Example #1
0
void iio_unmark_sw_rb_in_use(struct iio_ring_buffer *r)
{
	struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);
	spin_lock(&ring->use_lock);
	ring->use_count--;
	spin_unlock(&ring->use_lock);
}
Example #2
0
/**
 * ad7476_poll_bh_to_ring() bh of trigger launched polling to ring buffer
 * @work_s:	the work struct through which this was scheduled
 *
 * Currently there is no option in this driver to disable the saving of
 * timestamps within the ring.
 * I think the one copy of this at a time was to avoid problems if the
 * trigger was set far too high and the reads then locked up the computer.
 **/
static void ad7476_poll_bh_to_ring(struct work_struct *work_s)
{
	struct ad7476_state *st = container_of(work_s, struct ad7476_state,
						  poll_work);
	struct iio_dev *indio_dev = st->indio_dev;
	struct iio_sw_ring_buffer *sw_ring = iio_to_sw_ring(indio_dev->ring);
	s64 time_ns;
	__u8 *rxbuf;
	int b_sent;

	/* Ensure only one copy of this function running at a time */
	if (atomic_inc_return(&st->protect_ring) > 1)
		return;

	rxbuf = kzalloc(st->d_size, GFP_KERNEL);
	if (rxbuf == NULL)
		return;

	b_sent = spi_read(st->spi, rxbuf, st->chip_info->storagebits / 8);
	if (b_sent < 0)
		goto done;

	time_ns = iio_get_time_ns();

	if (indio_dev->ring->scan_timestamp)
		memcpy(rxbuf + st->d_size - sizeof(s64),
			&time_ns, sizeof(time_ns));

	indio_dev->ring->access.store_to(&sw_ring->buf, rxbuf, time_ns);
done:
	kfree(rxbuf);
	atomic_dec(&st->protect_ring);
}
Example #3
0
static int iio_store_to_sw_rb(struct iio_ring_buffer *r,
			      u8 *data,
			      s64 timestamp)
{
	struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);
	return iio_store_to_sw_ring(ring, data, timestamp);
}
Example #4
0
/**
 * ad799x_poll_bh_to_ring() bh of trigger launched polling to ring buffer
 * @work_s:	the work struct through which this was scheduled
 *
 * Currently there is no option in this driver to disable the saving of
 * timestamps within the ring.
 * I think the one copy of this at a time was to avoid problems if the
 * trigger was set far too high and the reads then locked up the computer.
 **/
static void ad799x_poll_bh_to_ring(struct work_struct *work_s)
{
	struct ad799x_state *st = container_of(work_s, struct ad799x_state,
						  poll_work);
	struct iio_dev *indio_dev = st->indio_dev;
	struct iio_ring_buffer *ring = indio_dev->ring;
	struct iio_sw_ring_buffer *ring_sw = iio_to_sw_ring(indio_dev->ring);
	s64 time_ns;
	__u8 *rxbuf;
	int b_sent;
	u8 cmd;

	/* Ensure only one copy of this function running at a time */
	if (atomic_inc_return(&st->protect_ring) > 1)
		return;

	rxbuf = kmalloc(st->d_size, GFP_KERNEL);
	if (rxbuf == NULL)
		return;

	switch (st->id) {
	case ad7991:
	case ad7995:
	case ad7999:
		cmd = st->config | (ring->scan_mask << AD799X_CHANNEL_SHIFT);
		break;
	case ad7992:
	case ad7993:
	case ad7994:
		cmd = (ring->scan_mask << AD799X_CHANNEL_SHIFT) |
			AD7998_CONV_RES_REG;
		break;
	case ad7997:
	case ad7998:
		cmd = AD7997_8_READ_SEQUENCE | AD7998_CONV_RES_REG;
		break;
	default:
		cmd = 0;
	}

	b_sent = i2c_smbus_read_i2c_block_data(st->client,
			cmd, ring->scan_count * 2, rxbuf);
	if (b_sent < 0)
		goto done;

