Example #1
0
TEST_F(fisheyeTest, Calibration)
{
    const int n_images = 34;

    std::vector<std::vector<cv::Point2d> > imagePoints(n_images);
    std::vector<std::vector<cv::Point3d> > objectPoints(n_images);

    const std::string folder =combine(datasets_repository_path, "calib-3_stereo_from_JY");
    cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ);
    CV_Assert(fs_left.isOpened());
    for(int i = 0; i < n_images; ++i)
    fs_left[cv::format("image_%d", i )] >> imagePoints[i];
    fs_left.release();

    cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ);
    CV_Assert(fs_object.isOpened());
    for(int i = 0; i < n_images; ++i)
    fs_object[cv::format("image_%d", i )] >> objectPoints[i];
    fs_object.release();

    int flag = 0;
    flag |= cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC;
    flag |= cv::fisheye::CALIB_CHECK_COND;
    flag |= cv::fisheye::CALIB_FIX_SKEW;

    cv::Matx33d theK;
    cv::Vec4d theD;

    cv::fisheye::calibrate(objectPoints, imagePoints, imageSize, theK, theD,
                           cv::noArray(), cv::noArray(), flag, cv::TermCriteria(3, 20, 1e-6));

    EXPECT_MAT_NEAR(theK, this->K, 1e-10);
    EXPECT_MAT_NEAR(theD, this->D, 1e-10);
}
Example #2
0
TEST_F(fisheyeTest, Homography)
{
    const int n_images = 1;

    std::vector<std::vector<cv::Point2d> > imagePoints(n_images);
    std::vector<std::vector<cv::Point3d> > objectPoints(n_images);

    const std::string folder =combine(datasets_repository_path, "calib-3_stereo_from_JY");
    cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ);
    CV_Assert(fs_left.isOpened());
    for(int i = 0; i < n_images; ++i)
    fs_left[cv::format("image_%d", i )] >> imagePoints[i];
    fs_left.release();

    cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ);
    CV_Assert(fs_object.isOpened());
    for(int i = 0; i < n_images; ++i)
    fs_object[cv::format("image_%d", i )] >> objectPoints[i];
    fs_object.release();

    cv::internal::IntrinsicParams param;
    param.Init(cv::Vec2d(cv::max(imageSize.width, imageSize.height) / CV_PI, cv::max(imageSize.width, imageSize.height) / CV_PI),
               cv::Vec2d(imageSize.width  / 2.0 - 0.5, imageSize.height / 2.0 - 0.5));

    cv::Mat _imagePoints (imagePoints[0]);
    cv::Mat _objectPoints(objectPoints[0]);

    cv::Mat imagePointsNormalized = NormalizePixels(_imagePoints, param).reshape(1).t();
    _objectPoints = _objectPoints.reshape(1).t();
    cv::Mat objectPointsMean, covObjectPoints;

    int Np = imagePointsNormalized.cols;
    cv::calcCovarMatrix(_objectPoints, covObjectPoints, objectPointsMean, cv::COVAR_NORMAL | cv::COVAR_COLS);
    cv::SVD svd(covObjectPoints);
    cv::Mat theR(svd.vt);

    if (cv::norm(theR(cv::Rect(2, 0, 1, 2))) < 1e-6)
        theR = cv::Mat::eye(3,3, CV_64FC1);
    if (cv::determinant(theR) < 0)
        theR = -theR;

    cv::Mat theT = -theR * objectPointsMean;
    cv::Mat X_new = theR * _objectPoints + theT * cv::Mat::ones(1, Np, CV_64FC1);
    cv::Mat H = cv::internal::ComputeHomography(imagePointsNormalized, X_new.rowRange(0, 2));

    cv::Mat M = cv::Mat::ones(3, X_new.cols, CV_64FC1);
    X_new.rowRange(0, 2).copyTo(M.rowRange(0, 2));
    cv::Mat mrep = H * M;

    cv::divide(mrep, cv::Mat::ones(3,1, CV_64FC1) * mrep.row(2).clone(), mrep);

