2*nparts, "AllocateNodePartitionParams: lpwgts");
  graph->gpwgts  = idxmalloc(2*nparts, "AllocateNodePartitionParams: gpwgts");
  graph->sepind  = idxmalloc(nvtxs, "AllocateNodePartitionParams: sepind");
  graph->hmarker = idxmalloc(nvtxs, "AllocateNodePartitionParams: hmarker");

  /* Allocate additional memory for graph->vwgt in order to store the weights
     of the remote vertices */
  vwgt        = graph->vwgt;
  graph->vwgt = idxmalloc(nvtxs+graph->nrecv, "AllocateNodePartitionParams: graph->vwgt");
  idxcopy(nvtxs, vwgt, graph->vwgt);
  GKfree((void **)&vwgt, LTERM);

  IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->KWayInitTmr));
}
Example #6
0
/*************************************************************************
* This function takes a graph and produces a bisection of it
**************************************************************************/
int MlevelKWayPartitioning(CtrlType *ctrl, GraphType *graph, int nparts, idxtype *part, float *tpwgts, float ubfactor)
{
  int i, j, nvtxs, tvwgt, tpwgts2[2];
  GraphType *cgraph;
  int wgtflag=3, numflag=0, options[10], edgecut;

  cgraph = Coarsen2Way(ctrl, graph);

  IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->InitPartTmr));
  AllocateKWayPartitionMemory(ctrl, cgraph, nparts);

  options[0] = 1; 
  options[OPTION_CTYPE] = MATCH_SHEMKWAY;
  options[OPTION_ITYPE] = IPART_GGPKL;
  options[OPTION_RTYPE] = RTYPE_FM;
  options[OPTION_DBGLVL] = 0;

  METIS_WPartGraphRecursive(&cgraph->nvtxs, cgraph->xadj, cgraph->adjncy, cgraph->vwgt, 
                            cgraph->adjwgt, &wgtflag, &numflag, &nparts, tpwgts, options, 
                            &edgecut, cgraph->where);

  IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->InitPartTmr));
  IFSET(ctrl->dbglvl, DBG_IPART, printf("Initial %d-way partitioning cut: %d\n", nparts, edgecut));

  IFSET(ctrl->dbglvl, DBG_KWAYPINFO, ComputePartitionInfo(cgraph, nparts, cgraph->where));

  RefineKWay(ctrl, graph, cgraph, nparts, tpwgts, ubfactor);

  idxcopy(graph->nvtxs, graph->where, part);

  GKfree(&graph->gdata, &graph->rdata, LTERM);

  return graph->mincut;

}
Example #7
0
/***********************************************************************************
* This function is the entry point of the parallel ordering algorithm.
* This function assumes that the graph is already nice partitioned among the
* processors and then proceeds to perform recursive bisection.
************************************************************************************/
void ParMETIS_V3_PartGeom(idxtype *vtxdist, int *ndims, float *xyz, idxtype *part, MPI_Comm *comm)
{
  int i, npes, mype, nvtxs, firstvtx, dbglvl;
  idxtype *xadj, *adjncy;
  CtrlType ctrl;
  WorkSpaceType wspace;
  GraphType *graph;
  int zeroflg = 0;

  MPI_Comm_size(*comm, &npes);
  MPI_Comm_rank(*comm, &mype);

  if (npes == 1) {
    idxset(vtxdist[mype+1]-vtxdist[mype], 0, part);
    return;
  }

  /* Setup a fake graph to allow the rest of the code to work unchanged */
  dbglvl = 0;

  nvtxs = vtxdist[mype+1]-vtxdist[mype];
  firstvtx = vtxdist[mype];
  xadj = idxmalloc(nvtxs+1, "ParMETIS_PartGeom: xadj");
  adjncy = idxmalloc(nvtxs, "ParMETIS_PartGeom: adjncy");
  for (i=0; i<nvtxs; i++) {
    xadj[i] = i;
    adjncy[i] = firstvtx + (i+1)%nvtxs;
  }
  xadj[nvtxs] = nvtxs;

  /* Proceed with the rest of the code */
  SetUpCtrl(&ctrl, npes, dbglvl, *comm);
  ctrl.seed      = mype;
  ctrl.CoarsenTo = amin(vtxdist[npes]+1, 25*npes);

  graph = Moc_SetUpGraph(&ctrl, 1, vtxdist, xadj, NULL, adjncy, NULL, &zeroflg);

  PreAllocateMemory(&ctrl, graph, &wspace);

  /*=======================================================
   * Compute the initial geometric partitioning
   =======================================================*/
  IFSET(ctrl.dbglvl, DBG_TIME, InitTimers(&ctrl));
  IFSET(ctrl.dbglvl, DBG_TIME, MPI_Barrier(ctrl.gcomm));
  IFSET(ctrl.dbglvl, DBG_TIME, starttimer(ctrl.TotalTmr));

  Coordinate_Partition(&ctrl, graph, *ndims, xyz, 0, &wspace);

  idxcopy(graph->nvtxs, graph->where, part);

  IFSET(ctrl.dbglvl, DBG_TIME, MPI_Barrier(ctrl.gcomm));
  IFSET(ctrl.dbglvl, DBG_TIME, stoptimer(ctrl.TotalTmr));
  IFSET(ctrl.dbglvl, DBG_TIME, PrintTimingInfo(&ctrl));

  FreeInitialGraphAndRemap(graph, 0);
  FreeWSpace(&wspace);
  FreeCtrl(&ctrl);

  GKfree((void **)&xadj, (void **)&adjncy, LTERM);
}
Example #8
0
/*************************************************************************
* This function re-adjusts the amount of memory that was allocated if
* it will lead to significant savings
**************************************************************************/
void ReAdjustMemory(GraphType *graph, GraphType *cgraph, int dovsize) 
{

  if (cgraph->nedges > 100000 && graph->nedges < 0.7*graph->nedges) {
    idxcopy(cgraph->nedges, cgraph->adjwgt, cgraph->adjncy+cgraph->nedges);

    if (graph->ncon == 1) {
      if (dovsize) {
        cgraph->gdata = realloc(cgraph->gdata, (5*cgraph->nvtxs+1 + 2*cgraph->nedges)*sizeof(idxtype));

        /* Do this, in case everything was copied into new space */
        cgraph->xadj 		= cgraph->gdata;
        cgraph->vwgt 		= cgraph->gdata + cgraph->nvtxs+1;
        cgraph->vsize 		= cgraph->gdata + 2*cgraph->nvtxs+1;
        cgraph->adjwgtsum	= cgraph->gdata + 3*cgraph->nvtxs+1;
        cgraph->cmap 		= cgraph->gdata + 4*cgraph->nvtxs+1;
        cgraph->adjncy 		= cgraph->gdata + 5*cgraph->nvtxs+1;
        cgraph->adjwgt 		= cgraph->gdata + 5*cgraph->nvtxs+1 + cgraph->nedges;
      }
      else {
        cgraph->gdata = realloc(cgraph->gdata, (4*cgraph->nvtxs+1 + 2*cgraph->nedges)*sizeof(idxtype));

        /* Do this, in case everything was copied into new space */
        cgraph->xadj 	= cgraph->gdata;
        cgraph->vwgt 	= cgraph->gdata + cgraph->nvtxs+1;
        cgraph->adjwgtsum	= cgraph->gdata + 2*cgraph->nvtxs+1;
        cgraph->cmap 	= cgraph->gdata + 3*cgraph->nvtxs+1;
        cgraph->adjncy 	= cgraph->gdata + 4*cgraph->nvtxs+1;
        cgraph->adjwgt 	= cgraph->gdata + 4*cgraph->nvtxs+1 + cgraph->nedges;
      }
    }
    else {
      if (dovsize) {
        cgraph->gdata = realloc(cgraph->gdata, (4*cgraph->nvtxs+1 + 2*cgraph->nedges)*sizeof(idxtype));

        /* Do this, in case everything was copied into new space */
        cgraph->xadj 		= cgraph->gdata;
        cgraph->vsize		= cgraph->gdata + cgraph->nvtxs+1;
        cgraph->adjwgtsum	= cgraph->gdata + 2*cgraph->nvtxs+1;
        cgraph->cmap 		= cgraph->gdata + 3*cgraph->nvtxs+1;
        cgraph->adjncy 		= cgraph->gdata + 4*cgraph->nvtxs+1;
        cgraph->adjwgt 		= cgraph->gdata + 4*cgraph->nvtxs+1 + cgraph->nedges;
      }
      else {
        cgraph->gdata = realloc(cgraph->gdata, (3*cgraph->nvtxs+1 + 2*cgraph->nedges)*sizeof(idxtype));

        /* Do this, in case everything was copied into new space */
        cgraph->xadj 		= cgraph->gdata;
        cgraph->adjwgtsum	= cgraph->gdata + cgraph->nvtxs+1;
        cgraph->cmap 		= cgraph->gdata + 2*cgraph->nvtxs+1;
        cgraph->adjncy 		= cgraph->gdata + 3*cgraph->nvtxs+1;
        cgraph->adjwgt 		= cgraph->gdata + 3*cgraph->nvtxs+1 + cgraph->nedges;
      }
    }
  }

}
Example #9
0
/*************************************************************************
* This function takes a graph and produces a bisection by using a region
* growing algorithm. The resulting partition is returned in
* graph->where
**************************************************************************/
void MocGrowBisection(CtrlType *ctrl, GraphType *graph, float *tpwgts, float ubfactor)
{
  int i, j, k, nvtxs, ncon, from, bestcut, mincut, nbfs;
  idxtype *bestwhere, *where;

  nvtxs = graph->nvtxs;

  MocAllocate2WayPartitionMemory(ctrl, graph);
  where = graph->where;

  bestwhere = idxmalloc(nvtxs, "BisectGraph: bestwhere");
  nbfs = 2*(nvtxs <= ctrl->CoarsenTo ? SMALLNIPARTS : LARGENIPARTS);
  bestcut = idxsum(graph->nedges, graph->adjwgt);  

  for (; nbfs>0; nbfs--) {
    idxset(nvtxs, 1, where);
    where[RandomInRange(nvtxs)] = 0;

    MocCompute2WayPartitionParams(ctrl, graph);

    MocInit2WayBalance(ctrl, graph, tpwgts);

    MocFM_2WayEdgeRefine(ctrl, graph, tpwgts, 4); 

    MocBalance2Way(ctrl, graph, tpwgts, 1.02);
    MocFM_2WayEdgeRefine(ctrl, graph, tpwgts, 4); 

    if (bestcut >= graph->mincut) {
      bestcut = graph->mincut;
      idxcopy(nvtxs, where, bestwhere);
      if (bestcut == 0)
        break;
    }
  }

  graph->mincut = bestcut;
  idxcopy(nvtxs, bestwhere, where);

  /*GKfree(&bestwhere, LTERM);*/
  GKfree1((void**)&bestwhere);
}
Example #10
0
/*************************************************************************
* This function takes a graph and produces a bisection by using a region
* growing algorithm. The resulting partition is returned in
* graph->where
**************************************************************************/
void MocGrowBisection2(CtrlType *ctrl, GraphType *graph, float *tpwgts, float *ubvec)
{
  int /*i, j, k,*/ nvtxs, /*ncon, from,*/ bestcut, /*mincut,*/ nbfs;
  idxtype *bestwhere, *where;

  nvtxs = graph->nvtxs;

  MocAllocate2WayPartitionMemory(ctrl, graph);
  where = graph->where;

  bestwhere = idxmalloc(nvtxs, "BisectGraph: bestwhere");
  nbfs = 2*(nvtxs <= ctrl->CoarsenTo ? SMALLNIPARTS : LARGENIPARTS);
  bestcut = idxsum(graph->nedges, graph->adjwgt);  

  for (; nbfs>0; nbfs--) {
    idxset(nvtxs, 1, where);
    where[RandomInRange(nvtxs)] = 0;

    MocCompute2WayPartitionParams(ctrl, graph);

    MocBalance2Way2(ctrl, graph, tpwgts, ubvec);

    MocFM_2WayEdgeRefine2(ctrl, graph, tpwgts, ubvec, 4); 

    MocBalance2Way2(ctrl, graph, tpwgts, ubvec);
    MocFM_2WayEdgeRefine2(ctrl, graph, tpwgts, ubvec, 4); 

    if (bestcut > graph->mincut) {
      bestcut = graph->mincut;
      idxcopy(nvtxs, where, bestwhere);
      if (bestcut == 0)
        break;
    }
  }

  graph->mincut = bestcut;
  idxcopy(nvtxs, bestwhere, where);

  GKfree((void**)&bestwhere, LTERM);
}
Example #11
0
/*************************************************************************
* This function is the entry point for ONWMETIS. It requires weights on the
* vertices. It is for the case that the matrix has been pre-compressed.
**************************************************************************/
void METIS_EdgeComputeSeparator(int *nvtxs, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, 
           idxtype *adjwgt, int *options, int *sepsize, idxtype *part) 
{
  int i, j, tvwgt, tpwgts[2];
  GraphType graph;
  CtrlType ctrl;