	time_ns = iio_get_time_ns();

	if (ring->scan_timestamp)
		memcpy(rxbuf + st->d_size - sizeof(s64),
			&time_ns, sizeof(time_ns));

	ring->access.store_to(&ring_sw->buf, rxbuf, time_ns);
done:
	kfree(rxbuf);
	atomic_dec(&st->protect_ring);
}
/**
 * max1363_poll_bh_to_ring() - bh of trigger launched polling to ring buffer
 * @work_s:	the work struct through which this was scheduled
 *
 * Currently there is no option in this driver to disable the saving of
 * timestamps within the ring.
 * I think the one copy of this at a time was to avoid problems if the
 * trigger was set far too high and the reads then locked up the computer.
 **/
static void max1363_poll_bh_to_ring(struct work_struct *work_s)
{
	struct max1363_state *st = container_of(work_s, struct max1363_state,
						  poll_work);
	struct iio_dev *indio_dev = st->indio_dev;
	struct iio_sw_ring_buffer *sw_ring = iio_to_sw_ring(indio_dev->ring);
	s64 time_ns;
	__u8 *rxbuf;
	int b_sent;
	size_t d_size;
	unsigned long numvals = hweight_long(st->current_mode->modemask);

	/* Ensure the timestamp is 8 byte aligned */
	if (st->chip_info->bits != 8)
		d_size = numvals*2 + sizeof(s64);
	else
		d_size = numvals + sizeof(s64);
	if (d_size % sizeof(s64))
		d_size += sizeof(s64) - (d_size % sizeof(s64));

	/* Ensure only one copy of this function running at a time */
	if (atomic_inc_return(&st->protect_ring) > 1)
		return;

	/* Monitor mode prevents reading. Whilst not currently implemented
	 * might as well have this test in here in the meantime as it does
	 * no harm.
	 */
	if (numvals == 0)
		return;

	rxbuf = kmalloc(d_size,	GFP_KERNEL);
	if (rxbuf == NULL)
		return;
	if (st->chip_info->bits != 8)
		b_sent = i2c_master_recv(st->client, rxbuf, numvals*2);
	else
		b_sent = i2c_master_recv(st->client, rxbuf, numvals);
	if (b_sent < 0)
		goto done;

	time_ns = iio_get_time_ns();

	memcpy(rxbuf + d_size - sizeof(s64), &time_ns, sizeof(time_ns));

	indio_dev->ring->access.store_to(&sw_ring->buf, rxbuf, time_ns);
done:
	kfree(rxbuf);
	atomic_dec(&st->protect_ring);
}
static int iio_request_update_sw_rb(struct iio_buffer *r)
{
	int ret = 0;
	struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);

	r->stufftoread = false;
	if (!ring->update_needed)
		goto error_ret;
	__iio_free_sw_ring_buffer(ring);
	ret = __iio_allocate_sw_ring_buffer(ring, ring->buf.bytes_per_datum,
					    ring->buf.length);
error_ret:
	return ret;
}
Example #7
0
int iio_request_update_sw_rb(struct iio_ring_buffer *r)
{
	int ret = 0;
	struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);

	spin_lock(&ring->use_lock);
	if (!ring->update_needed)
		goto error_ret;
	if (ring->use_count) {
		ret = -EAGAIN;
		goto error_ret;
	}
	__iio_free_sw_ring_buffer(ring);
	ret = __iio_allocate_sw_ring_buffer(ring, ring->buf.bpd,
					    ring->buf.length);
error_ret:
	spin_unlock(&ring->use_lock);
	return ret;
}
Example #8
0
static void iio_sw_rb_release(struct device *dev)
{
	struct iio_ring_buffer *r = to_iio_ring_buffer(dev);
	kfree(iio_to_sw_ring(r));
}
Example #9
0
int iio_mark_update_needed_sw_rb(struct iio_ring_buffer *r)
{
	struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);
	ring->update_needed = true;
	return 0;
}
Example #10
0
int iio_get_bpd_sw_rb(struct iio_ring_buffer *r)
{
	struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);
	return ring->buf.bpd;
}
Example #11
0
int iio_read_last_from_sw_rb(struct iio_ring_buffer *r,
			     unsigned char *data)
{
	return iio_read_last_from_sw_ring(iio_to_sw_ring(r), data);
}
Example #12
0
int iio_rip_sw_rb(struct iio_ring_buffer *r,
		  size_t count, u8 **data, int *dead_offset)
{
	struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);