    cv::Mat merr = (mrep.rowRange(0, 2) - imagePointsNormalized).t();

    cv::Vec2d std_err;
    cv::meanStdDev(merr.reshape(2), cv::noArray(), std_err);
    std_err *= sqrt((double)merr.reshape(2).total() / (merr.reshape(2).total() - 1));

    cv::Vec2d correct_std_err(0.00516740156010384, 0.00644205331553901);
    EXPECT_MAT_NEAR(std_err, correct_std_err, 1e-12);
}
vector<cv::Point2f> ofxFaceTracker2Landmarks::getCvImagePoints() const {
    int n = shape.num_parts();
    vector<cv::Point2f> imagePoints(n);
    for(int i = 0; i < n; i++) {
        imagePoints[i] = ofxCv::toCv(getImagePoint(i));
    }
    return imagePoints;
}
vector<ofVec2f> ofxFaceTracker2Landmarks::getImagePoints() const {
    int n = shape.num_parts();
    vector<ofVec2f> imagePoints(n);
    for(int i = 0; i < n; i++) {
        imagePoints[i] = getImagePoint(i);
    }
    return imagePoints;
}
Example #5
0
TEST_F(fisheyeTest, EtimateUncertainties)
{
    const int n_images = 34;

    std::vector<std::vector<cv::Point2d> > imagePoints(n_images);
    std::vector<std::vector<cv::Point3d> > objectPoints(n_images);

    const std::string folder =combine(datasets_repository_path, "calib-3_stereo_from_JY");
    cv::FileStorage fs_left(combine(folder, "left.xml"), cv::FileStorage::READ);
    CV_Assert(fs_left.isOpened());
    for(int i = 0; i < n_images; ++i)
    fs_left[cv::format("image_%d", i )] >> imagePoints[i];
    fs_left.release();

    cv::FileStorage fs_object(combine(folder, "object.xml"), cv::FileStorage::READ);
    CV_Assert(fs_object.isOpened());
    for(int i = 0; i < n_images; ++i)
    fs_object[cv::format("image_%d", i )] >> objectPoints[i];
    fs_object.release();

    int flag = 0;
    flag |= cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC;
    flag |= cv::fisheye::CALIB_CHECK_COND;
    flag |= cv::fisheye::CALIB_FIX_SKEW;

    cv::Matx33d theK;
    cv::Vec4d theD;
    std::vector<cv::Vec3d> rvec;
    std::vector<cv::Vec3d> tvec;

    cv::fisheye::calibrate(objectPoints, imagePoints, imageSize, theK, theD,
                           rvec, tvec, flag, cv::TermCriteria(3, 20, 1e-6));

    cv::internal::IntrinsicParams param, errors;
    cv::Vec2d err_std;
    double thresh_cond = 1e6;
    int check_cond = 1;
    param.Init(cv::Vec2d(theK(0,0), theK(1,1)), cv::Vec2d(theK(0,2), theK(1, 2)), theD);
    param.isEstimate = std::vector<uchar>(9, 1);
    param.isEstimate[4] = 0;

    errors.isEstimate = param.isEstimate;

    double rms;

    cv::internal::EstimateUncertainties(objectPoints, imagePoints, param,  rvec, tvec,
                                        errors, err_std, thresh_cond, check_cond, rms);

    EXPECT_MAT_NEAR(errors.f, cv::Vec2d(1.29837104202046,  1.31565641071524), 1e-10);
    EXPECT_MAT_NEAR(errors.c, cv::Vec2d(0.890439368129246, 0.816096854937896), 1e-10);
    EXPECT_MAT_NEAR(errors.k, cv::Vec4d(0.00516248605191506, 0.0168181467500934, 0.0213118690274604, 0.00916010877545648), 1e-10);
    EXPECT_MAT_NEAR(err_std, cv::Vec2d(0.187475975266883, 0.185678953263995), 1e-10);
    CV_Assert(fabs(rms - 0.263782587133546) < 1e-10);
    CV_Assert(errors.alpha == 0);
}
Example #6
0
void calibrateProcess(Configure& conf, cv::Mat& cameraMatrix, cv::Mat& distCoeffs)
{
    const cv::Size frameSize(conf.getConfInt("universal.frameWidth"),
                             conf.getConfInt("universal.frameHeight"));
    const cv::string dataPath(conf.getConfString("universal.dataPath"));
    
