void ncp_newton_FBLSA(NonlinearComplementarityProblem* problem, double *z, double* F, int *info, SolverOptions* options) { functions_LSA functions_FBLSA_ncp; init_lsa_functions(&functions_FBLSA_ncp, &FB_compute_F_ncp, &ncp_FB); functions_FBLSA_ncp.compute_H = &FB_compute_H_ncp; functions_FBLSA_ncp.compute_error = &FB_compute_error_ncp; set_lsa_params_data(options, problem->nabla_F); newton_LSA(problem->n, z, F, info, (void *)problem, options, &functions_FBLSA_ncp); }
void mcp_newton_FBLSA(MixedComplementarityProblem2* problem, double *z, double* Fmcp, int *info , SolverOptions* options) { functions_LSA functions_FBLSA_mcp; init_lsa_functions(&functions_FBLSA_mcp, &FB_compute_F_mcp, &mcp_FB); functions_FBLSA_mcp.compute_H = &FB_compute_H_mcp; functions_FBLSA_mcp.compute_error = &FB_compute_error_mcp; set_lsa_params_data(options, problem->nabla_Fmcp); newton_LSA(problem->n1 + problem->n2, z, Fmcp, info, (void *)problem, options, &functions_FBLSA_mcp); }
void mlcp_newton_FB(MixedLinearComplementarityProblem* problem, double *z, double *w, int *info , SolverOptions* options) { functions_LSA functions_FBLSA_mlcp; init_lsa_functions(&functions_FBLSA_mlcp, &FB_compute_F_mlcp, (compute_F_merit_ptr)&mlcp_FB); functions_FBLSA_mlcp.compute_H = &FB_compute_H_mlcp; functions_FBLSA_mlcp.compute_error = &FB_compute_error_mlcp; set_lsa_params_data(options, problem->M); newton_LSA(problem->n + problem->m, z, w, info, (void *)problem, options, &functions_FBLSA_mlcp); }
void lcp_newton_minFB(LinearComplementarityProblem* problem, double *z, double *w, int *info , SolverOptions* options) { functions_LSA functions_minFBLSA_lcp; init_lsa_functions(&functions_minFBLSA_lcp, &FB_compute_F_lcp, &lcp_FB); functions_minFBLSA_lcp.compute_H = &FB_compute_H_lcp; functions_minFBLSA_lcp.compute_error = &FB_compute_error_lcp; functions_minFBLSA_lcp.compute_RHS_desc = &lcp_min; functions_minFBLSA_lcp.compute_H_desc = &min_compute_H_lcp; set_lsa_params_data(options, problem->M); newton_LSA(problem->size, z, w, info, (void *)problem, options, &functions_minFBLSA_lcp); }
void ncp_pathsearch(NonlinearComplementarityProblem* problem, double* z, double* F, int *info , SolverOptions* options) { /* Main step of the algorithm: * - compute jacobians * - call modified lemke */ unsigned int n = problem->n; unsigned int preAlloc = options->iparam[SICONOS_IPARAM_PREALLOC]; int itermax = options->iparam[SICONOS_IPARAM_MAX_ITER]; double merit_norm = 1.0; double nn_tol = options->dparam[SICONOS_DPARAM_TOL]; int nbiter = 0; /* declare a LinearComplementarityProblem on the stack*/ LinearComplementarityProblem lcp_subproblem; lcp_subproblem.size = n; /* do some allocation if required * - nabla_F (used also as M for the LCP subproblem) * - q for the LCP subproblem * * Then fill the LCP subproblem */ if (!preAlloc || (preAlloc && !options->internalSolvers)) { options->internalSolvers = (SolverOptions *) malloc(sizeof(SolverOptions)); solver_options_set(options->internalSolvers, SICONOS_LCP_PIVOT); options->numberOfInternalSolvers = 1; SolverOptions * lcp_options = options->internalSolvers; /* We always allocation once and for all since we are supposed to solve * many LCPs */ lcp_options->iparam[SICONOS_IPARAM_PREALLOC] = 1; /* set the right pivot rule */ lcp_options->iparam[SICONOS_IPARAM_PIVOT_RULE] = SICONOS_LCP_PIVOT_PATHSEARCH; /* set the right stacksize */ lcp_options->iparam[SICONOS_IPARAM_PATHSEARCH_STACKSIZE] = options->iparam[SICONOS_IPARAM_PATHSEARCH_STACKSIZE]; } assert(problem->nabla_F); lcp_subproblem.M = problem->nabla_F; if (!preAlloc || (preAlloc && !options->dWork)) { options->dWork = (double *) malloc(4*n*sizeof(double)); } lcp_subproblem.q = options->dWork; double* x = &options->dWork[n]; double* x_plus = &options->dWork[2*n]; double* r = &options->dWork[3*n]; NMS_data* data_NMS; functions_LSA* functions; if (!preAlloc || (preAlloc && !options->solverData)) { options->solverData = malloc(sizeof(pathsearch_data)); pathsearch_data* solverData = (pathsearch_data*) options->solverData; /* do all the allocation */ solverData->data_NMS = create_NMS_data(n, NM_DENSE, options->iparam, options->dparam); solverData->lsa_functions = (functions_LSA*) malloc(sizeof(functions_LSA)); solverData->data_NMS->set = malloc(sizeof(positive_orthant)); data_NMS = solverData->data_NMS; functions = solverData->lsa_functions; /* for use in NMS; only those 3 functions are called */ init_lsa_functions(functions, &FB_compute_F_ncp, &ncp_FB); functions->compute_H = &FB_compute_H_ncp; set_set_id(data_NMS->set, SICONOS_SET_POSITIVE_ORTHANT); /* fill ls_data */ data_NMS->ls_data->compute_F = functions->compute_F; data_NMS->ls_data->compute_F_merit = functions->compute_F_merit; data_NMS->ls_data->z = NULL; /* XXX to check -- xhub */ data_NMS->ls_data->zc = NMS_get_generic_workV(data_NMS->workspace, n); data_NMS->ls_data->F = NMS_get_F(data_NMS->workspace, n); data_NMS->ls_data->F_merit = NMS_get_F_merit(data_NMS->workspace, n); data_NMS->ls_data->desc_dir = NMS_get_dir(data_NMS->workspace, n); /** \todo this value should be settable by the user with a default value*/ data_NMS->ls_data->alpha_min = fmin(data_NMS->alpha_min_watchdog, data_NMS->alpha_min_pgrad); data_NMS->ls_data->data = (void*)problem; data_NMS->ls_data->set = data_NMS->set; data_NMS->ls_data->sigma = options->dparam[SICONOS_DPARAM_NMS_SIGMA]; /* data_NMS->ls_data->searchtype is set in the NMS code */ } else { pathsearch_data* solverData = (pathsearch_data*) options->solverData; data_NMS = solverData->data_NMS; functions = solverData->lsa_functions; } /* initial value for ref_merit */ problem->compute_F(problem->env, n, z, F); functions->compute_F_merit(problem, z, F, data_NMS->ls_data->F_merit); data_NMS->ref_merit = .5 * cblas_ddot(n, data_NMS->ls_data->F_merit, 1, data_NMS->ls_data->F_merit, 1); data_NMS->merit_bestpoint = data_NMS->ref_merit; cblas_dcopy(n, z, 1, NMS_checkpoint_0(data_NMS, n), 1); cblas_dcopy(n, z, 1, NMS_checkpoint_T(data_NMS, n), 1); cblas_dcopy(n, z, 1, NMS_bestpoint(data_NMS, n), 1); /* -------------------- end init ---------------------------*/ int nms_failed = 0; double err = 10*nn_tol; /* to check the solution */ LinearComplementarityProblem lcp_subproblem_check; int check_lcp_solution = 1; /* XXX add config for that */ double normal_norm2_newton_point; /* F is already computed here at z */ while ((err > nn_tol) && (nbiter < itermax) && !nms_failed) { int force_watchdog_step = 0; int force_d_step_merit_check = 0; double check_ratio = 0.0; nbiter++; /* update M, q and r */ /* First find x */ ncp_pathsearch_compute_x_from_z(n, z, F, x); pos_part(n, x, x_plus); /* update x_plus */ ncp_pathsearch_update_lcp_data(problem, &lcp_subproblem, n, x_plus, x, r); if (check_lcp_solution) { lcp_subproblem_check.size = n; lcp_subproblem_check.M = problem->nabla_F; lcp_subproblem_check.q = lcp_subproblem.q; //cblas_dcopy(n, x, 1, lcp_subproblem_check.q , 1); //prodNumericsMatrix(n, n, -1.0, problem->nabla_F, x_plus, 0.0, lcp_subproblem.q); } double norm_r2 = cblas_ddot(n, r, 1, r, 1); if (norm_r2 < DBL_EPSILON*DBL_EPSILON) /* ||r|| < 1e-15 */ { DEBUG_PRINTF("ncp_pathsearch :: ||r|| = %e < %e; path search procedure was successful!