	u8 *initial_read_p, *initial_write_p, *current_read_p, *end_read_p;
	int ret, max_copied;
	int bytes_to_rip;

	/* A userspace program has probably made an error if it tries to
	 *  read something that is not a whole number of bpds.
	 * Return an error.
	 */
	if (count % ring->buf.bpd) {
		ret = -EINVAL;
		printk(KERN_INFO "Ring buffer read request not whole number of"
		       "samples: Request bytes %zd, Current bpd %d\n",
		       count, ring->buf.bpd);
		goto error_ret;
	}
	/* Limit size to whole of ring buffer */
	bytes_to_rip = min((size_t)(ring->buf.bpd*ring->buf.length), count);

	*data = kmalloc(bytes_to_rip, GFP_KERNEL);
	if (*data == NULL) {
		ret = -ENOMEM;
		goto error_ret;
	}

	/* build local copy */
	initial_read_p = ring->read_p;
	if (unlikely(initial_read_p == NULL)) { /* No data here as yet */
		ret = 0;
		goto error_free_data_cpy;
	}

	initial_write_p = ring->write_p;

	/* Need a consistent pair */
	while ((initial_read_p != ring->read_p)
	       || (initial_write_p != ring->write_p)) {
		initial_read_p = ring->read_p;
		initial_write_p = ring->write_p;
	}
	if (initial_write_p == initial_read_p) {
		/* No new data available.*/
		ret = 0;
		goto error_free_data_cpy;
	}

	if (initial_write_p >= initial_read_p + bytes_to_rip) {
		/* write_p is greater than necessary, all is easy */
		max_copied = bytes_to_rip;
		memcpy(*data, initial_read_p, max_copied);
		end_read_p = initial_read_p + max_copied;
	} else if (initial_write_p > initial_read_p) {
		/*not enough data to cpy */
		max_copied = initial_write_p - initial_read_p;
		memcpy(*data, initial_read_p, max_copied);
		end_read_p = initial_write_p;
	} else {
		/* going through 'end' of ring buffer */
		max_copied = ring->data
			+ ring->buf.length*ring->buf.bpd - initial_read_p;
		memcpy(*data, initial_read_p, max_copied);
		/* possible we are done if we align precisely with end */
		if (max_copied == bytes_to_rip)
			end_read_p = ring->data;
		else if (initial_write_p
			 > ring->data + bytes_to_rip - max_copied) {
			/* enough data to finish */
			memcpy(*data + max_copied, ring->data,
			       bytes_to_rip - max_copied);
			max_copied = bytes_to_rip;
			end_read_p = ring->data + (bytes_to_rip - max_copied);
		} else {  /* not enough data */
			memcpy(*data + max_copied, ring->data,
			       initial_write_p - ring->data);
			max_copied += initial_write_p - ring->data;
			end_read_p = initial_write_p;
		}
	}
	/* Now to verify which section was cleanly copied - i.e. how far
	 * read pointer has been pushed */
	current_read_p = ring->read_p;

	if (initial_read_p <= current_read_p)
		*dead_offset = current_read_p - initial_read_p;
	else
		*dead_offset = ring->buf.length*ring->buf.bpd
			- (initial_read_p - current_read_p);

	/* possible issue if the initial write has been lapped or indeed
	 * the point we were reading to has been passed */
	/* No valid data read.
	 * In this case the read pointer is already correct having been
	 * pushed further than we would look. */
	if (max_copied - *dead_offset < 0) {
		ret = 0;
		goto error_free_data_cpy;
	}