    const std::string checkerPrefix
        (conf.getConfString("calibration.checkerPrefix"));
    const std::string checkerSuffix
        (conf.getConfString("calibration.checkerSuffix"));
    const int checkerNum = conf.getConfInt("calibration.checkerNum");
    const cv::Size checkerSize(conf.getConfInt("calibration.checkerWidth"),
                               conf.getConfInt("calibration.checkerHeight"));
    
    cv::vector<cv::Mat> checkerImgs;
    cv::vector<cv::vector<cv::Point3f>> worldPoints(checkerNum);
    cv::vector<cv::vector<cv::Point2f>> imagePoints(checkerNum);
    
    cv::TermCriteria criteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS, 20, 0.001);
    
    cv::vector<cv::Mat> rotationVectors;
    cv::vector<cv::Mat> translationVectors;
    
    for(int i=0; i<checkerNum; i++){
        std::stringstream stream;
        stream << checkerPrefix << i+1 << checkerSuffix;
        std::string fileName = stream.str();
        cv::Mat tmp = cv::imread(dataPath + fileName, 0);
        cv::resize(tmp, tmp, frameSize);
        checkerImgs.push_back(tmp);
        std::cout << "load checker image: " << fileName << std::endl;
    }
    
    cv::namedWindow("Source", CV_WINDOW_AUTOSIZE|CV_WINDOW_FREERATIO);
    for(int i=0; i<checkerNum; i++){
        std::cout << "find corners from image " << i+1;
        if(cv::findChessboardCorners(checkerImgs[i], checkerSize,
                                     imagePoints[i])){
            std::cout << " ... all corners found." << std::endl;
            cv::cornerSubPix(checkerImgs[i], imagePoints[i], cv::Size(5, 5),
                             cv::Size(-1, -1), criteria);
            cv::drawChessboardCorners(checkerImgs[i], checkerSize,
                                      (cv::Mat)(imagePoints[i]), true);
            cv::imshow("Source", checkerImgs[i]);
            cv::waitKey(200);
        }else{
            std::cout << " ... at least 1 corner not found." << std::endl;
            cv::waitKey(0);
            exit(-1);
        }
    }
    cv::destroyWindow("Source");
    
    for(int i=0; i<checkerNum; i++){
        for(int j=0; j<checkerSize.area(); j++){
            worldPoints[i].
                push_back(cv::Point3f(static_cast<float>(j%checkerSize.width*10),
                                      static_cast<float>(j/checkerSize.width*10),
                                      0.0));
        }
    }
    
    cv::calibrateCamera(worldPoints, imagePoints, frameSize, cameraMatrix,
                        distCoeffs, rotationVectors, translationVectors);
    
    std::cout << "camera matrix" << std::endl;
    std::cout << cameraMatrix << std::endl;
    std::cout << "dist coeffs" << std::endl;
    std::cout << distCoeffs << std::endl;
    