\n", norm_r2, DBL_EPSILON*DBL_EPSILON); (*info) = 0; ncp_compute_error(n, z, F, nn_tol, &err); /* XXX F should be up-to-date, we should check only CC*/ break; } /* end update M, q and r */ lcp_pivot_covering_vector(&lcp_subproblem, x_plus, x, info, options->internalSolvers, r); switch (*info) { case LCP_PIVOT_SUCCESS: DEBUG_PRINT("ncp_pathsearch :: path search procedure was successful!\n"); if (check_lcp_solution) { double err_lcp = 0.0; cblas_daxpy(n, 1.0, r, 1, lcp_subproblem_check.q, 1); lcp_compute_error(&lcp_subproblem_check, x_plus, x, 1e-14, &err_lcp); double local_tol = fmax(1e-14, DBL_EPSILON*sqrt(norm_r2)); printf("ncp_pathsearch :: lcp solved with error = %e; local_tol = %e\n", err_lcp, local_tol); //assert(err_lcp < local_tol && "ncp_pathsearch :: lcp solved with very bad precision"); if (err_lcp > local_tol) { printf("ncp_pathsearch :: lcp solved with very bad precision\n"); NM_display(lcp_subproblem.M); printf("z r q x_plus\n"); for (unsigned i = 0; i < n; ++i) printf("%e %e %e %e\n", z[i], r[i], lcp_subproblem.q[i], x_plus[i]); options->internalSolvers->iparam[SICONOS_IPARAM_PIVOT_RULE] = 0; lcp_pivot(&lcp_subproblem, x_plus, x, info, options->internalSolvers); options->internalSolvers->iparam[SICONOS_IPARAM_PIVOT_RULE] = SICONOS_LCP_PIVOT_PATHSEARCH; lcp_compute_error(&lcp_subproblem_check, x_plus, x, 1e-14, &err_lcp); printf("ncp_pathsearch :: lcp resolved with error = %e; local_tol = %e\n", err_lcp, local_tol); } /* XXX missing recompute x ?*/ /* recompute the normal norm */ problem->compute_F(problem->env, n, x_plus, r); cblas_daxpy(n, -1.0, x, 1, r, 1); normal_norm2_newton_point = cblas_ddot(n, r, 1, r, 1); if (normal_norm2_newton_point > norm_r2) { printf("ncp_pathsearch :: lcp successfully solved, but the norm of the normal map increased! %e > %e\n", normal_norm2_newton_point, norm_r2); //assert(normal_norm2_newton_point <= norm_r2); } else { printf("ncp_pathsearch :: lcp successfully solved, norm of the normal map decreased! %e < %e\n", normal_norm2_newton_point, norm_r2); //check_ratio = norm_r2/normal_norm2_newton_point; } if (50*normal_norm2_newton_point < norm_r2) { force_d_step_merit_check = 1; } else if (10*normal_norm2_newton_point < norm_r2) { // check_ratio = sqrt(norm_r2/normal_norm2_newton_point); } } break; case LCP_PIVOT_RAY_TERMINATION: DEBUG_PRINT("ncp_pathsearch :: ray termination, let's fastened your seat belt!\n"); break; case LCP_PATHSEARCH_LEAVING_T: DEBUG_PRINT("ncp_pathsearch :: leaving t, fastened your seat belt!\n"); DEBUG_PRINTF("ncp_pathsearch :: max t value = %e\n", options->internalSolvers->dparam[2]); /* XXX fix 2 */ /* try to retry solving the problem */ /* XXX keep or not ? */ /* recompute the normal norm */ problem->compute_F(problem->env, n, x_plus, r); cblas_daxpy(n, -1.0, x, 1, r, 1); normal_norm2_newton_point = cblas_ddot(n, r, 1, r, 1); if (normal_norm2_newton_point > norm_r2) { printf("ncp_pathsearch :: lcp successfully solved, but the norm of the normal map increased! %e > %e\n", normal_norm2_newton_point, norm_r2); //assert(normal_norm2_newton_point <= norm_r2); } else { printf("ncp_pathsearch :: lcp successfully solved, norm of the normal map decreased! %e < %e\n", normal_norm2_newton_point, norm_r2); check_ratio = 5.0*norm_r2/normal_norm2_newton_point; } if (options->internalSolvers->dparam[2] > 1e-5) break; memset(x_plus, 0, sizeof(double) * n); problem->compute_F(problem->env, n, x_plus, r); ncp_pathsearch_compute_x_from_z(n, x_plus, r, x); ncp_pathsearch_update_lcp_data(problem, &lcp_subproblem, n, x_plus, x, r); lcp_pivot_covering_vector(&lcp_subproblem, x_plus, x, info, options->internalSolvers, r); if (*info == LCP_PIVOT_SUCCESS) { DEBUG_PRINT("ncp_pathsearch :: Lemke start worked !