	/* setup the next read position */
	/* Beware, this may fail due to concurrency fun and games.
	 *  Possible that sufficient fill commands have run to push the read
	 * pointer past where we would be after the rip. If this occurs, leave
	 * it be.
	 */
	/* Tricky - deal with loops */

	while (ring->read_p != end_read_p)
		ring->read_p = end_read_p;

	return max_copied - *dead_offset;

error_free_data_cpy:
	kfree(*data);
error_ret:
	return ret;
}
Example #13
0
static int iio_get_bytes_per_datum_sw_rb(struct iio_ring_buffer *r)
{
	struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);
	return ring->buf.bytes_per_datum;
}
static int iio_read_first_n_sw_rb(struct iio_buffer *r,
				  size_t n, char __user *buf)
{
	struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);

	u8 *initial_read_p, *initial_write_p, *current_read_p, *end_read_p;
	u8 *data;
	int ret, max_copied, bytes_to_rip, dead_offset;
	size_t data_available, buffer_size;

	if (n % ring->buf.bytes_per_datum) {
		ret = -EINVAL;
		printk(KERN_INFO "Ring buffer read request not whole number of"
		       "samples: Request bytes %zd, Current bytes per datum %d\n",
		       n, ring->buf.bytes_per_datum);
		goto error_ret;
	}

	buffer_size = ring->buf.bytes_per_datum*ring->buf.length;

	
	bytes_to_rip = min_t(size_t, buffer_size, n);

	data = kmalloc(bytes_to_rip, GFP_KERNEL);
	if (data == NULL) {
		ret = -ENOMEM;
		goto error_ret;
	}

	
	initial_read_p = ring->read_p;
	if (unlikely(initial_read_p == NULL)) { 
		ret = 0;
		goto error_free_data_cpy;
	}

	initial_write_p = ring->write_p;

	
	while ((initial_read_p != ring->read_p)
	       || (initial_write_p != ring->write_p)) {
		initial_read_p = ring->read_p;
		initial_write_p = ring->write_p;
	}
	if (initial_write_p == initial_read_p) {
		
		ret = 0;
		goto error_free_data_cpy;
	}

	if (initial_write_p >= initial_read_p)
		data_available = initial_write_p - initial_read_p;
	else
		data_available = buffer_size - (initial_read_p - initial_write_p);

	if (data_available < bytes_to_rip)
		bytes_to_rip = data_available;

	if (initial_read_p + bytes_to_rip >= ring->data + buffer_size) {
		max_copied = ring->data + buffer_size - initial_read_p;
		memcpy(data, initial_read_p, max_copied);
		memcpy(data + max_copied, ring->data, bytes_to_rip - max_copied);
		end_read_p = ring->data + bytes_to_rip - max_copied;
	} else {
		memcpy(data, initial_read_p, bytes_to_rip);
		end_read_p = initial_read_p + bytes_to_rip;
	}

	current_read_p = ring->read_p;

	if (initial_read_p <= current_read_p)
		dead_offset = current_read_p - initial_read_p;
	else
		dead_offset = buffer_size - (initial_read_p - current_read_p);

	if (bytes_to_rip - dead_offset < 0) {
		ret = 0;
		goto error_free_data_cpy;
	}

	
	

	while (ring->read_p != end_read_p)
		ring->read_p = end_read_p;

	ret = bytes_to_rip - dead_offset;

	if (copy_to_user(buf, data + dead_offset, ret))  {
		ret =  -EFAULT;
		goto error_free_data_cpy;
	}

	if (bytes_to_rip >= ring->buf.length*ring->buf.bytes_per_datum/2)
		ring->buf.stufftoread = 0;

error_free_data_cpy:
	kfree(data);
error_ret:

	return ret;
}
void iio_sw_rb_free(struct iio_buffer *r)
{
	kfree(iio_to_sw_ring(r));
}
static int iio_read_first_n_sw_rb(struct iio_buffer *r,
				  size_t n, char __user *buf)
{
	struct iio_sw_ring_buffer *ring = iio_to_sw_ring(r);

	u8 *initial_read_p, *initial_write_p, *current_read_p, *end_read_p;
	u8 *data;
	int ret, max_copied, bytes_to_rip, dead_offset;
	size_t data_available, buffer_size;