}
Example #7
0
float BoardDetector::detect(const vector<Marker> &detectedMarkers,const  BoardConfiguration &BConf, Board &Bdetected, Mat camMatrix,Mat distCoeff,float markerSizeMeters)throw (cv::Exception)
{
// cout<<"markerSizeMeters="<<markerSizeMeters<<endl;
    ///find among detected markers these that belong to the board configuration
    Mat detected(BConf._markersId.size(),CV_32SC1); //stores the indices of the makers
    detected.setTo(Scalar(-1));//-1 mean not detected
    int nMarkInBoard=0;//total number of markers detected
    for (unsigned int i=0;i<detectedMarkers.size();i++) {
        bool found=false;
        int id=detectedMarkers[i].id;
        //find it
        for (  int j=0;j<detected.size().height && ! found;j++)
            for (  int k=0;k<detected.size().width && ! found;k++)
                if ( BConf._markersId.at<int>(j,k)==id) {
                    detected.at<int>(j,k)=i;
                    nMarkInBoard++;
                    found=true;
                    Bdetected.push_back(detectedMarkers[i]);
                    if (markerSizeMeters>0)
                        Bdetected.back().ssize=markerSizeMeters;
                }
    }
    Bdetected.conf=BConf;
    if (markerSizeMeters!=-1)
        Bdetected.markerSizeMeters=markerSizeMeters;
//calculate extrinsic if there is information for that
    if (camMatrix.rows!=0 && markerSizeMeters>0 && detectedMarkers.size()>1) {
        // now, create the matrices for finding the extrinsics
        Mat objPoints(4*nMarkInBoard,3,CV_32FC1);
        Mat imagePoints(4*nMarkInBoard,2,CV_32FC1);
        //size in meters of inter-marker distance
        double markerDistanceMeters= double(BConf._markerDistancePix) * markerSizeMeters / double(BConf._markerSizePix);



        int currIndex=0;
        for (  int y=0;y<detected.size().height;y++)
            for (  int x=0;x<detected.size().width;x++) {
                if (  detected.at<int>(y,x)!=-1 ) {

                    vector<Point2f> points =detectedMarkers[ detected.at<int>(y,x) ];
                    //set first image points
                    for (int p=0;p<4;p++) {
                        imagePoints.at<float>(currIndex+p,0)=points[p].x;
                        imagePoints.at<float>(currIndex+p,1)=points[p].y;
                    }

                    //tranaltion to make the Ref System be in center
                    float TX=-(  ((detected.size().height-1)*(markerDistanceMeters+markerSizeMeters) +markerSizeMeters) /2) ;
                    float TY=-(  ((detected.size().width-1)*(markerDistanceMeters+markerSizeMeters) +markerSizeMeters)/2);
                    //points in real refernce system. We se the center in the bottom-left corner
                    float AY=x*(markerDistanceMeters+markerSizeMeters ) +TY;
                    float AX=y*(markerDistanceMeters+markerSizeMeters )+TX;
                    objPoints.at<float>( currIndex,0)= AX;
                    objPoints.at<float>( currIndex,1)= AY;
                    objPoints.at<float>( currIndex,2)= 0;
                    objPoints.at<float>( currIndex+1,0)= AX;
                    objPoints.at<float>( currIndex+1,1)= AY+markerSizeMeters;
                    objPoints.at<float>( currIndex+1,2)= 0;
                    objPoints.at<float>( currIndex+2,0)= AX+markerSizeMeters;
                    objPoints.at<float>( currIndex+2,1)= AY+markerSizeMeters;
                    objPoints.at<float>( currIndex+2,2)= 0;
                    objPoints.at<float>( currIndex+3,0)= AX+markerSizeMeters;
                    objPoints.at<float>( currIndex+3,1)= AY;
                    objPoints.at<float>( currIndex+3,2)= 0;
                    currIndex+=4;
                }
            }

        CvMat cvCamMatrix=camMatrix;
        CvMat cvDistCoeffs;
        Mat zeros=Mat::zeros(4,1,CV_32FC1);
        if (distCoeff.rows>=4)  cvDistCoeffs=distCoeff;
        else  cvDistCoeffs=zeros;
        CvMat cvImgPoints=imagePoints;
        CvMat cvObjPoints=objPoints;