\n"); double err_lcp = 0.0; cblas_daxpy(n, 1.0, r, 1, lcp_subproblem_check.q, 1); lcp_compute_error(&lcp_subproblem_check, x_plus, x, 1e-14, &err_lcp); double local_tol = fmax(1e-14, DBL_EPSILON*sqrt(norm_r2)); printf("ncp_pathsearch :: lcp solved with error = %e; local_tol = %e\n", err_lcp, local_tol); assert(err_lcp < local_tol); } else { NM_display(lcp_subproblem.M); printf("z r q x_plus\n"); for (unsigned i = 0; i < n; ++i) printf("%e %e %e %e\n", z[i], r[i], lcp_subproblem.q[i], x_plus[i]); DEBUG_PRINT("ncp_pathsearch :: Lemke start did not succeeded !\n"); lcp_pivot_diagnose_info(*info); if (*info == LCP_PATHSEARCH_LEAVING_T) { DEBUG_PRINTF("ncp_pathsearch :: max t value after Lemke start = %e\n", options->internalSolvers->dparam[2]); } options->internalSolvers->iparam[SICONOS_IPARAM_PIVOT_RULE] = 0; lcp_pivot(&lcp_subproblem, x_plus, x, info, options->internalSolvers); options->internalSolvers->iparam[SICONOS_IPARAM_PIVOT_RULE] = SICONOS_LCP_PIVOT_PATHSEARCH; double err_lcp = 0.0; lcp_compute_error(&lcp_subproblem, x_plus, x, 1e-14, &err_lcp); printf("ncp_pathsearch :: lemke start resolved with info = %d; error = %e\n", *info, err_lcp); printf("x_plus x_minus\n"); for (unsigned i = 0; i < n; ++i) printf("%e %e\n", x_plus[i], x[i]); /* recompute the normal norm */ problem->compute_F(problem->env, n, x_plus, r); cblas_daxpy(n, -1.0, x, 1, r, 1); double normal_norm2_newton_point = cblas_ddot(n, r, 1, r, 1); if (normal_norm2_newton_point > norm_r2) { printf("ncp_pathsearch :: lcp successfully solved, but the norm of the normal map increased! %e > %e\n", normal_norm2_newton_point, norm_r2); //assert(normal_norm2_newton_point <= norm_r2); } else { printf("ncp_pathsearch :: lcp successfully solved, norm of the normal map decreased! %.*e < %.*e\n", DECIMAL_DIG, normal_norm2_newton_point, DECIMAL_DIG, norm_r2); } if (100*normal_norm2_newton_point < norm_r2) { force_d_step_merit_check = 1; } } break; case LCP_PIVOT_NUL: printf("ncp_pathsearch :: kaboom, kaboom still more work needs to be done\n"); lcp_pivot_diagnose_info(*info); // exit(EXIT_FAILURE); force_watchdog_step = 1; break; case LCP_PATHSEARCH_NON_ENTERING_T: DEBUG_PRINT("ncp_pathsearch :: non entering t, something is wrong here. Fix the f****** code!\n"); assert(0 && "ncp_pathsearch :: non entering t, something is wrong here\n"); force_watchdog_step = 1; break; default: printf("ncp_pathsearch :: unknown code returned by the path search\n"); exit(EXIT_FAILURE); } nms_failed = NMS(data_NMS, problem, functions, z, x_plus, force_watchdog_step, force_d_step_merit_check, check_ratio); /* at this point z has been updated */ /* recompute the normal norm */ problem->compute_F(problem->env, n, z, F); functions->compute_F_merit(problem, z, F, data_NMS->ls_data->F_merit); /* XXX is this correct ? */ merit_norm = .5 * cblas_ddot(n, data_NMS->ls_data->F_merit, 1, data_NMS->ls_data->F_merit, 1); ncp_compute_error(n, z, F, nn_tol, &err); /* XXX F should be up-to-date, we should check only CC*/ DEBUG_PRINTF("ncp_pathsearch :: iter = %d, ncp_error = %e; merit_norm^2 = %e\n", nbiter, err, merit_norm); } options->iparam[1] = nbiter; options->dparam[1] = err; if (nbiter == itermax) { *info = 1; } else if (nms_failed) { *info = 2; } else { *info = 0; } DEBUG_PRINTF("ncp_pathsearch procedure finished :: info = %d; iter = %d; ncp_error = %e; merit_norm^2 = %e\n", *info, nbiter, err, merit_norm); if (!preAlloc) { freeNumericsMatrix(problem->nabla_F); free(problem->nabla_F); problem->nabla_F = NULL; free(options->dWork); options->dWork = NULL; solver_options_delete(options->internalSolvers); free(options->internalSolvers); options->internalSolvers = NULL; free_NMS_data(data_NMS); free(functions); free(options->solverData); options->solverData = NULL; } }