  SetUpGraph(&graph, OP_ONMETIS, *nvtxs, 1, xadj, adjncy, vwgt, adjwgt, 3);
  tvwgt = idxsum(*nvtxs, graph.vwgt);

  if (options[0] == 0) {  /* Use the default parameters */
    ctrl.CType = ONMETIS_CTYPE;
    ctrl.IType = ONMETIS_ITYPE;
    ctrl.RType = ONMETIS_RTYPE;
    ctrl.dbglvl = ONMETIS_DBGLVL;
  }
  else {
    ctrl.CType = options[OPTION_CTYPE];
    ctrl.IType = options[OPTION_ITYPE];
    ctrl.RType = options[OPTION_RTYPE];
    ctrl.dbglvl = options[OPTION_DBGLVL];
  }

  ctrl.oflags    = 0;
  ctrl.pfactor   = 0;
  ctrl.nseps     = 5;
  ctrl.optype    = OP_OEMETIS;
  ctrl.CoarsenTo = amin(100, *nvtxs-1);
  ctrl.maxvwgt   = 1.5*tvwgt/ctrl.CoarsenTo;

  InitRandom(options[7]);

  AllocateWorkSpace(&ctrl, &graph, 2);

  /*============================================================
   * Perform the bisection
   *============================================================*/ 
  tpwgts[0] = tvwgt/2;
  tpwgts[1] = tvwgt-tpwgts[0];

  MlevelEdgeBisection(&ctrl, &graph, tpwgts, 1.05);
  ConstructMinCoverSeparator(&ctrl, &graph, 1.05);

  *sepsize = graph.pwgts[2];
  idxcopy(*nvtxs, graph.where, part);

  GKfree((void**)&graph.gdata, &graph.rdata, &graph.label, LTERM);


  FreeWorkSpace(&ctrl, &graph);

}
Example #12
0
/*************************************************************************
* This function is the entry point for ONWMETIS. It requires weights on the
* vertices. It is for the case that the matrix has been pre-compressed.
**************************************************************************/
void METIS_NodeComputeSeparator(int *nvtxs, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, 
           idxtype *adjwgt, float *ubfactor, int *options, int *sepsize, idxtype *part) 
{
  int i, j, tvwgt, tpwgts[2];
  GraphType graph;
  CtrlType ctrl;

  SetUpGraph(&graph, OP_ONMETIS, *nvtxs, 1, xadj, adjncy, vwgt, adjwgt, 3);
  tvwgt = idxsum(*nvtxs, graph.vwgt);

  if (options[0] == 0) {  /* Use the default parameters */
    ctrl.CType  = ONMETIS_CTYPE;
    ctrl.IType  = ONMETIS_ITYPE;
    ctrl.RType  = ONMETIS_RTYPE;
    ctrl.dbglvl = ONMETIS_DBGLVL;
  }
  else {
    ctrl.CType  = options[OPTION_CTYPE];
    ctrl.IType  = options[OPTION_ITYPE];
    ctrl.RType  = options[OPTION_RTYPE];
    ctrl.dbglvl = options[OPTION_DBGLVL];
  }

  ctrl.oflags    = OFLAG_COMPRESS; /* For by-passing the pre-coarsening for multiple runs */
  ctrl.RType     = 2;  /* Standard 1-sided node refinement code */
  ctrl.pfactor   = 0;
  ctrl.nseps     = 5;  /* This should match NUM_INIT_MSECTIONS in ParMETISLib/defs.h */
  ctrl.optype    = OP_ONMETIS;

  InitRandom(options[7]);

  AllocateWorkSpace(&ctrl, &graph, 2);

  /*============================================================
   * Perform the bisection
   *============================================================*/ 
  tpwgts[0] = tvwgt/2;
  tpwgts[1] = tvwgt-tpwgts[0];

  MlevelNodeBisectionMultiple(&ctrl, &graph, tpwgts, *ubfactor*.95);

  *sepsize = graph.pwgts[2];
  idxcopy(*nvtxs, graph.where, part);

  GKfree((void **)&graph.gdata, &graph.rdata, &graph.label, LTERM);


  FreeWorkSpace(&ctrl, &graph);

}
Example #13
0
/*************************************************************************
* This function is the entry point for ONWMETIS. It requires weights on the
* vertices. It is for the case that the matrix has been pre-compressed.
**************************************************************************/
void METIS_NodeComputeSeparator(idxtype *nvtxs, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, 
           idxtype *adjwgt, idxtype *options, idxtype *sepsize, idxtype *part) 
{
  idxtype i, j, tvwgt, tpwgts[2];
  GraphType graph;
  CtrlType ctrl;

  SetUpGraph(&graph, OP_ONMETIS, *nvtxs, 1, xadj, adjncy, vwgt, adjwgt, 3);
  tvwgt = idxsum(*nvtxs, graph.vwgt, 1);

  if (options[0] == 0) {  /* Use the default parameters */
    ctrl.CType = ONMETIS_CTYPE;
    ctrl.IType = ONMETIS_ITYPE;
    ctrl.RType = ONMETIS_RTYPE;
    ctrl.dbglvl = ONMETIS_DBGLVL;
  }
  else {
    ctrl.CType = options[OPTION_CTYPE];
    ctrl.IType = options[OPTION_ITYPE];
    ctrl.RType = options[OPTION_RTYPE];
    ctrl.dbglvl = options[OPTION_DBGLVL];
  }

  ctrl.oflags  = 0;
  ctrl.pfactor = 0;
  ctrl.nseps = 3;
  ctrl.optype = OP_ONMETIS;
  ctrl.CoarsenTo = amin(100, *nvtxs-1);
  ctrl.maxvwgt = 1.5*tvwgt/ctrl.CoarsenTo;

  InitRandom(options[7]);

  AllocateWorkSpace(&ctrl, &graph, 2);

  /*============================================================
   * Perform the bisection
   *============================================================*/ 
  tpwgts[0] = tvwgt/2;
  tpwgts[1] = tvwgt-tpwgts[0];

  MlevelNodeBisectionMultiple(&ctrl, &graph, tpwgts, 1.02);

  *sepsize = graph.pwgts[2];
  idxcopy(*nvtxs, graph.where, part);

  FreeGraph(&graph, 0);

  FreeWorkSpace(&ctrl, &graph);

}
Example #14
0
/*************************************************************************
* This function takes a graph and produces a bisection by using a region
* growing algorithm. The resulting partition is returned in
* graph->where
**************************************************************************/
void MocGrowBisectionNew2(CtrlType *ctrl, GraphType *graph, float *tpwgts, float *ubvec)
{
  idxtype i, j, k, nvtxs, ncon, from, bestcut, mincut, nbfs, inbfs;
  idxtype *bestwhere, *where;

  nvtxs = graph->nvtxs;

  MocAllocate2WayPartitionMemory(ctrl, graph);
  where = graph->where;

  bestwhere = idxmalloc(nvtxs, "BisectGraph: bestwhere");
  nbfs = 2*(nvtxs <= ctrl->CoarsenTo ? SMALLNIPARTS : LARGENIPARTS);

  for (inbfs=0; inbfs<nbfs; inbfs++) {
    idxset(nvtxs, 1, where);
    where[RandomInRange(nvtxs)] = 0;

    MocCompute2WayPartitionParams(ctrl, graph);

    MocInit2WayBalance2(ctrl, graph, tpwgts, ubvec);

    MocFM_2WayEdgeRefine2(ctrl, graph, tpwgts, ubvec, 4); 

    if (inbfs == 0 || bestcut > graph->mincut) {
      bestcut = graph->mincut;
      idxcopy(nvtxs, where, bestwhere);
      if (bestcut == 0)
        break;
    }
  }

  graph->mincut = bestcut;
  idxcopy(nvtxs, bestwhere, where);

  gk_free((void **)&bestwhere, LTERM);
}
Example #15
0
/*************************************************************************
* This function takes a graph and produces a bisection of it
**************************************************************************/
int MCMlevelKWayPartitioning(CtrlType *ctrl, GraphType *graph, int nparts, idxtype *part, 
      float *rubvec)
{
  int i, j, nvtxs;
  GraphType *cgraph;
  int options[10], edgecut;

  cgraph = MCCoarsen2Way(ctrl, graph);

  IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->InitPartTmr));
  MocAllocateKWayPartitionMemory(ctrl, cgraph, nparts);

  options[0] = 1; 
  options[OPTION_CTYPE] = MATCH_SBHEM_INFNORM;
  options[OPTION_ITYPE] = IPART_RANDOM;
  options[OPTION_RTYPE] = RTYPE_FM;
  options[OPTION_DBGLVL] = 0;

  /* Determine what you will use as the initial partitioner, based on tolerances */
  for (i=0; i<graph->ncon; i++) {
    if (rubvec[i] > 1.2)
      break;
  }
  if (i == graph->ncon)
    METIS_mCPartGraphRecursiveInternal(&cgraph->nvtxs, &cgraph->ncon, 
          cgraph->xadj, cgraph->adjncy, cgraph->nvwgt, cgraph->adjwgt, &nparts, 
          options, &edgecut, cgraph->where);
  else
    METIS_mCHPartGraphRecursiveInternal(&cgraph->nvtxs, &cgraph->ncon, 
          cgraph->xadj, cgraph->adjncy, cgraph->nvwgt, cgraph->adjwgt, &nparts, 
          rubvec, options, &edgecut, cgraph->where);


  IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->InitPartTmr));
  IFSET(ctrl->dbglvl, DBG_IPART, printf("Initial %d-way partitioning cut: %d\n", nparts, edgecut));

  IFSET(ctrl->dbglvl, DBG_KWAYPINFO, ComputePartitionInfo(cgraph, nparts, cgraph->where));

  MocRefineKWayHorizontal(ctrl, graph, cgraph, nparts, rubvec);

  idxcopy(graph->nvtxs, graph->where, part);

  GKfree(&graph->nvwgt, &graph->npwgts, &graph->gdata, &graph->rdata, LTERM);

  return graph->mincut;

}
Example #16
0
/***********************************************************************************
* This function is the entry point of the parallel multilevel local diffusion
* algorithm. It uses parallel undirected diffusion followed by adaptive k-way 
* refinement. This function utilizes local coarsening.
************************************************************************************/
void ParMETIS_RepartLDiffusion(idxtype *vtxdist, idxtype *xadj, idxtype *adjncy, 
       idxtype *vwgt, realtype *adjwgt, int *wgtflag, int *numflag, int *options,
       int *edgecut, idxtype *part, MPI_Comm *comm)
{
  int npes, mype;
  CtrlType ctrl;
  WorkSpaceType wspace;
  GraphType *graph;

  MPI_Comm_size(*comm, &npes);
  MPI_Comm_rank(*comm, &mype);

  if (npes == 1) { /* Take care the npes = 1 case */
    idxset(vtxdist[1], 0, part);
    *edgecut = 0;
    return;
  }

  if (*numflag == 1) 
    ChangeNumbering(vtxdist, xadj, adjncy, part, npes, mype, 1);

  SetUpCtrl(&ctrl, npes, options, *comm);
  ctrl.CoarsenTo = amin(vtxdist[npes]+1, 70*npes);

  graph = SetUpGraph(&ctrl, vtxdist, xadj, vwgt, adjncy, adjwgt, *wgtflag);
  graph->vsize = idxsmalloc(graph->nvtxs, 1, "Par_KMetis: vsize");

  PreAllocateMemory(&ctrl, graph, &wspace);

  IFSET(ctrl.dbglvl, DBG_TRACK, printf("%d ParMETIS_RepartLDiffusion about to call AdaptiveUndirected_Partition\n",mype));
  AdaptiveUndirected_Partition(&ctrl, graph, &wspace);

  IFSET(ctrl.dbglvl, DBG_TRACK, printf("%d ParMETIS_RepartLDiffusion about to call ReMapGraph\n",mype));
  ReMapGraph(&ctrl, graph, 0, &wspace);

  idxcopy(graph->nvtxs, graph->where, part);
  *edgecut = graph->mincut;

  IMfree((void**)&graph->vsize, LTERM);
  FreeInitialGraphAndRemap(graph, *wgtflag);
  FreeWSpace(&wspace);
  FreeCtrl(&ctrl);

  if (*numflag == 1)
    ChangeNumbering(vtxdist, xadj, adjncy, part, npes, mype, 0);
}
Example #17
0
/***********************************************************************************
* This function creates the fused-element-graph and returns the partition
************************************************************************************/
void ParMETIS_FusedElementGraph(idxtype *vtxdist, idxtype *xadj, realtype *vvol,
              realtype *vsurf, idxtype *adjncy, idxtype *vwgt, realtype *adjwgt,
              int *wgtflag, int *numflag, int *nparts, int *options,
              idxtype *part, MPI_Comm *comm)
{
  int npes, mype, nvtxs;
  CtrlType ctrl;
  WorkSpaceType wspace;
  GraphType *graph;

  MPI_Comm_size(*comm, &npes);
  MPI_Comm_rank(*comm, &mype);

  nvtxs = vtxdist[mype+1]-vtxdist[mype];

  /* IFSET(options[OPTION_DBGLVL], DBG_TRACK, printf("%d ParMETIS_FEG npes=%d\n",mype, npes)); */