        CvMat cvRvec=Bdetected.Rvec;
        CvMat cvTvec=Bdetected.Tvec;
        cvFindExtrinsicCameraParams2(&cvObjPoints, &cvImgPoints, &cvCamMatrix, &cvDistCoeffs,&cvRvec,&cvTvec);
        //now, rotate 90 deg in X so that Y axis points up
        rotateXAxis(Bdetected.Rvec);
        //cout<<Bdetected.Rvec.at<float>(0,0)<<" "<<Bdetected.Rvec.at<float>(1,0)<<Bdetected.Rvec.at<float>(2,0)<<endl;
        //cout<<Bdetected.Tvec.at<float>(0,0)<<" "<<Bdetected.Tvec.at<float>(1,0)<<Bdetected.Tvec.at<float>(2,0)<<endl;
    }
    return double(nMarkInBoard)/double( BConf._markersId.size().width*BConf._markersId.size().height);
}
int main(int argc, char *argv[]) {
    gflags::ParseCommandLineFlags(&argc, &argv, true);

    cv::vector<cv::Mat> lefts, rights;
    const cv::Size patternSize(9, 6);
    cv::vector<cv::vector<cv::Point3f>> worldPoints;
    cv::vector<cv::vector<cv::vector<cv::Point2f>>> imagePoints(2);

    for (size_t i = 0; i < 2; i++)
        imagePoints[i].resize(FLAGS_size);

    loadImages(lefts, rights, FLAGS_size);
    FLAGS_size = findChessboards(lefts, rights, imagePoints, patternSize, FLAGS_size);
    std::cout << "number of correct files = " << FLAGS_size << std::endl;
    setWorldPoints(worldPoints, patternSize, 0.024, FLAGS_size);

    std::cout << "calibrate stereo cameras" << std::endl;
    cv::vector<cv::Mat> cameraMatrix(2);
    cv::vector<cv::Mat> distCoeffs(2);
    cameraMatrix[0] = cv::Mat::eye(3, 3, CV_64FC1);
    cameraMatrix[1] = cv::Mat::eye(3, 3, CV_64FC1);
    distCoeffs[0] = cv::Mat(8, 1, CV_64FC1);
    distCoeffs[1] = cv::Mat(8, 1, CV_64FC1);
    cv::Mat R, T, E, F;

    double rms = stereoCalibrate(
            worldPoints, imagePoints[0], imagePoints[1], cameraMatrix[0],
            distCoeffs[0], cameraMatrix[1], distCoeffs[1], lefts[0].size(),
            R, T, E, F, cv::TermCriteria(CV_TERMCRIT_ITER + CV_TERMCRIT_EPS, 100, 1e-5),
            CV_CALIB_FIX_ASPECT_RATIO +
            CV_CALIB_ZERO_TANGENT_DIST +
            CV_CALIB_SAME_FOCAL_LENGTH +
            CV_CALIB_RATIONAL_MODEL +
            CV_CALIB_FIX_K3 + CV_CALIB_FIX_K4 + CV_CALIB_FIX_K5);
    std::cout << "done with RMS error = " << rms << std::endl;

    double err = 0;
    int npoints = 0;
    for (int i = 0; i < FLAGS_size; i++) {
        int size = (int) imagePoints[0][i].size();
        cv::vector<cv::Vec3f> lines[2];
        cv::Mat imgpt[2];
        for (int k = 0; k < 2; k++) {
            imgpt[k] = cv::Mat(imagePoints[k][i]);
            cv::undistortPoints(imgpt[k], imgpt[k], cameraMatrix[k], distCoeffs[k],
                                cv::Mat(), cameraMatrix[k]);
            cv::computeCorrespondEpilines(imgpt[k], k + 1, F, lines[k]);
        }

        for (int j = 0; j < size; j++) {
            double errij =
                    std::fabs(imagePoints[0][i][j].x * lines[1][j][0] +
                              imagePoints[0][i][j].y * lines[1][j][1] +
                              lines[1][j][2]) +
                    std::fabs(imagePoints[1][i][j].x * lines[0][j][0] +
                              imagePoints[1][i][j].y * lines[0][j][1] +
                              lines[0][j][2]);
            err += errij;
        }
        npoints += size;
    }
    std::cout << "average reprojection error = " << err / npoints << std::endl;

    cv::Mat R1, R2, P1, P2, Q;
    cv::Rect validROI[2];
    stereoRectify(cameraMatrix[0], distCoeffs[0], cameraMatrix[1],
                  distCoeffs[1], lefts[0].size(), R, T, R1, R2, P1, P2, Q,
                  cv::CALIB_ZERO_DISPARITY, 1, lefts[0].size(),
                  &validROI[0], &validROI[1]);