void fc3d_nonsmooth_Newton_AlartCurnier2( FrictionContactProblem* problem, double *reaction, double *velocity, int *info, SolverOptions *options) { assert(problem); assert(reaction); assert(velocity); assert(info); assert(options); assert(problem->dimension == 3); assert(options->iparam); assert(options->dparam); assert(problem->q); assert(problem->mu); assert(problem->M); assert(!options->iparam[4]); // only host AlartCurnierParams acparams; switch (options->iparam[10]) { case 0: { acparams.computeACFun3x3 = &computeAlartCurnierSTD; break; } case 1: { acparams.computeACFun3x3 = &computeAlartCurnierJeanMoreau; break; }; case 2: { acparams.computeACFun3x3 = &fc3d_AlartCurnierFunctionGenerated; break; } case 3: { acparams.computeACFun3x3 = &fc3d_AlartCurnierJeanMoreauFunctionGenerated; break; } } fc3d_nonsmooth_Newton_solvers equation; equation.problem = problem; equation.data = (void *) &acparams; equation.function = &nonsmoothEqnAlartCurnierFun; /************************************************************************* * START NEW STUFF */ size_t problemSize = problem->M->size0; size_t _3problemSize = problemSize + problemSize + problemSize; FC3D_Newton_data opaque_data; opaque_data.problem = problem; opaque_data.equation = &equation; opaque_data.rho = (double*)calloc(problemSize, sizeof(double)); for (size_t i = 0; i < problemSize; ++i) opaque_data.rho[i] = 1.; opaque_data.Ax = (double*)calloc(_3problemSize, sizeof(double)); opaque_data.Bx = (double*)calloc(_3problemSize, sizeof(double)); opaque_data.normq = cblas_dnrm2(problemSize, problem->q, 1); opaque_data.AwpB_data_computed = false; functions_LSA functions_AC; init_lsa_functions(&functions_AC, &FC3D_compute_F, &FC3D_compute_F_merit); functions_AC.compute_H = &FC3D_compute_AWpB; functions_AC.compute_error = &FC3D_compute_error; functions_AC.get_set_from_problem_data = NULL; set_lsa_params_data(options, problem->M); newton_LSA_param* params = (newton_LSA_param*) options->solverParameters; params->check_dir_quality = false; options->iparam[SICONOS_IPARAM_LSA_SEARCH_CRITERION] = SICONOS_LSA_GOLDSTEIN; // options->iparam[SICONOS_IPARAM_LSA_SEARCH_CRITERION] = SICONOS_LSA_ARMIJO; /************************************************************************* * END NEW STUFF */ if(options->iparam[SICONOS_FRICTION_3D_NSN_HYBRID_STRATEGY] == SICONOS_FRICTION_3D_NSN_HYBRID_STRATEGY_VI_EG_NSN) { SolverOptions * options_vi_eg =(SolverOptions *)malloc(sizeof(SolverOptions)); fc3d_VI_ExtraGradient_setDefaultSolverOptions(options_vi_eg); options_vi_eg->iparam[0] = 50; options_vi_eg->dparam[0] = sqrt(options->dparam[0]); options_vi_eg->iparam[SICONOS_VI_IPARAM_ERROR_EVALUATION] = SICONOS_VI_ERROR_EVALUATION_LIGHT; fc3d_VI_ExtraGradient(problem, reaction , velocity , info , options_vi_eg); solver_options_delete(options_vi_eg); free(options_vi_eg); newton_LSA(problemSize, reaction, velocity, info, (void *)&opaque_data, options, &functions_AC); } else if (options->iparam[SICONOS_FRICTION_3D_NSN_HYBRID_STRATEGY] == SICONOS_FRICTION_3D_NSN_HYBRID_STRATEGY_NO) { newton_LSA(problemSize, reaction, velocity, info, (void *)&opaque_data, options, &functions_AC); } else { numerics_error("fc3d_nonsmooth_Newton_AlartCurnier","Unknown nsn hybrid solver"); } free(opaque_data.rho); free(opaque_data.Ax); free(opaque_data.Bx); }