  SetUpCtrl(&ctrl, *nparts, options, *comm);
  ctrl.CoarsenTo = amin(vtxdist[npes]+1, 25*amax(npes, *nparts));

  graph = SetUpGraph(&ctrl, vtxdist, xadj, vwgt, adjncy, adjwgt, *wgtflag);

  graph->where = part;

  PreAllocateMemory(&ctrl, graph, &wspace);

  IFSET(ctrl.dbglvl, DBG_TIME, InitTimers(&ctrl));
  IFSET(ctrl.dbglvl, DBG_TIME, MPI_Barrier(ctrl.gcomm));
  IFSET(ctrl.dbglvl, DBG_TIME, starttimer(ctrl.TotalTmr));

  CreateFusedElementGraph(&ctrl, graph, &wspace, numflag);

  idxcopy(nvtxs, graph->where, part);

  IFSET(ctrl.dbglvl, DBG_TIME, MPI_Barrier(ctrl.gcomm));
  IFSET(ctrl.dbglvl, DBG_TIME, stoptimer(ctrl.TotalTmr));

  if (((*wgtflag)&2) == 0)
    IMfree((void**)&graph->vwgt, LTERM);
  IMfree((void**)&graph->lperm, &graph->peind, &graph->pexadj, &graph->peadjncy,
         &graph->peadjloc, &graph->recvptr, &graph->recvind, &graph->sendptr,
         &graph->imap, &graph->sendind, &graph, LTERM);
  FreeWSpace(&wspace);
  FreeCtrl(&ctrl);
}
Example #18
0
/*************************************************************************
* This function is the entry point for detecting contacts between 
* bounding boxes and surface nodes
**************************************************************************/
void METIS_FindContacts(void *raw_cinfo, idxtype *nboxes, double *boxcoords, idxtype *nparts, 
               idxtype **r_cntptr, idxtype **r_cntind)
{
  idxtype i, ncnts, tncnts, maxtncnts;
  idxtype *cntptr, *cntind, *auxcntind, *stack, *marker;
  ContactInfoType *cinfo;

  cinfo = (ContactInfoType *)raw_cinfo;

  maxtncnts = 6*(*nboxes);
  cntptr    = idxsmalloc(*nboxes+1, 0, "METIS_FindContacts: cntptr");
  cntind    = idxmalloc(maxtncnts, "METIS_FindContacts: cntind");
  auxcntind = idxmalloc(*nparts, "METIS_FindContacts: auxcntind");
  stack     = idxmalloc(cinfo->nnodes, "METIS_FindContacts: stack");
  marker    = idxsmalloc(*nparts, 0, "METIS_FindContacts: marker");
  

  /* Go through each box and determine its contacting partitions */
  for (tncnts=0, i=0; i<*nboxes; i++) {
    ncnts = FindBoxContacts(cinfo, boxcoords+i*6, stack, auxcntind, marker);

    if (ncnts == 0)
      mprintf("CSearchError: Box has no contacts!\n");
  
    if (ncnts + tncnts >= maxtncnts) {
      maxtncnts += (tncnts+ncnts)*(*nboxes-i)/i;
      if ((cntind = (idxtype *)realloc(cntind, maxtncnts*sizeof(idxtype))) == NULL)
        errexit("Realloc failed! of %d words!\n", maxtncnts);
    }
    cntptr[i] = ncnts;
    idxcopy(ncnts, auxcntind, cntind+tncnts);
    tncnts += ncnts;
  }
  MAKECSR(i, *nboxes, cntptr); 

  *r_cntptr = cntptr;
  *r_cntind = cntind;

  gk_free((void **)&auxcntind, &stack, &marker, LTERM);

}
Example #19
0
/******************************************************************************
* This function takes a partition vector that is distributed and reads in
* the original graph and computes the edgecut
*******************************************************************************/
int ComputeRealCut(idxtype *vtxdist, idxtype *part, char *filename, MPI_Comm comm)
{
  int i, j, nvtxs, mype, npes, cut;
  idxtype *xadj, *adjncy, *gpart;
  MPI_Status status;

  MPI_Comm_size(comm, &npes);
  MPI_Comm_rank(comm, &mype);

  if (mype != 0) {
    MPI_Send((void *)part, vtxdist[mype+1]-vtxdist[mype], IDX_DATATYPE, 0, 1, comm);
  }
  else {  /* Processor 0 does all the rest */
    gpart = idxmalloc(vtxdist[npes], "ComputeRealCut: gpart");
    idxcopy(vtxdist[1], part, gpart);

    for (i=1; i<npes; i++) 
      MPI_Recv((void *)(gpart+vtxdist[i]), vtxdist[i+1]-vtxdist[i], IDX_DATATYPE, i, 1, comm, &status);

    ReadMetisGraph(filename, &nvtxs, &xadj, &adjncy);

    /* OK, now compute the cut */
    for (cut=0, i=0; i<nvtxs; i++) {
      for (j=xadj[i]; j<xadj[i+1]; j++) {
        if (gpart[i] != gpart[adjncy[j]])
          cut++;
      }
    }
    cut = cut/2;

    GKfree(&gpart, &xadj, &adjncy, LTERM);

    return cut;
  }
  return 0;
}
Example #20
0
/*************************************************************************
* This function performs k-way refinement
**************************************************************************/
void Moc_KWayFM(CtrlType *ctrl, GraphType *graph, WorkSpaceType *wspace, int npasses)
{
  int h, i, ii, iii, j, k, c;
  int pass, nvtxs, nedges, ncon;
  int nmoves, nmoved, nswaps, nzgswaps;
/*  int gnswaps, gnzgswaps; */
  int me, firstvtx, lastvtx, yourlastvtx;
  int from, to = -1, oldto, oldcut, mydomain, yourdomain, imbalanced, overweight;
  int npes = ctrl->npes, mype = ctrl->mype, nparts = ctrl->nparts;
  int nlupd, nsupd, nnbrs, nchanged;
  idxtype *xadj, *ladjncy, *adjwgt, *vtxdist;
  idxtype *where, *tmp_where, *moved;
  floattype *lnpwgts, *gnpwgts, *ognpwgts, *pgnpwgts, *movewgts, *overfill;
  idxtype *update, *supdate, *rupdate, *pe_updates;
  idxtype *changed, *perm, *pperm, *htable;
  idxtype *peind, *recvptr, *sendptr;
  KeyValueType *swchanges, *rwchanges;
  RInfoType *rinfo, *myrinfo, *tmp_myrinfo, *tmp_rinfo;
  EdgeType *tmp_edegrees, *my_edegrees, *your_edegrees;
  floattype lbvec[MAXNCON], *nvwgt, *badmaxpwgt, *ubvec, *tpwgts, lbavg, ubavg;
  int *nupds_pe;

  IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->KWayTmr));

  /*************************/
  /* set up common aliases */
  /*************************/
  nvtxs = graph->nvtxs;
  nedges = graph->nedges;
  ncon = graph->ncon;

  vtxdist = graph->vtxdist;
  xadj = graph->xadj;
  ladjncy = graph->adjncy;
  adjwgt = graph->adjwgt;

  firstvtx = vtxdist[mype];
  lastvtx = vtxdist[mype+1];

  where   = graph->where;
  rinfo   = graph->rinfo;
  lnpwgts = graph->lnpwgts;
  gnpwgts = graph->gnpwgts;
  ubvec   = ctrl->ubvec;
  tpwgts  = ctrl->tpwgts;

  nnbrs = graph->nnbrs;
  peind = graph->peind;
  recvptr = graph->recvptr;
  sendptr = graph->sendptr;

  changed = idxmalloc(nvtxs, "KWR: changed");
  rwchanges = wspace->pairs;
  swchanges = rwchanges + recvptr[nnbrs];

  /************************************/
  /* set up important data structures */
  /************************************/
  perm = idxmalloc(nvtxs, "KWR: perm");
  pperm = idxmalloc(nparts, "KWR: pperm");

  update = idxmalloc(nvtxs, "KWR: update");
  supdate = wspace->indices;
  rupdate = supdate + recvptr[nnbrs];
  nupds_pe = imalloc(npes, "KWR: nupds_pe");
  htable = idxsmalloc(nvtxs+graph->nrecv, 0, "KWR: lhtable");
  badmaxpwgt = fmalloc(nparts*ncon, "badmaxpwgt");

  for (i=0; i<nparts; i++) {
    for (h=0; h<ncon; h++) {
      badmaxpwgt[i*ncon+h] = ubvec[h]*tpwgts[i*ncon+h];
    }
  }

  movewgts = fmalloc(nparts*ncon, "KWR: movewgts");
  ognpwgts = fmalloc(nparts*ncon, "KWR: ognpwgts");
  pgnpwgts = fmalloc(nparts*ncon, "KWR: pgnpwgts");
  overfill = fmalloc(nparts*ncon, "KWR: overfill");
  moved = idxmalloc(nvtxs, "KWR: moved");
  tmp_where = idxmalloc(nvtxs+graph->nrecv, "KWR: tmp_where");
  tmp_rinfo = (RInfoType *)GKmalloc(sizeof(RInfoType)*nvtxs, "KWR: tmp_rinfo");
  tmp_edegrees = (EdgeType *)GKmalloc(sizeof(EdgeType)*nedges, "KWR: tmp_edegrees");

  idxcopy(nvtxs+graph->nrecv, where, tmp_where);
  for (i=0; i<nvtxs; i++) {
    tmp_rinfo[i].id = rinfo[i].id;
    tmp_rinfo[i].ed = rinfo[i].ed;
    tmp_rinfo[i].ndegrees = rinfo[i].ndegrees;
    tmp_rinfo[i].degrees = tmp_edegrees+xadj[i];

    for (j=0; j<rinfo[i].ndegrees; j++) {
      tmp_rinfo[i].degrees[j].edge = rinfo[i].degrees[j].edge;
      tmp_rinfo[i].degrees[j].ewgt = rinfo[i].degrees[j].ewgt;
    }
  }

  nswaps = nzgswaps = 0;
  /*********************************************************/
  /* perform a small number of passes through the vertices */
  /*********************************************************/
  for (pass=0; pass<npasses; pass++) {
    if (mype == 0)
      RandomPermute(nparts, pperm, 1);
    MPI_Bcast((void *)pperm, nparts, IDX_DATATYPE, 0, ctrl->comm);
    FastRandomPermute(nvtxs, perm, 1);
    oldcut = graph->mincut;

    /* check to see if the partitioning is imbalanced */
    Moc_ComputeParallelBalance(ctrl, graph, graph->where, lbvec);
    ubavg = savg(ncon, ubvec);
    lbavg = savg(ncon, lbvec);
    imbalanced = (lbavg > ubavg) ? 1 : 0;

    for (c=0; c<2; c++) {
      scopy(ncon*nparts, gnpwgts, ognpwgts);
      sset(ncon*nparts, 0.0, movewgts);
      nmoved = 0;

      /**********************************************/
      /* PASS ONE -- record stats for desired moves */
      /**********************************************/
      for (iii=0; iii<nvtxs; iii++) {
        i = perm[iii];
        from = tmp_where[i];
        nvwgt = graph->nvwgt+i*ncon;

        for (h=0; h<ncon; h++)
          if (fabs(nvwgt[h]-gnpwgts[from*ncon+h]) < SMALLFLOAT)
            break;

        if (h < ncon) {
          continue;
        }

        /* check for a potential improvement */
        if (tmp_rinfo[i].ed >= tmp_rinfo[i].id) {
          my_edegrees = tmp_rinfo[i].degrees;

          for (k=0; k<tmp_rinfo[i].ndegrees; k++) {
            to = my_edegrees[k].edge;
            if (ProperSide(c, pperm[from], pperm[to])) {
              for (h=0; h<ncon; h++)
                if (gnpwgts[to*ncon+h]+nvwgt[h] > badmaxpwgt[to*ncon+h] && nvwgt[h] > 0.0)
                  break;

              if (h == ncon)
                break;
            }
          }
          oldto = to;

          /* check if a subdomain was found that fits */
          if (k < tmp_rinfo[i].ndegrees) {
            for (j=k+1; j<tmp_rinfo[i].ndegrees; j++) {
              to = my_edegrees[j].edge;
              if (ProperSide(c, pperm[from], pperm[to])) {
                for (h=0; h<ncon; h++)
                  if (gnpwgts[to*ncon+h]+nvwgt[h] > badmaxpwgt[to*ncon+h] && nvwgt[h] > 0.0)
                    break;

                if (h == ncon) {
                  if (my_edegrees[j].ewgt > my_edegrees[k].ewgt ||
                   (my_edegrees[j].ewgt == my_edegrees[k].ewgt &&
                   IsHBalanceBetterTT(ncon,gnpwgts+oldto*ncon,gnpwgts+to*ncon,nvwgt,ubvec))){
                    k = j;
                    oldto = my_edegrees[k].edge;
                  }
                }
              }
            }
            to = oldto;

            if (my_edegrees[k].ewgt > tmp_rinfo[i].id ||
            (my_edegrees[k].ewgt == tmp_rinfo[i].id &&
            (imbalanced ||  graph->level > 3  || iii % 8 == 0) &&
            IsHBalanceBetterFT(ncon,gnpwgts+from*ncon,gnpwgts+to*ncon,nvwgt,ubvec))){