    {
        cv::FileStorage fs(FLAGS_intrinsics.c_str(), cv::FileStorage::WRITE);
        if (fs.isOpened()) {
            fs << "M1" << cameraMatrix[0] << "D1" << distCoeffs[0]
                << "M2" << cameraMatrix[1] << "D2" << distCoeffs[1];
            fs.release();
        }
    }

    cv::Mat rmap[2][2];
    cv::initUndistortRectifyMap(cameraMatrix[0], distCoeffs[0], R1, P1,
                                lefts[0].size(),
                                CV_16SC2,
                                rmap[0][0], rmap[0][1]);
    cv::initUndistortRectifyMap(cameraMatrix[1], distCoeffs[1], R2, P2,
                                lefts[0].size(),
                                CV_16SC2,
                                rmap[1][0], rmap[1][1]);

    {
        cv::FileStorage fs(FLAGS_extrinsics.c_str(), cv::FileStorage::WRITE);
        if (fs.isOpened()) {
            fs << "R" << R << "T" << T << "R1" << R1 << "R2" << R2
               << "P1" << P1 << "P2" << P2 << "Q" << Q
               << "V1" << validROI[0] << "V2" << validROI[1];
            fs.release();
        }
    }

    cv::Mat canvas;
    double sf;
    int w, h;

    sf = 600. / MAX(lefts[0].size().width, lefts[0].size().height);
    w = cvRound(lefts[0].size().width * sf);
    h = cvRound(lefts[0].size().height * sf);
    canvas.create(h, w * 2, CV_8UC3);

    cv::namedWindow("Rectified", CV_WINDOW_AUTOSIZE | CV_WINDOW_FREERATIO);

    for (int i = 0; i < FLAGS_size; i++) {
        for (int k = 0; k < 2; k++) {
            if (k == 0) {
                cv::Mat img = lefts[i].clone(), rimg, cimg;
                cv::remap(img, rimg, rmap[k][0], rmap[k][1], CV_INTER_LINEAR);
                cv::cvtColor(rimg, cimg, CV_GRAY2BGR);
                cv::Mat canvasPart = canvas(cv::Rect(w * k, 0, w, h));
                cv::resize(cimg, canvasPart, canvasPart.size(), 0, 0, CV_INTER_AREA);

                cv::Rect vroi(cvRound(validROI[k].x * sf),
                              cvRound(validROI[k].y * sf),
                              cvRound(validROI[k].width * sf),
                              cvRound(validROI[k].height * sf));
                cv::rectangle(canvasPart, vroi, cv::Scalar(0, 0, 255), 3, 8);
            } else {
                cv::Mat img = rights[i].clone(), rimg, cimg;
                cv::remap(img, rimg, rmap[k][0], rmap[k][1], CV_INTER_LINEAR);
                cvtColor(rimg, cimg, CV_GRAY2BGR);
                cv::Mat canvasPart = canvas(cv::Rect(w * k, 0, w, h));
                cv::resize(cimg, canvasPart, canvasPart.size(), 0, 0, CV_INTER_AREA);

                cv::Rect vroi(cvRound(validROI[k].x * sf),
                              cvRound(validROI[k].y * sf),
                              cvRound(validROI[k].width * sf),
                              cvRound(validROI[k].height * sf));
                cv::rectangle(canvasPart, vroi, cv::Scalar(0, 0, 255), 3, 8);
            }
        }

        for (int j = 0; j < canvas.rows; j += 16)
            cv::line(canvas, cv::Point(0, j), cv::Point(canvas.cols, j),
                     cv::Scalar(0, 255, 0), 1, 8);

        cv::imshow("Rectified", canvas);

        if (cv::waitKey(0) == 'q')
            break;
    }

    cv::destroyAllWindows();
    return 0;
}