	/* A userspace program has probably made an error if it tries to
	 * read something that is not a whole number of bpds.
	 * Return an error.
	 */
	if (n % ring->buf.bytes_per_datum) {
		ret = -EINVAL;
		printk(KERN_INFO "Ring buffer read request not whole number of"
		       "samples: Request bytes %zd, Current bytes per datum %d\n",
		       n, ring->buf.bytes_per_datum);
		goto error_ret;
	}

	buffer_size = ring->buf.bytes_per_datum*ring->buf.length;

	/* Limit size to whole of ring buffer */
	bytes_to_rip = min_t(size_t, buffer_size, n);

	data = kmalloc(bytes_to_rip, GFP_KERNEL);
	if (data == NULL) {
		ret = -ENOMEM;
		goto error_ret;
	}

	/* build local copy */
	initial_read_p = ring->read_p;
	if (unlikely(initial_read_p == NULL)) { /* No data here as yet */
		ret = 0;
		goto error_free_data_cpy;
	}

	initial_write_p = ring->write_p;

	/* Need a consistent pair */
	while ((initial_read_p != ring->read_p)
	       || (initial_write_p != ring->write_p)) {
		initial_read_p = ring->read_p;
		initial_write_p = ring->write_p;
	}
	if (initial_write_p == initial_read_p) {
		/* No new data available.*/
		ret = 0;
		goto error_free_data_cpy;
	}

	if (initial_write_p >= initial_read_p)
		data_available = initial_write_p - initial_read_p;
	else
		data_available = buffer_size - (initial_read_p - initial_write_p);

	if (data_available < bytes_to_rip)
		bytes_to_rip = data_available;

	if (initial_read_p + bytes_to_rip >= ring->data + buffer_size) {
		max_copied = ring->data + buffer_size - initial_read_p;
		memcpy(data, initial_read_p, max_copied);
		memcpy(data + max_copied, ring->data, bytes_to_rip - max_copied);
		end_read_p = ring->data + bytes_to_rip - max_copied;
	} else {
		memcpy(data, initial_read_p, bytes_to_rip);
		end_read_p = initial_read_p + bytes_to_rip;
	}

	/* Now to verify which section was cleanly copied - i.e. how far
	 * read pointer has been pushed */
	current_read_p = ring->read_p;

	if (initial_read_p <= current_read_p)
		dead_offset = current_read_p - initial_read_p;
	else
		dead_offset = buffer_size - (initial_read_p - current_read_p);

	/* possible issue if the initial write has been lapped or indeed
	 * the point we were reading to has been passed */
	/* No valid data read.
	 * In this case the read pointer is already correct having been
	 * pushed further than we would look. */
	if (bytes_to_rip - dead_offset < 0) {
		ret = 0;
		goto error_free_data_cpy;
	}

	/* setup the next read position */
	/* Beware, this may fail due to concurrency fun and games.
	 * Possible that sufficient fill commands have run to push the read
	 * pointer past where we would be after the rip. If this occurs, leave
	 * it be.
	 */
	/* Tricky - deal with loops */

	while (ring->read_p != end_read_p)
		ring->read_p = end_read_p;

	ret = bytes_to_rip - dead_offset;

	if (copy_to_user(buf, data + dead_offset, ret))  {
		ret =  -EFAULT;
		goto error_free_data_cpy;
	}

	if (bytes_to_rip >= ring->buf.length*ring->buf.bytes_per_datum/2)
		ring->buf.stufftoread = 0;

error_free_data_cpy:
	kfree(data);
error_ret:

	return ret;
}