              /****************************************/
              /* Update tmp arrays of the moved vertex */
              /****************************************/
              tmp_where[i] = to;
              moved[nmoved++] = i;
              for (h=0; h<ncon; h++) {
                lnpwgts[to*ncon+h] += nvwgt[h];
                lnpwgts[from*ncon+h] -= nvwgt[h];
                gnpwgts[to*ncon+h] += nvwgt[h];
                gnpwgts[from*ncon+h] -= nvwgt[h];
                movewgts[to*ncon+h] += nvwgt[h];
                movewgts[from*ncon+h] -= nvwgt[h];
              }

              tmp_rinfo[i].ed += tmp_rinfo[i].id-my_edegrees[k].ewgt;
              SWAP(tmp_rinfo[i].id, my_edegrees[k].ewgt, j);
              if (my_edegrees[k].ewgt == 0) {
                tmp_rinfo[i].ndegrees--;
                my_edegrees[k].edge = my_edegrees[tmp_rinfo[i].ndegrees].edge;
                my_edegrees[k].ewgt = my_edegrees[tmp_rinfo[i].ndegrees].ewgt;
              }
              else {
                my_edegrees[k].edge = from;
              }

              /* Update the degrees of adjacent vertices */
              for (j=xadj[i]; j<xadj[i+1]; j++) {
                /* no need to bother about vertices on different pe's */
                if (ladjncy[j] >= nvtxs)
                  continue;

                me = ladjncy[j];
                mydomain = tmp_where[me];

                myrinfo = tmp_rinfo+me;
                your_edegrees = myrinfo->degrees;

                if (mydomain == from) {
                  INC_DEC(myrinfo->ed, myrinfo->id, adjwgt[j]);
                }
                else {
                  if (mydomain == to) {
                    INC_DEC(myrinfo->id, myrinfo->ed, adjwgt[j]);
                  }
                }

                /* Remove contribution from the .ed of 'from' */
                if (mydomain != from) {
                  for (k=0; k<myrinfo->ndegrees; k++) {
                    if (your_edegrees[k].edge == from) {
                      if (your_edegrees[k].ewgt == adjwgt[j]) {
                        myrinfo->ndegrees--;
                        your_edegrees[k].edge = your_edegrees[myrinfo->ndegrees].edge;
                        your_edegrees[k].ewgt = your_edegrees[myrinfo->ndegrees].ewgt;
                      }
                      else {
                        your_edegrees[k].ewgt -= adjwgt[j];
                      }
                      break;
                    }
                  }
                }

                /* Add contribution to the .ed of 'to' */
                if (mydomain != to) {
                  for (k=0; k<myrinfo->ndegrees; k++) {
                    if (your_edegrees[k].edge == to) {
                      your_edegrees[k].ewgt += adjwgt[j];
                      break;
                    }
                  }
                  if (k == myrinfo->ndegrees) {
                    your_edegrees[myrinfo->ndegrees].edge = to;
                    your_edegrees[myrinfo->ndegrees++].ewgt = adjwgt[j];
                  }
                }
              }
            }
          }
        }
      }

      /******************************************/
      /* Let processors know the subdomain wgts */
      /* if all proposed moves commit.          */
      /******************************************/
      MPI_Allreduce((void *)lnpwgts, (void *)pgnpwgts, nparts*ncon,
      MPI_DOUBLE, MPI_SUM, ctrl->comm);

      /**************************/
      /* compute overfill array */
      /**************************/
      overweight = 0;
      for (j=0; j<nparts; j++) {
        for (h=0; h<ncon; h++) {
          if (pgnpwgts[j*ncon+h] > ognpwgts[j*ncon+h]) {
            overfill[j*ncon+h] =
            (pgnpwgts[j*ncon+h]-badmaxpwgt[j*ncon+h]) /
            (pgnpwgts[j*ncon+h]-ognpwgts[j*ncon+h]);
          }
          else {
            overfill[j*ncon+h] = 0.0;
          }

          overfill[j*ncon+h] = amax(overfill[j*ncon+h], 0.0);
          overfill[j*ncon+h] *= movewgts[j*ncon+h];

          if (overfill[j*ncon+h] > 0.0)
            overweight = 1;

          ASSERTP(ctrl, ognpwgts[j*ncon+h] <= badmaxpwgt[j*ncon+h] ||
          pgnpwgts[j*ncon+h] <= ognpwgts[j*ncon+h],
          (ctrl, "%.4f %.4f %.4f\n", ognpwgts[j*ncon+h],
          badmaxpwgt[j*ncon+h], pgnpwgts[j*ncon+h]));
        }
      }

      /****************************************************/
      /* select moves to undo according to overfill array */
      /****************************************************/
      if (overweight == 1) {
        for (iii=0; iii<nmoved; iii++) {
          i = moved[iii];
          oldto = tmp_where[i];
          nvwgt = graph->nvwgt+i*ncon;
          my_edegrees = tmp_rinfo[i].degrees;

          for (k=0; k<tmp_rinfo[i].ndegrees; k++)
            if (my_edegrees[k].edge == where[i])
              break;

          for (h=0; h<ncon; h++)
            if (nvwgt[h] > 0.0 && overfill[oldto*ncon+h] > nvwgt[h]/4.0)
              break;

          /**********************************/
          /* nullify this move if necessary */
          /**********************************/
          if (k != tmp_rinfo[i].ndegrees && h != ncon) {
            moved[iii] = -1;
            from = oldto;
            to = where[i];

            for (h=0; h<ncon; h++) {
              overfill[oldto*ncon+h] = amax(overfill[oldto*ncon+h]-nvwgt[h], 0.0);
            }

            tmp_where[i] = to;
            tmp_rinfo[i].ed += tmp_rinfo[i].id-my_edegrees[k].ewgt;
            SWAP(tmp_rinfo[i].id, my_edegrees[k].ewgt, j);
            if (my_edegrees[k].ewgt == 0) {
              tmp_rinfo[i].ndegrees--;
              my_edegrees[k].edge = my_edegrees[tmp_rinfo[i].ndegrees].edge;
              my_edegrees[k].ewgt = my_edegrees[tmp_rinfo[i].ndegrees].ewgt;
            }
            else {
              my_edegrees[k].edge = from;
            }

            for (h=0; h<ncon; h++) {
              lnpwgts[to*ncon+h] += nvwgt[h];
              lnpwgts[from*ncon+h] -= nvwgt[h];
            }

            /* Update the degrees of adjacent vertices */
            for (j=xadj[i]; j<xadj[i+1]; j++) {
              /* no need to bother about vertices on different pe's */
              if (ladjncy[j] >= nvtxs)
                continue;

              me = ladjncy[j];
              mydomain = tmp_where[me];

              myrinfo = tmp_rinfo+me;
              your_edegrees = myrinfo->degrees;

              if (mydomain == from) {
                INC_DEC(myrinfo->ed, myrinfo->id, adjwgt[j]);
              }
              else {
                if (mydomain == to) {
                  INC_DEC(myrinfo->id, myrinfo->ed, adjwgt[j]);
                }
              }

              /* Remove contribution from the .ed of 'from' */
              if (mydomain != from) {
                for (k=0; k<myrinfo->ndegrees; k++) {
                  if (your_edegrees[k].edge == from) {
                    if (your_edegrees[k].ewgt == adjwgt[j]) {
                      myrinfo->ndegrees--;
                      your_edegrees[k].edge = your_edegrees[myrinfo->ndegrees].edge;
                      your_edegrees[k].ewgt = your_edegrees[myrinfo->ndegrees].ewgt;
                    }
                    else {
                      your_edegrees[k].ewgt -= adjwgt[j];
                    }
                    break;
                  }
                }
              }

              /* Add contribution to the .ed of 'to' */
              if (mydomain != to) {
                for (k=0; k<myrinfo->ndegrees; k++) {
                  if (your_edegrees[k].edge == to) {
                    your_edegrees[k].ewgt += adjwgt[j];
                    break;
                  }
                }
                if (k == myrinfo->ndegrees) {
                  your_edegrees[myrinfo->ndegrees].edge = to;
                  your_edegrees[myrinfo->ndegrees++].ewgt = adjwgt[j];
                }
              }
            }
          }
        }
      }

      /*************************************************/
      /* PASS TWO -- commit the remainder of the moves */
      /*************************************************/
      nlupd = nsupd = nmoves = nchanged = 0;
      for (iii=0; iii<nmoved; iii++) {
        i = moved[iii];
        if (i == -1)
          continue;

        where[i] = tmp_where[i];

        /* Make sure to update the vertex information */
        if (htable[i] == 0) {
          /* make sure you do the update */
          htable[i] = 1;
          update[nlupd++] = i;
        }

        /* Put the vertices adjacent to i into the update array */
        for (j=xadj[i]; j<xadj[i+1]; j++) {
          k = ladjncy[j];
          if (htable[k] == 0) {
            htable[k] = 1;
            if (k<nvtxs)
              update[nlupd++] = k;
            else
              supdate[nsupd++] = k;
          }
        }
        nmoves++;
        nswaps++;

        /* check number of zero-gain moves */
        for (k=0; k<rinfo[i].ndegrees; k++)
          if (rinfo[i].degrees[k].edge == to)
            break;
        if (rinfo[i].id == rinfo[i].degrees[k].ewgt)
          nzgswaps++;

        if (graph->pexadj[i+1]-graph->pexadj[i] > 0)
          changed[nchanged++] = i;
      }

      /* Tell interested pe's the new where[] info for the interface vertices */
      CommChangedInterfaceData(ctrl, graph, nchanged, changed, where,
      swchanges, rwchanges, wspace->pv4); 


      IFSET(ctrl->dbglvl, DBG_RMOVEINFO,
      rprintf(ctrl, "\t[%d %d], [%.4f],  [%d %d %d]\n",
      pass, c, badmaxpwgt[0],
      GlobalSESum(ctrl, nmoves),
      GlobalSESum(ctrl, nsupd),
      GlobalSESum(ctrl, nlupd)));

      /*-------------------------------------------------------------
      / Time to communicate with processors to send the vertices
      / whose degrees need to be update.
      /-------------------------------------------------------------*/
      /* Issue the receives first */
      for (i=0; i<nnbrs; i++) {
        MPI_Irecv((void *)(rupdate+sendptr[i]), sendptr[i+1]-sendptr[i], IDX_DATATYPE,
                  peind[i], 1, ctrl->comm, ctrl->rreq+i);
      }

      /* Issue the sends next. This needs some preporcessing */
      for (i=0; i<nsupd; i++) {
        htable[supdate[i]] = 0;
        supdate[i] = graph->imap[supdate[i]];
      }
      iidxsort(nsupd, supdate);

      for (j=i=0; i<nnbrs; i++) {
        yourlastvtx = vtxdist[peind[i]+1];
        for (k=j; k<nsupd && supdate[k] < yourlastvtx; k++); 
        MPI_Isend((void *)(supdate+j), k-j, IDX_DATATYPE, peind[i], 1, ctrl->comm, ctrl->sreq+i);
        j = k;
      }

      /* OK, now get into the loop waiting for the send/recv operations to finish */
      MPI_Waitall(nnbrs, ctrl->rreq, ctrl->statuses);
      for (i=0; i<nnbrs; i++) 
        MPI_Get_count(ctrl->statuses+i, IDX_DATATYPE, nupds_pe+i);
      MPI_Waitall(nnbrs, ctrl->sreq, ctrl->statuses);


      /*-------------------------------------------------------------
      / Place the recieved to-be updated vertices into update[] 
      /-------------------------------------------------------------*/
      for (i=0; i<nnbrs; i++) {
        pe_updates = rupdate+sendptr[i];
        for (j=0; j<nupds_pe[i]; j++) {
          k = pe_updates[j];
          if (htable[k-firstvtx] == 0) {
            htable[k-firstvtx] = 1;
            update[nlupd++] = k-firstvtx;
          }
        }
      }


      /*-------------------------------------------------------------
      / Update the rinfo of the vertices in the update[] array
      /-------------------------------------------------------------*/
      for (ii=0; ii<nlupd; ii++) {
        i = update[ii];
        ASSERT(ctrl, htable[i] == 1);

        htable[i] = 0;

        mydomain = where[i];
        myrinfo = rinfo+i;
        tmp_myrinfo = tmp_rinfo+i;
        my_edegrees = myrinfo->degrees;
        your_edegrees = tmp_myrinfo->degrees;

        graph->lmincut -= myrinfo->ed;
        myrinfo->ndegrees = 0;
        myrinfo->id = 0;
        myrinfo->ed = 0;

        for (j=xadj[i]; j<xadj[i+1]; j++) {
          yourdomain = where[ladjncy[j]];
          if (mydomain != yourdomain) {
            myrinfo->ed += adjwgt[j];

            for (k=0; k<myrinfo->ndegrees; k++) {
              if (my_edegrees[k].edge == yourdomain) {
                my_edegrees[k].ewgt += adjwgt[j];
                your_edegrees[k].ewgt += adjwgt[j];
                break;
              }
            }
            if (k == myrinfo->ndegrees) {
              my_edegrees[k].edge = yourdomain;
              my_edegrees[k].ewgt = adjwgt[j];
              your_edegrees[k].edge = yourdomain;
              your_edegrees[k].ewgt = adjwgt[j];
              myrinfo->ndegrees++;
            }
            ASSERT(ctrl, myrinfo->ndegrees <= xadj[i+1]-xadj[i]);
            ASSERT(ctrl, tmp_myrinfo->ndegrees <= xadj[i+1]-xadj[i]);

          }
          else {
            myrinfo->id += adjwgt[j];
          }
        }
        graph->lmincut += myrinfo->ed;

        tmp_myrinfo->id = myrinfo->id;
        tmp_myrinfo->ed = myrinfo->ed;
        tmp_myrinfo->ndegrees = myrinfo->ndegrees;
      }

      /* finally, sum-up the partition weights */
      MPI_Allreduce((void *)lnpwgts, (void *)gnpwgts, nparts*ncon,
      MPI_DOUBLE, MPI_SUM, ctrl->comm);
    }
    graph->mincut = GlobalSESum(ctrl, graph->lmincut)/2;

    if (graph->mincut == oldcut)
      break;
  }

/*
  gnswaps = GlobalSESum(ctrl, nswaps);
  gnzgswaps = GlobalSESum(ctrl, nzgswaps);
  if (mype == 0)
    printf("niters: %d, nswaps: %d, nzgswaps: %d\n", pass+1, gnswaps, gnzgswaps);
*/

  GKfree((void **)&badmaxpwgt, (void **)&update, (void **)&nupds_pe, (void **)&htable, LTERM);
  GKfree((void **)&changed, (void **)&pperm, (void **)&perm, (void **)&moved, LTERM);
  GKfree((void **)&pgnpwgts, (void **)&ognpwgts, (void **)&overfill, (void **)&movewgts, LTERM);
  GKfree((void **)&tmp_where, (void **)&tmp_rinfo, (void **)&tmp_edegrees, LTERM);

  IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->KWayTmr));
}
Example #21
0
/*************************************************************************
* This function projects a partition, and at the same time computes the
* parameters for refinement.
**************************************************************************/
void Project2WayPartition(CtrlType *ctrl, GraphType *graph)
{
  int i, j, k, nvtxs, nbnd, me;
  idxtype *xadj, *adjncy, *adjwgt, *adjwgtsum;
  idxtype *cmap, *where, *id, *ed, *bndptr, *bndind;
  idxtype *cwhere, *cid, *ced, *cbndptr;
  GraphType *cgraph;

  cgraph = graph->coarser;
  cwhere = cgraph->where;
  cid = cgraph->id;
  ced = cgraph->ed;
  cbndptr = cgraph->bndptr;

  nvtxs = graph->nvtxs;
  cmap = graph->cmap;
  xadj = graph->xadj;
  adjncy = graph->adjncy;
  adjwgt = graph->adjwgt;
  adjwgtsum = graph->adjwgtsum;

  Allocate2WayPartitionMemory(ctrl, graph);

  where = graph->where;
  id = idxset(nvtxs, 0, graph->id);
  ed = idxset(nvtxs, 0, graph->ed);
  bndptr = idxset(nvtxs, -1, graph->bndptr);
  bndind = graph->bndind;


  /* Go through and project partition and compute id/ed for the nodes */
  for (i=0; i<nvtxs; i++) {
    k = cmap[i];
    where[i] = cwhere[k];
    cmap[i] = cbndptr[k];
  }

  for (nbnd=0, i=0; i<nvtxs; i++) {
    me = where[i];

    id[i] = adjwgtsum[i];

    if (xadj[i] == xadj[i+1]) {
      bndptr[i] = nbnd;
      bndind[nbnd++] = i;
    }
    else {
      if (cmap[i] != -1) { /* If it is an interface node. Note that cmap[i] = cbndptr[cmap[i]] */
        for (j=xadj[i]; j<xadj[i+1]; j++) {
          if (me != where[adjncy[j]])
            ed[i] += adjwgt[j];
        }
        id[i] -= ed[i];

        if (ed[i] > 0 || xadj[i] == xadj[i+1]) {
          bndptr[i] = nbnd;
          bndind[nbnd++] = i;
        }
      }
    }
  }

  graph->mincut = cgraph->mincut;
  graph->nbnd = nbnd;
  idxcopy(2, cgraph->pwgts, graph->pwgts);

  FreeGraph(graph->coarser);
  graph->coarser = NULL;

}
Example #22
0
/*************************************************************************
* This function performs the gather/scatter for the boundary vertices
**************************************************************************/
void CommChangedInterfaceData(CtrlType *ctrl, GraphType *graph, 
        int nchanged, idxtype *changed, idxtype *data,
        KeyValueType *sendpairs, KeyValueType *recvpairs, idxtype *psendptr)
{
  int i, j, k, n, penum, nnbrs, firstvtx, nrecv;
  idxtype *peind, *sendptr, *recvptr, *recvind, *pexadj, *peadjncy, *peadjloc;
  KeyValueType *pairs;

  firstvtx = graph->vtxdist[ctrl->mype];
  nnbrs = graph->nnbrs;
  nrecv = graph->nrecv;
  peind = graph->peind;
  sendptr = graph->sendptr;
  recvptr = graph->recvptr;
  recvind = graph->recvind;
  pexadj = graph->pexadj;
  peadjncy = graph->peadjncy;
  peadjloc = graph->peadjloc;

  /* Issue the receives first */
  for (i=0; i<nnbrs; i++) {
    MPI_Irecv((void *)(recvpairs+recvptr[i]), 2*(recvptr[i+1]-recvptr[i]), IDX_DATATYPE, 
              peind[i], 1, ctrl->comm, ctrl->rreq+i);
  }

  if (nchanged != 0) {
    idxcopy(ctrl->npes, sendptr, psendptr);

    /* Copy the changed values into the sendvector */
    for (i=0; i<nchanged; i++) {
      j = changed[i];
      for (k=pexadj[j]; k<pexadj[j+1]; k++) {
        penum = peadjncy[k];
        sendpairs[psendptr[penum]].key = peadjloc[k];
        sendpairs[psendptr[penum]].val = data[j];
        psendptr[penum]++;
      }
    }

    for (i=0; i<nnbrs; i++) {
      MPI_Isend((void *)(sendpairs+sendptr[i]), 2*(psendptr[i]-sendptr[i]), IDX_DATATYPE, 
                peind[i], 1, ctrl->comm, ctrl->sreq+i);
    }
  }
  else {
    for (i=0; i<nnbrs; i++) 
      MPI_Isend((void *)(sendpairs), 0, IDX_DATATYPE, peind[i], 1, ctrl->comm, ctrl->sreq+i);
  }

  /* OK, now get into the loop waiting for the operations to finish */
  for (i=0; i<nnbrs; i++) {
    MPI_Wait(ctrl->rreq+i, &(ctrl->status));
    MPI_Get_count(&ctrl->status, IDX_DATATYPE, &n);
    if (n != 0) {
      n = n/2;
      pairs = recvpairs+graph->recvptr[i];
      for (k=0; k<n; k++) 
        data[pairs[k].key] = pairs[k].val;
    }
  }

  MPI_Waitall(nnbrs, ctrl->sreq, ctrl->statuses);
}
Example #23
0
/*************************************************************************
* This function takes a graph and produces a bisection by using a region
* growing algorithm. The resulting partition is returned in
* graph->where
**************************************************************************/
void MocRandomBisection(CtrlType *ctrl, GraphType *graph, float *tpwgts, float ubfactor)
{
  int i, ii, j, k, nvtxs, ncon, from, bestcut, mincut, nbfs, qnum;
  idxtype *bestwhere, *where, *perm;
  int counts[MAXNCON];
  float *nvwgt;

  nvtxs = graph->nvtxs;
  ncon = graph->ncon;
  nvwgt = graph->nvwgt;

  MocAllocate2WayPartitionMemory(ctrl, graph);
  where = graph->where;

  bestwhere = idxmalloc(nvtxs, "BisectGraph: bestwhere");
  nbfs = 2*(nvtxs <= ctrl->CoarsenTo ? SMALLNIPARTS : LARGENIPARTS);
  bestcut = idxsum(graph->nedges, graph->adjwgt);  
  perm = idxmalloc(nvtxs, "BisectGraph: perm");

  for (; nbfs>0; nbfs--) {
    for (i=0; i<ncon; i++)
      counts[i] = 0;

    RandomPermute(nvtxs, perm, 1);

    /* Partition by spliting the queues randomly */
    for (ii=0; ii<nvtxs; ii++) {
      i = perm[ii];
      qnum = samax(ncon, nvwgt+i*ncon);
      where[i] = counts[qnum];
      counts[qnum] = (counts[qnum]+1)%2;
    }

    MocCompute2WayPartitionParams(ctrl, graph);

    MocFM_2WayEdgeRefine(ctrl, graph, tpwgts, 6); 
    MocBalance2Way(ctrl, graph, tpwgts, 1.02);
    MocFM_2WayEdgeRefine(ctrl, graph, tpwgts, 6); 
    MocBalance2Way(ctrl, graph, tpwgts, 1.02);
    MocFM_2WayEdgeRefine(ctrl, graph, tpwgts, 6); 

    /*
    printf("Edgecut: %6d, NPwgts: [", graph->mincut);
    for (i=0; i<graph->ncon; i++)
      printf("(%.3f %.3f) ", graph->npwgts[i], graph->npwgts[graph->ncon+i]);
    printf("]\n");
    */

    if (bestcut > graph->mincut) {
      bestcut = graph->mincut;
      idxcopy(nvtxs, where, bestwhere);
      if (bestcut == 0)
        break;
    }
  }

  graph->mincut = bestcut;
  idxcopy(nvtxs, bestwhere, where);

  GKfree((void**)&bestwhere, &perm, LTERM);
}
Example #24
0
/*************************************************************************
* This function takes a graph and produces a bisection by using a region
* growing algorithm. The resulting partition is returned in
* graph->where
**************************************************************************/
void RandomBisection(CtrlType *ctrl, GraphType *graph, int *tpwgts, float ubfactor)
{
  int i, ii, j, k, nvtxs, pwgts[2], minpwgt[2], maxpwgt[2], from, bestcut, icut, mincut, me, pass, nbfs;
  idxtype *xadj, *vwgt, *adjncy, *adjwgt, *where;
  idxtype *perm, *bestwhere;

  nvtxs = graph->nvtxs;
  xadj = graph->xadj;
  vwgt = graph->vwgt;
  adjncy = graph->adjncy;
  adjwgt = graph->adjwgt;

  Allocate2WayPartitionMemory(ctrl, graph);
  where = graph->where;

  bestwhere = idxmalloc(nvtxs, "BisectGraph: bestwhere");
  perm = idxmalloc(nvtxs, "BisectGraph: queue");

  ASSERTP(tpwgts[0]+tpwgts[1] == idxsum(nvtxs, vwgt), ("%d %d\n", tpwgts[0]+tpwgts[1], idxsum(nvtxs, vwgt)));

  maxpwgt[0] = ubfactor*tpwgts[0];
  maxpwgt[1] = ubfactor*tpwgts[1];
  minpwgt[0] = (1.0/ubfactor)*tpwgts[0];
  minpwgt[1] = (1.0/ubfactor)*tpwgts[1];

  nbfs = (nvtxs <= ctrl->CoarsenTo ? SMALLNIPARTS : LARGENIPARTS);
  bestcut = idxsum(nvtxs, graph->adjwgtsum)+1;  /* The +1 is for the 0 edges case */
  for (; nbfs>0; nbfs--) {
    RandomPermute(nvtxs, perm, 1);

    idxset(nvtxs, 1, where);
    pwgts[1] = tpwgts[0]+tpwgts[1];
    pwgts[0] = 0;


    if (nbfs != 1) {
      for (ii=0; ii<nvtxs; ii++) {
        i = perm[ii];
        if (pwgts[0]+vwgt[i] < maxpwgt[0]) {
          where[i] = 0;
          pwgts[0] += vwgt[i];
          pwgts[1] -= vwgt[i];
          if (pwgts[0] > minpwgt[0])
            break;
        }
      }
    }

    /*************************************************************
    * Do some partition refinement 
    **************************************************************/
    Compute2WayPartitionParams(ctrl, graph);
    /* printf("IPART: %3d [%5d %5d] [%5d %5d] %5d\n", graph->nvtxs, pwgts[0], pwgts[1], graph->pwgts[0], graph->pwgts[1], graph->mincut); */

    Balance2Way(ctrl, graph, tpwgts, ubfactor);
    /* printf("BPART: [%5d %5d] %5d\n", graph->pwgts[0], graph->pwgts[1], graph->mincut); */

    FM_2WayEdgeRefine(ctrl, graph, tpwgts, 4);
    /* printf("RPART: [%5d %5d] %5d\n", graph->pwgts[0], graph->pwgts[1], graph->mincut); */

    if (bestcut > graph->mincut) {
      bestcut = graph->mincut;
      idxcopy(nvtxs, where, bestwhere);
      if (bestcut == 0)
        break;
    }
  }

  graph->mincut = bestcut;
  idxcopy(nvtxs, bestwhere, where);

  GKfree(&bestwhere, &perm, LTERM);
}
Example #25
0
/*************************************************************************
* This function takes a graph and produces a bisection by using a region
* growing algorithm. The resulting partition is returned in
* graph->where
**************************************************************************/
void GrowBisection(CtrlType *ctrl, GraphType *graph, int *tpwgts, float ubfactor)
{
  int i, j, k, nvtxs, drain, nleft, first, last, pwgts[2], minpwgt[2], maxpwgt[2], from, bestcut, icut, mincut, me, pass, nbfs;
  idxtype *xadj, *vwgt, *adjncy, *adjwgt, *where;
  idxtype *queue, *touched, *gain, *bestwhere;


  nvtxs = graph->nvtxs;
  xadj = graph->xadj;
  vwgt = graph->vwgt;
  adjncy = graph->adjncy;
  adjwgt = graph->adjwgt;

  Allocate2WayPartitionMemory(ctrl, graph);
  where = graph->where;

  bestwhere = idxmalloc(nvtxs, "BisectGraph: bestwhere");
  queue = idxmalloc(nvtxs, "BisectGraph: queue");
  touched = idxmalloc(nvtxs, "BisectGraph: touched");

  ASSERTP(tpwgts[0]+tpwgts[1] == idxsum(nvtxs, vwgt), ("%d %d\n", tpwgts[0]+tpwgts[1], idxsum(nvtxs, vwgt)));

  maxpwgt[0] = ubfactor*tpwgts[0];
  maxpwgt[1] = ubfactor*tpwgts[1];
  minpwgt[0] = (1.0/ubfactor)*tpwgts[0];
  minpwgt[1] = (1.0/ubfactor)*tpwgts[1];

  nbfs = (nvtxs <= ctrl->CoarsenTo ? SMALLNIPARTS : LARGENIPARTS);
  bestcut = idxsum(nvtxs, graph->adjwgtsum)+1;  /* The +1 is for the 0 edges case */
  for (; nbfs>0; nbfs--) {
    idxset(nvtxs, 0, touched);

    pwgts[1] = tpwgts[0]+tpwgts[1];
    pwgts[0] = 0;

    idxset(nvtxs, 1, where);

    queue[0] = RandomInRange(nvtxs);
    touched[queue[0]] = 1;
    first = 0; last = 1;
    nleft = nvtxs-1;
    drain = 0;

    /* Start the BFS from queue to get a partition */
    for (;;) {
      if (first == last) { /* Empty. Disconnected graph! */
        if (nleft == 0 || drain)
          break;

        k = RandomInRange(nleft);
        for (i=0; i<nvtxs; i++) {
          if (touched[i] == 0) {
            if (k == 0)
              break;
            else
              k--;
          }
        }

        queue[0] = i;
        touched[i] = 1;
        first = 0; last = 1;;
        nleft--;
      }

      i = queue[first++];
      if (pwgts[0] > 0 && pwgts[1]-vwgt[i] < minpwgt[1]) {
        drain = 1;
        continue;
      }

      where[i] = 0;
      INC_DEC(pwgts[0], pwgts[1], vwgt[i]);
      if (pwgts[1] <= maxpwgt[1])
        break;

      drain = 0;
      for (j=xadj[i]; j<xadj[i+1]; j++) {
        k = adjncy[j];
        if (touched[k] == 0) {
          queue[last++] = k;
          touched[k] = 1;
          nleft--;
        }
      }
    }

    /* Check to see if we hit any bad limiting cases */
    if (pwgts[1] == 0) { 
      i = RandomInRange(nvtxs);
      where[i] = 1;
      INC_DEC(pwgts[1], pwgts[0], vwgt[i]);
    }

    /*************************************************************
    * Do some partition refinement 
    **************************************************************/
    Compute2WayPartitionParams(ctrl, graph);
    /*printf("IPART: %3d [%5d %5d] [%5d %5d] %5d\n", graph->nvtxs, pwgts[0], pwgts[1], graph->pwgts[0], graph->pwgts[1], graph->mincut); */

    Balance2Way(ctrl, graph, tpwgts, ubfactor);
    /*printf("BPART: [%5d %5d] %5d\n", graph->pwgts[0], graph->pwgts[1], graph->mincut);*/

    FM_2WayEdgeRefine(ctrl, graph, tpwgts, 4);
    /*printf("RPART: [%5d %5d] %5d\n", graph->pwgts[0], graph->pwgts[1], graph->mincut);*/

    if (bestcut > graph->mincut) {
      bestcut = graph->mincut;
      idxcopy(nvtxs, where, bestwhere);
      if (bestcut == 0)
        break;
    }
  }

  graph->mincut = bestcut;
  idxcopy(nvtxs, bestwhere, where);

  GKfree(&bestwhere, &queue, &touched, LTERM);
}
Example #26
0
/*************************************************************************
* This function takes a graph and produces a bisection by using a region
* growing algorithm. The resulting partition is returned in
* graph->where
**************************************************************************/
void GrowBisectionNode(CtrlType *ctrl, GraphType *graph, float ubfactor)
{
  int i, j, k, nvtxs, drain, nleft, first, last, pwgts[2], tpwgts[2], minpwgt[2], maxpwgt[2], from, bestcut, icut, mincut, me, pass, nbfs;
  idxtype *xadj, *vwgt, *adjncy, *adjwgt, *where, *bndind;
  idxtype *queue, *touched, *gain, *bestwhere;

  nvtxs = graph->nvtxs;
  xadj = graph->xadj;
  vwgt = graph->vwgt;
  adjncy = graph->adjncy;
  adjwgt = graph->adjwgt;

  bestwhere = idxmalloc(nvtxs, "BisectGraph: bestwhere");
  queue = idxmalloc(nvtxs, "BisectGraph: queue");
  touched = idxmalloc(nvtxs, "BisectGraph: touched");

  tpwgts[0] = idxsum(nvtxs, vwgt);
  tpwgts[1] = tpwgts[0]/2;
  tpwgts[0] -= tpwgts[1];

  maxpwgt[0] = ubfactor*tpwgts[0];
  maxpwgt[1] = ubfactor*tpwgts[1];
  minpwgt[0] = (1.0/ubfactor)*tpwgts[0];
  minpwgt[1] = (1.0/ubfactor)*tpwgts[1];

  /* Allocate memory for graph->rdata. Allocate sufficient memory for both edge and node */
  graph->rdata = idxmalloc(5*nvtxs+3, "GrowBisectionNode: graph->rdata");
  graph->pwgts    = graph->rdata;
  graph->where    = graph->rdata + 3;
  graph->bndptr   = graph->rdata + nvtxs + 3;
  graph->bndind   = graph->rdata + 2*nvtxs + 3;
  graph->nrinfo   = (NRInfoType *)(graph->rdata + 3*nvtxs + 3);
  graph->id       = graph->rdata + 3*nvtxs + 3;
  graph->ed       = graph->rdata + 4*nvtxs + 3;
  
  where = graph->where;
  bndind = graph->bndind;

  nbfs = (nvtxs <= ctrl->CoarsenTo ? SMALLNIPARTS : LARGENIPARTS);
  bestcut = tpwgts[0]+tpwgts[1];
  for (nbfs++; nbfs>0; nbfs--) {
    idxset(nvtxs, 0, touched);

    pwgts[1] = tpwgts[0]+tpwgts[1];
    pwgts[0] = 0;

    idxset(nvtxs, 1, where);

    queue[0] = RandomInRange(nvtxs);
    touched[queue[0]] = 1;
    first = 0; last = 1;
    nleft = nvtxs-1;
    drain = 0;

    /* Start the BFS from queue to get a partition */
    if (nbfs >= 1) {
      for (;;) {
        if (first == last) { /* Empty. Disconnected graph! */
          if (nleft == 0 || drain)
            break;
  
          k = RandomInRange(nleft);
          for (i=0; i<nvtxs; i++) {
            if (touched[i] == 0) {
              if (k == 0)
                break;
              else
                k--;
            }
          }

          queue[0] = i;
          touched[i] = 1;
          first = 0; last = 1;;
          nleft--;
        }

        i = queue[first++];
        if (pwgts[1]-vwgt[i] < minpwgt[1]) {
          drain = 1;
          continue;
        }

        where[i] = 0;
        INC_DEC(pwgts[0], pwgts[1], vwgt[i]);
        if (pwgts[1] <= maxpwgt[1])
          break;

        drain = 0;
        for (j=xadj[i]; j<xadj[i+1]; j++) {
          k = adjncy[j];
          if (touched[k] == 0) {
            queue[last++] = k;
            touched[k] = 1;
            nleft--;
          }
        }
      }
    }

    /*************************************************************
    * Do some partition refinement 
    **************************************************************/
    Compute2WayPartitionParams(ctrl, graph);
    Balance2Way(ctrl, graph, tpwgts, ubfactor);
    FM_2WayEdgeRefine(ctrl, graph, tpwgts, 4);

    /* Construct and refine the vertex separator */
    for (i=0; i<graph->nbnd; i++) 
      where[bndind[i]] = 2;

    Compute2WayNodePartitionParams(ctrl, graph); 
    FM_2WayNodeRefine(ctrl, graph, ubfactor, 6);

    /* printf("ISep: [%d %d %d] %d\n", graph->pwgts[0], graph->pwgts[1], graph->pwgts[2], bestcut); */

    if (bestcut > graph->mincut) {
      bestcut = graph->mincut;
      idxcopy(nvtxs, where, bestwhere);
    }
  }

  graph->mincut = bestcut;
  idxcopy(nvtxs, bestwhere, where);

  Compute2WayNodePartitionParams(ctrl, graph); 

  GKfree(&bestwhere, &queue, &touched, LTERM);
}
Example #27
0
/*************************************************************************
* This function is the entry point for ONCMETIS
**************************************************************************/
void METIS_NodeND(int *nvtxs, idxtype *xadj, idxtype *adjncy, int *numflag, int *options, 
                  idxtype *perm, idxtype *iperm) 
{
  int i, ii, j, l, wflag, nflag;
  GraphType graph;
  CtrlType ctrl;
  idxtype *cptr, *cind, *piperm;

  if (*numflag == 1)
    Change2CNumbering(*nvtxs, xadj, adjncy);

  if (options[0] == 0) {  /* Use the default parameters */
    ctrl.CType   = ONMETIS_CTYPE;
    ctrl.IType   = ONMETIS_ITYPE;
    ctrl.RType   = ONMETIS_RTYPE;
    ctrl.dbglvl  = ONMETIS_DBGLVL;
    ctrl.oflags  = ONMETIS_OFLAGS;
    ctrl.pfactor = ONMETIS_PFACTOR;
    ctrl.nseps   = ONMETIS_NSEPS;
  }
  else {
    ctrl.CType   = options[OPTION_CTYPE];
    ctrl.IType   = options[OPTION_ITYPE];
    ctrl.RType   = options[OPTION_RTYPE];
    ctrl.dbglvl  = options[OPTION_DBGLVL];
    ctrl.oflags  = options[OPTION_OFLAGS];
    ctrl.pfactor = options[OPTION_PFACTOR];
    ctrl.nseps   = options[OPTION_NSEPS];
  }
  if (ctrl.nseps < 1)
    ctrl.nseps = 1;

  ctrl.optype = OP_ONMETIS;
  ctrl.CoarsenTo = 100;

  IFSET(ctrl.dbglvl, DBG_TIME, InitTimers(&ctrl));
  IFSET(ctrl.dbglvl, DBG_TIME, starttimer(ctrl.TotalTmr));

  InitRandom(-1);

  if (ctrl.pfactor > 0) { 
    /*============================================================
    * Prune the dense columns
    ==============================================================*/
    piperm = idxmalloc(*nvtxs, "ONMETIS: piperm");

    PruneGraph(&ctrl, &graph, *nvtxs, xadj, adjncy, piperm, (float)(0.1*ctrl.pfactor));
  }
  else if (ctrl.oflags&OFLAG_COMPRESS) {
    /*============================================================
    * Compress the graph 
    ==============================================================*/
    cptr = idxmalloc(*nvtxs+1, "ONMETIS: cptr");
    cind = idxmalloc(*nvtxs, "ONMETIS: cind");

    CompressGraph(&ctrl, &graph, *nvtxs, xadj, adjncy, cptr, cind);

    if (graph.nvtxs >= COMPRESSION_FRACTION*(*nvtxs)) {
      ctrl.oflags--; /* We actually performed no compression */
      GKfree(&cptr, &cind, LTERM);
    }
    else if (2*graph.nvtxs < *nvtxs && ctrl.nseps == 1)
      ctrl.nseps = 2;
  }
  else {
    SetUpGraph(&graph, OP_ONMETIS, *nvtxs, 1, xadj, adjncy, NULL, NULL, 0);
  }


  /*=============================================================
  * Do the nested dissection ordering 
  --=============================================================*/
  ctrl.maxvwgt = 1.5*(idxsum(graph.nvtxs, graph.vwgt)/ctrl.CoarsenTo);
  AllocateWorkSpace(&ctrl, &graph, 2);

  if (ctrl.oflags&OFLAG_CCMP) 
    MlevelNestedDissectionCC(&ctrl, &graph, iperm, ORDER_UNBALANCE_FRACTION, graph.nvtxs);
  else
    MlevelNestedDissection(&ctrl, &graph, iperm, ORDER_UNBALANCE_FRACTION, graph.nvtxs);

  FreeWorkSpace(&ctrl, &graph);

  if (ctrl.pfactor > 0) { /* Order any prunned vertices */
    if (graph.nvtxs < *nvtxs) { 
      idxcopy(graph.nvtxs, iperm, perm);  /* Use perm as an auxiliary array */
      for (i=0; i<graph.nvtxs; i++)
        iperm[piperm[i]] = perm[i];
      for (i=graph.nvtxs; i<*nvtxs; i++)
        iperm[piperm[i]] = i;
    }

    GKfree(&piperm, LTERM);
  }
  else if (ctrl.oflags&OFLAG_COMPRESS) { /* Uncompress the ordering */
    if (graph.nvtxs < COMPRESSION_FRACTION*(*nvtxs)) { 
      /* construct perm from iperm */
      for (i=0; i<graph.nvtxs; i++)
        perm[iperm[i]] = i; 
      for (l=ii=0; ii<graph.nvtxs; ii++) {
        i = perm[ii];
        for (j=cptr[i]; j<cptr[i+1]; j++)
          iperm[cind[j]] = l++;
      }
    }

    GKfree(&cptr, &cind, LTERM);
  }


  for (i=0; i<*nvtxs; i++)
    perm[iperm[i]] = i;

  IFSET(ctrl.dbglvl, DBG_TIME, stoptimer(ctrl.TotalTmr));
  IFSET(ctrl.dbglvl, DBG_TIME, PrintTimers(&ctrl));

  if (*numflag == 1)
    Change2FNumberingOrder(*nvtxs, xadj, adjncy, perm, iperm);

}
Example #28
0
/*************************************************************************
* Let the game begin
**************************************************************************/
int main(int argc, char *argv[])
{
  idxtype i, j, istep, options[10], nn, ne, fstep, lstep, nparts, nboxes, u[3], dim, nchanges, ncomm;
  char filename[256];
  idxtype *mien, *mrng, *part, *oldpart, *sflag, *bestdims, *fepart;
  double *mxyz, *bxyz;
  idxtype *xadj, *adjncy, *cntptr, *cntind;
  idxtype numflag = 0, wgtflag = 0, edgecut, etype=2;
  void *cinfo;
  FILE *fpin;
  long long int *ltmp;

  if (argc != 6) {
    mfprintf(stderr, "Usage: %s <nn> <ne> <fstep> <lstep> <nparts>\n", argv[0]);
    exit(0);
  }

  nn     = atoi(argv[1]);
  ne     = atoi(argv[2]);
  fstep  = atoi(argv[3]);
  lstep  = atoi(argv[4]);
  nparts = atoi(argv[5]);

  mprintf("Reading %s, nn: %D, ne: %D, fstep: %D, lstep: %D, nparts: %D\n", filename, nn, ne, fstep, lstep, nparts);

  mien = idxmalloc(4*ne, "main: mien");
  mxyz = gk_dmalloc(3*nn, "main: mxyz");
  mrng = idxmalloc(4*ne, "main: mrng");
  bxyz = gk_dmalloc(6*ne*4, "main: bxyz");

  fepart  = idxmalloc(nn, "main: fepart");
  part    = idxmalloc(nn, "main: part");
  oldpart = idxmalloc(nn, "main: oldpart");
  sflag   = idxmalloc(nn, "main: sflag");

  bestdims  = idxsmalloc(2*nparts, -1, "main: bestdims");

  xadj   = idxmalloc(nn+1, "main: xadj");
  adjncy = idxmalloc(50*nn, "main: adjncy");


  /*========================================================================
   * Read the initial mesh and setup the graph and contact information
   *========================================================================*/
  msprintf(filename, "mien.%04D", fstep);
  fpin = GKfopen(filename, "rb", "main: mien");
  fread(mien, sizeof(int), 4*ne, fpin);
  for (i=0; i<4*ne; i++)
    mien[i] = Flip_int32(mien[i]);
  GKfclose(fpin);

  msprintf(filename, "mxyz.%04D", fstep);
  fpin = GKfopen(filename, "rb", "main: mxyz");
  fread(mxyz, sizeof(double), 3*nn, fpin);
  for (i=0; i<3*nn; i++) {
    ltmp = (long long int *)(mxyz+i);
    *ltmp = Flip_int64(*ltmp);
  }
  GKfclose(fpin);
  mprintf("%e %e %e\n", mxyz[3*0+0], mxyz[3*0+1], mxyz[3*0+2]);

  msprintf(filename, "mrng.%04D", fstep);
  fpin = GKfopen(filename, "rb", "main: mrng");
  fread(mrng, sizeof(int), 4*ne, fpin);
  for (i=0; i<4*ne; i++)
    mrng[i] = Flip_int32(mrng[i]);
  GKfclose(fpin);


  /*========================================================================
   * Determine which nodes are in the surface
   *========================================================================*/
  iset(nn, 0, sflag);
  for (i=0; i<ne; i++) {
    if (mrng[4*i+0] > 0) { /* 1, 2, 3 */
      sflag[mien[4*i+0]-1] = 1;
      sflag[mien[4*i+1]-1] = 1;
      sflag[mien[4*i+2]-1] = 1;
    }
    if (mrng[4*i+1] > 0) { /* 1, 2, 4 */
      sflag[mien[4*i+0]-1] = 1;
      sflag[mien[4*i+1]-1] = 1;
      sflag[mien[4*i+3]-1] = 1;
    }
    if (mrng[4*i+2] > 0) { /* 2, 3, 4 */
      sflag[mien[4*i+1]-1] = 1;
      sflag[mien[4*i+2]-1] = 1;
      sflag[mien[4*i+3]-1] = 1;
    }
    if (mrng[4*i+3] > 0) { /* 1, 3, 4 */
      sflag[mien[4*i+0]-1] = 1;
      sflag[mien[4*i+2]-1] = 1;
      sflag[mien[4*i+3]-1] = 1;
    }
  }

  mprintf("Contact Nodes: %D of %D\n", isum(nn, sflag), nn);


  /*========================================================================
   * Compute the FE partition
   *========================================================================*/
  numflag = mien[idxargmin(4*ne, mien)];
  METIS_MeshToNodal(&ne, &nn, mien, &etype, &numflag, xadj, adjncy);

  options[0] = 0;
  METIS_PartGraphVKway(&nn, xadj, adjncy, NULL, NULL, &wgtflag, &numflag, &nparts,
        options, &edgecut, fepart);

  mprintf("K-way partitioning Volume: %D\n", edgecut);


  /*========================================================================
   * Get into the loop in which you go over the different configurations
   *========================================================================*/
  for (istep=fstep; istep<=lstep; istep++) {
    msprintf(filename, "mxyz.%04D", istep);
    mprintf("Reading %s...............................................................\n", filename);
    fpin = GKfopen(filename, "rb", "main: mxyz");
    fread(mxyz, sizeof(double), 3*nn, fpin);
    for (i=0; i<3*nn; i++) {
      ltmp = (long long int *)(mxyz+i);
      *ltmp = Flip_int64(*ltmp);
    }
    GKfclose(fpin);

    msprintf(filename, "mrng.%04D", istep);
    fpin = GKfopen(filename, "rb", "main: mrng");
    fread(mrng, sizeof(int), 4*ne, fpin);
    for (i=0; i<4*ne; i++)
      mrng[i] = Flip_int32(mrng[i]);
    GKfclose(fpin);

    /* Determine which nodes are in the surface */
    iset(nn, 0, sflag);
    for (i=0; i<ne; i++) {
      if (mrng[4*i+0] > 0) { /* 1, 2, 3 */
        sflag[mien[4*i+0]-1] = 1;
        sflag[mien[4*i+1]-1] = 1;
        sflag[mien[4*i+2]-1] = 1;
      }
      if (mrng[4*i+1] > 0) { /* 1, 2, 4 */
        sflag[mien[4*i+0]-1] = 1;
        sflag[mien[4*i+1]-1] = 1;
        sflag[mien[4*i+3]-1] = 1;
      }
      if (mrng[4*i+2] > 0) { /* 2, 3, 4 */
        sflag[mien[4*i+1]-1] = 1;
        sflag[mien[4*i+2]-1] = 1;
        sflag[mien[4*i+3]-1] = 1;
      }
      if (mrng[4*i+3] > 0) { /* 1, 3, 4 */
        sflag[mien[4*i+0]-1] = 1;
        sflag[mien[4*i+2]-1] = 1;
        sflag[mien[4*i+3]-1] = 1;
      }
    }

    mprintf("Contact Nodes: %D of %D\n", isum(nn, sflag), nn);

    /* Determine the bounding boxes of the surface elements */
    for (nboxes=0, i=0; i<ne; i++) {
      if (mrng[4*i+0] > 0) { /* 1, 2, 3 */
        u[0] = mien[4*i+0]-1;
        u[1] = mien[4*i+1]-1;
        u[2] = mien[4*i+2]-1;
        bxyz[6*nboxes+0] = bxyz[6*nboxes+3] = mxyz[3*u[0]+0];
        bxyz[6*nboxes+1] = bxyz[6*nboxes+4] = mxyz[3*u[0]+1];
        bxyz[6*nboxes+2] = bxyz[6*nboxes+5] = mxyz[3*u[0]+2];
        for (j=1; j<3; j++) {
          for (dim=0; dim<3; dim++) {
            bxyz[6*nboxes+dim] = (bxyz[6*nboxes+dim] > mxyz[3*u[j]+dim] ? mxyz[3*u[j]+dim] : bxyz[6*nboxes+dim]);
            bxyz[6*nboxes+3+dim] = (bxyz[6*nboxes+3+dim] < mxyz[3*u[j]+dim] ? mxyz[3*u[j]+dim] : bxyz[6*nboxes+3+dim]);
          }
        }
        nboxes++;
      }
      if (mrng[4*i+1] > 0) { /* 1, 2, 4 */
        u[0] = mien[4*i+0]-1;
        u[1] = mien[4*i+1]-1;
        u[2] = mien[4*i+3]-1;
        bxyz[6*nboxes+0] = bxyz[6*nboxes+3] = mxyz[3*u[0]+0];
        bxyz[6*nboxes+1] = bxyz[6*nboxes+4] = mxyz[3*u[0]+1];
        bxyz[6*nboxes+2] = bxyz[6*nboxes+5] = mxyz[3*u[0]+2];
        for (j=1; j<3; j++) {
          for (dim=0; dim<3; dim++) {
            bxyz[6*nboxes+dim] = (bxyz[6*nboxes+dim] > mxyz[3*u[j]+dim] ? mxyz[3*u[j]+dim] : bxyz[6*nboxes+dim]);
            bxyz[6*nboxes+3+dim] = (bxyz[6*nboxes+3+dim] < mxyz[3*u[j]+dim] ? mxyz[3*u[j]+dim] : bxyz[6*nboxes+3+dim]);
          }
        }
        nboxes++;
      }
      if (mrng[4*i+2] > 0) { /* 2, 3, 4 */
        u[0] = mien[4*i+1]-1;
        u[1] = mien[4*i+2]-1;
        u[2] = mien[4*i+3]-1;
        bxyz[6*nboxes+0] = bxyz[6*nboxes+3] = mxyz[3*u[0]+0];
        bxyz[6*nboxes+1] = bxyz[6*nboxes+4] = mxyz[3*u[0]+1];
        bxyz[6*nboxes+2] = bxyz[6*nboxes+5] = mxyz[3*u[0]+2];
        for (j=1; j<3; j++) {
          for (dim=0; dim<3; dim++) {
            bxyz[6*nboxes+dim] = (bxyz[6*nboxes+dim] > mxyz[3*u[j]+dim] ? mxyz[3*u[j]+dim] : bxyz[6*nboxes+dim]);
            bxyz[6*nboxes+3+dim] = (bxyz[6*nboxes+3+dim] < mxyz[3*u[j]+dim] ? mxyz[3*u[j]+dim] : bxyz[6*nboxes+3+dim]);
          }
        }
        nboxes++;
      }
      if (mrng[4*i+3] > 0) { /* 1, 3, 4 */
        u[0] = mien[4*i+0]-1;
        u[1] = mien[4*i+2]-1;
        u[2] = mien[4*i+3]-1;
        bxyz[6*nboxes+0] = bxyz[6*nboxes+3] = mxyz[3*u[0]+0];
        bxyz[6*nboxes+1] = bxyz[6*nboxes+4] = mxyz[3*u[0]+1];
        bxyz[6*nboxes+2] = bxyz[6*nboxes+5] = mxyz[3*u[0]+2];
        for (j=1; j<3; j++) {
          for (dim=0; dim<3; dim++) {
            bxyz[6*nboxes+dim] = (bxyz[6*nboxes+dim] > mxyz[3*u[j]+dim] ? mxyz[3*u[j]+dim] : bxyz[6*nboxes+dim]);
            bxyz[6*nboxes+3+dim] = (bxyz[6*nboxes+3+dim] < mxyz[3*u[j]+dim] ? mxyz[3*u[j]+dim] : bxyz[6*nboxes+3+dim]);
          }
        }
        nboxes++;
      }
    }

    cinfo = METIS_PartSurfForContactRCB(&nn, mxyz, sflag, &nparts, part, bestdims);

    METIS_FindContacts(cinfo, &nboxes, bxyz, &nparts, &cntptr, &cntind);

    METIS_FreeContactInfo(cinfo);

    nchanges = 0;
    if (istep > fstep) {
      for (i=0; i<nn; i++)
        nchanges += (part[i] != oldpart[i] ? 1 : 0);
    }
    idxcopy(nn, part, oldpart);

    ncomm = ComputeMapCost(nn, nparts, fepart, part);

    mprintf("Contacting Elements: %D  Indices: %D  Nchanges: %D  MapCost: %D\n", nboxes, cntptr[nboxes]-nboxes, nchanges, ncomm);

    gk_free((void **)&cntptr, &cntind, LTERM);
  }

}  
Example #29
0
/*************************************************************************
* This function projects a partition, and at the same time computes the
* parameters for refinement.
**************************************************************************/
void ProjectKWayPartition(CtrlType *ctrl, GraphType *graph, int nparts)
{
  int i, j, k, nvtxs, nbnd, me, other, istart, iend, ndegrees;
  idxtype *xadj, *adjncy, *adjwgt, *adjwgtsum;
  idxtype *cmap, *where, *bndptr, *bndind;
  idxtype *cwhere;
  GraphType *cgraph;
  RInfoType *crinfo, *rinfo, *myrinfo;
  EDegreeType *myedegrees;
  idxtype *htable;

  cgraph = graph->coarser;
  cwhere = cgraph->where;
  crinfo = cgraph->rinfo;

  nvtxs = graph->nvtxs;
  cmap = graph->cmap;
  xadj = graph->xadj;
  adjncy = graph->adjncy;
  adjwgt = graph->adjwgt;
  adjwgtsum = graph->adjwgtsum;

  AllocateKWayPartitionMemory(ctrl, graph, nparts);
  where = graph->where;
  rinfo = graph->rinfo;
  bndind = graph->bndind;
  bndptr = idxset(nvtxs, -1, graph->bndptr);

  /* Go through and project partition and compute id/ed for the nodes */
  for (i=0; i<nvtxs; i++) {
    k = cmap[i];
    where[i] = cwhere[k];
    cmap[i] = crinfo[k].ed;  /* For optimization */
  }

  htable = idxset(nparts, -1, idxwspacemalloc(ctrl, nparts));

  ctrl->wspace.cdegree = 0;
  for (nbnd=0, i=0; i<nvtxs; i++) {
    me = where[i];

    myrinfo = rinfo+i;
    myrinfo->id = myrinfo->ed = myrinfo->ndegrees = 0;
    myrinfo->edegrees = NULL;

    myrinfo->id = adjwgtsum[i];

    if (cmap[i] > 0) { /* If it is an interface node. Note cmap[i] = crinfo[cmap[i]].ed */
      istart = xadj[i];
      iend = xadj[i+1];

      myedegrees = myrinfo->edegrees = ctrl->wspace.edegrees+ctrl->wspace.cdegree;
      ctrl->wspace.cdegree += iend-istart;

      ndegrees = 0;
      for (j=istart; j<iend; j++) {
        other = where[adjncy[j]];
        if (me != other) {
          myrinfo->ed += adjwgt[j];
          if ((k = htable[other]) == -1) {
            htable[other] = ndegrees;
            myedegrees[ndegrees].pid = other;
            myedegrees[ndegrees++].ed = adjwgt[j];
          }
          else {
            myedegrees[k].ed += adjwgt[j];
          }
        }
      }
      myrinfo->id -= myrinfo->ed;

      /* Remove space for edegrees if it was interior */
      if (myrinfo->ed == 0) { 
        myrinfo->edegrees = NULL;
        ctrl->wspace.cdegree -= iend-istart;
      }
      else {
        if (myrinfo->ed-myrinfo->id >= 0) 
          BNDInsert(nbnd, bndind, bndptr, i); 

        myrinfo->ndegrees = ndegrees;

        for (j=0; j<ndegrees; j++)
          htable[myedegrees[j].pid] = -1;
      }
    }
  }

  idxcopy(nparts, cgraph->pwgts, graph->pwgts);
  graph->mincut = cgraph->mincut;
  graph->nbnd = nbnd;

  FreeGraph(graph->coarser);
  graph->coarser = NULL;

  idxwspacefree(ctrl, nparts);

  ASSERT(CheckBnd2(graph));

}
Example #30
0
/*************************************************************************
* This function is the entry point of the initial partition algorithm
* that does recursive bissection.
* This algorithm assembles the graph to all the processors and preceeds
* by parallelizing the recursive bisection step.
**************************************************************************/
void Mc_InitPartition_RB(CtrlType *ctrl, GraphType *graph, WorkSpaceType *wspace)
{
    int i, j;
    int ncon, mype, npes, gnvtxs, ngroups;
    idxtype *xadj, *adjncy, *adjwgt, *vwgt;
    idxtype *part, *gwhere0, *gwhere1;
    idxtype *tmpwhere, *tmpvwgt, *tmpxadj, *tmpadjncy, *tmpadjwgt;
    GraphType *agraph;
    int lnparts, fpart, fpe, lnpes;
    int twoparts=2, numflag = 0, wgtflag = 3, moptions[10], edgecut, max_cut;
    float *mytpwgts, mytpwgts2[2], lbvec[MAXNCON], lbsum, min_lbsum, wsum;
    MPI_Comm ipcomm;
    struct {
        float sum;
        int rank;
    } lpesum, gpesum;

    ncon = graph->ncon;
    ngroups = amax(amin(RIP_SPLIT_FACTOR, ctrl->npes), 1);

    IFSET(ctrl->dbglvl, DBG_TIME, MPI_Barrier(ctrl->comm));
    IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->InitPartTmr));

    agraph = Mc_AssembleAdaptiveGraph(ctrl, graph, wspace);
    part = idxmalloc(agraph->nvtxs, "Mc_IP_RB: part");
    xadj = idxmalloc(agraph->nvtxs+1, "Mc_IP_RB: xadj");
    adjncy = idxmalloc(agraph->nedges, "Mc_IP_RB: adjncy");
    adjwgt = idxmalloc(agraph->nedges, "Mc_IP_RB: adjwgt");
    vwgt = idxmalloc(agraph->nvtxs*ncon, "Mc_IP_RB: vwgt");

    idxcopy(agraph->nvtxs*ncon, agraph->vwgt, vwgt);
    idxcopy(agraph->nvtxs+1, agraph->xadj, xadj);
    idxcopy(agraph->nedges, agraph->adjncy, adjncy);
    idxcopy(agraph->nedges, agraph->adjwgt, adjwgt);

    MPI_Comm_split(ctrl->gcomm, ctrl->mype % ngroups, 0, &ipcomm);
    MPI_Comm_rank(ipcomm, &mype);
    MPI_Comm_size(ipcomm, &npes);

    gnvtxs = agraph->nvtxs;

    gwhere0 = idxsmalloc(gnvtxs, 0, "Mc_IP_RB: gwhere0");
    gwhere1 = idxmalloc(gnvtxs, "Mc_IP_RB: gwhere1");

    /* ADD: this assumes that tpwgts for all constraints is the same */
    /* ADD: this is necessary because serial metis does not support the general case */
    mytpwgts = fsmalloc(ctrl->nparts, 0.0, "mytpwgts");
    for (i=0; i<ctrl->nparts; i++)
        for (j=0; j<ncon; j++)
            mytpwgts[i] += ctrl->tpwgts[i*ncon+j];
    for (i=0; i<ctrl->nparts; i++)
        mytpwgts[i] /= (float)ncon;

    /* Go into the recursive bisection */
    /* ADD: consider changing this to breadth-first type bisection */
    moptions[0] = 0;
    moptions[7] = ctrl->sync + (ctrl->mype % ngroups) + 1;

    lnparts = ctrl->nparts;
    fpart = fpe = 0;
    lnpes = npes;
    while (lnpes > 1 && lnparts > 1) {
        /* Determine the weights of the partitions */
        mytpwgts2[0] = ssum(lnparts/2, mytpwgts+fpart);
        mytpwgts2[1] = 1.0-mytpwgts2[0];

        if (ncon == 1)
            METIS_WPartGraphKway2(&agraph->nvtxs, agraph->xadj, agraph->adjncy,
                                  agraph->vwgt, agraph->adjwgt, &wgtflag, &numflag, &twoparts, mytpwgts2,
                                  moptions, &edgecut, part);
        else {
            METIS_mCPartGraphRecursive2(&agraph->nvtxs, &ncon, agraph->xadj,
                                        agraph->adjncy, agraph->vwgt, agraph->adjwgt, &wgtflag, &numflag,
                                        &twoparts, mytpwgts2, moptions, &edgecut, part);
        }

        wsum = ssum(lnparts/2, mytpwgts+fpart);
        sscale(lnparts/2, 1.0/wsum, mytpwgts+fpart);
        sscale(lnparts-lnparts/2, 1.0/(1.0-wsum), mytpwgts+fpart+lnparts/2);

        /* I'm picking the left branch */
        if (mype < fpe+lnpes/2) {
            Mc_KeepPart(agraph, wspace, part, 0);
            lnpes = lnpes/2;
            lnparts = lnparts/2;
        }
        else {
            Mc_KeepPart(agraph, wspace, part, 1);
            fpart = fpart + lnparts/2;
            fpe = fpe + lnpes/2;
            lnpes = lnpes - lnpes/2;
            lnparts = lnparts - lnparts/2;
        }
    }

    /* In case npes is greater than or equal to nparts */
    if (lnparts == 1) {
        /* Only the first process will assign labels (for the reduction to work) */
        if (mype == fpe) {
            for (i=0; i<agraph->nvtxs; i++)
                gwhere0[agraph->label[i]] = fpart;
        }
    }
    /* In case npes is smaller than nparts */
    else {
        if (ncon == 1)
            METIS_WPartGraphKway2(&agraph->nvtxs, agraph->xadj, agraph->adjncy,
                                  agraph->vwgt, agraph->adjwgt, &wgtflag, &numflag, &lnparts, mytpwgts+fpart,
                                  moptions, &edgecut, part);
        else
            METIS_mCPartGraphRecursive2(&agraph->nvtxs, &ncon, agraph->xadj,
                                        agraph->adjncy, agraph->vwgt, agraph->adjwgt, &wgtflag, &numflag,
                                        &lnparts, mytpwgts+fpart, moptions, &edgecut, part);

        for (i=0; i<agraph->nvtxs; i++)
            gwhere0[agraph->label[i]] = fpart + part[i];
    }

    MPI_Allreduce((void *)gwhere0, (void *)gwhere1, gnvtxs, IDX_DATATYPE, MPI_SUM, ipcomm);

    if (ngroups > 1) {
        tmpxadj = agraph->xadj;
        tmpadjncy = agraph->adjncy;
        tmpadjwgt = agraph->adjwgt;
        tmpvwgt = agraph->vwgt;
        tmpwhere = agraph->where;
        agraph->xadj = xadj;
        agraph->adjncy = adjncy;
        agraph->adjwgt = adjwgt;
        agraph->vwgt = vwgt;
        agraph->where = gwhere1;
        agraph->vwgt = vwgt;
        agraph->nvtxs = gnvtxs;
        Mc_ComputeSerialBalance(ctrl, agraph, gwhere1, lbvec);
        lbsum = ssum(ncon, lbvec);

        edgecut = ComputeSerialEdgeCut(agraph);
        MPI_Allreduce((void *)&edgecut, (void *)&max_cut, 1, MPI_INT, MPI_MAX, ctrl->gcomm);
        MPI_Allreduce((void *)&lbsum, (void *)&min_lbsum, 1, MPI_FLOAT, MPI_MIN, ctrl->gcomm);

        lpesum.sum = lbsum;
        if (min_lbsum < UNBALANCE_FRACTION * (float)(ncon)) {
            if (lbsum < UNBALANCE_FRACTION * (float)(ncon))
                lpesum.sum = (float) (edgecut);
            else
                lpesum.sum = (float) (max_cut);
        }

        MPI_Comm_rank(ctrl->gcomm, &(lpesum.rank));
        MPI_Allreduce((void *)&lpesum, (void *)&gpesum, 1, MPI_FLOAT_INT, MPI_MINLOC, ctrl->gcomm);
        MPI_Bcast((void *)gwhere1, gnvtxs, IDX_DATATYPE, gpesum.rank, ctrl->gcomm);

        agraph->xadj = tmpxadj;
        agraph->adjncy = tmpadjncy;
        agraph->adjwgt = tmpadjwgt;
        agraph->vwgt = tmpvwgt;
        agraph->where = tmpwhere;
    }

    idxcopy(graph->nvtxs, gwhere1+graph->vtxdist[ctrl->mype], graph->where);

    FreeGraph(agraph);
    MPI_Comm_free(&ipcomm);
    GKfree((void **)&gwhere0, (void **)&gwhere1, (void **)&mytpwgts, (void **)&part, (void **)&xadj, (void **)&adjncy, (void **)&adjwgt, (void **)&vwgt, LTERM);

    IFSET(ctrl->dbglvl, DBG_TIME, MPI_Barrier(ctrl->comm));
    IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->InitPartTmr));

}