Example #1
0
/* P output = solution , Q input = source */
int cg_mms_tm(spinor * const P, spinor * const Q, const int max_iter, 
	      double eps_sq, const int rel_prec, const int N, matrix_mult f) {

  static double normsq, pro, err, alpha_cg = 1., beta_cg = 0., squarenorm;
  int iteration, im, append = 0;
  char filename[100];
  static double gamma, alpham1;
  int const cg_mms_default_precision = 32;
  double tmp_mu = g_mu;
  WRITER * writer = NULL;
  paramsInverterInfo *inverterInfo = NULL;
  paramsPropagatorFormat *propagatorFormat = NULL;
  spinor * temp_save; //used to save all the masses
  spinor ** solver_field = NULL;
  const int nr_sf = 5;

  init_solver_field(&solver_field, VOLUMEPLUSRAND, nr_sf);
  init_mms_tm(g_no_extra_masses);

  /* currently only implemented for P=0 */
  zero_spinor_field(P, N);
  /*  Value of the bare MMS-masses (\mu^2 - \mu_0^2) */
  for(im = 0; im < g_no_extra_masses; im++) {
    sigma[im] = g_extra_masses[im]*g_extra_masses[im] - g_mu*g_mu;
    assign(xs_mms_solver[im], P, N);
    assign(ps_mms_solver[im], Q, N);
    zitam1[im] = 1.0;
    zita[im] = 1.0;
    alphas[im] = 1.0;
    betas[im] = 0.0;
  }

  squarenorm = square_norm(Q, N, 1);
  assign(solver_field[0], P, N);
/*   normsp = square_norm(P, N, 1); */

  /* initialize residue r and search vector p */
/*   if(normsp == 0){ */
  /* currently only implemented for P=0 */
  if(1) {
    /* if a starting solution vector equal to zero is chosen */
    assign(solver_field[1], Q, N);
    assign(solver_field[2], Q, N);
    normsq = square_norm(Q, N, 1);
  }
  else{
    /* if a starting solution vector different from zero is chosen */
    f(solver_field[3], solver_field[0]);

    diff(solver_field[1], Q, solver_field[3], N);
    assign(solver_field[2], solver_field[1], N);
    normsq = square_norm(solver_field[2], N, 1);
  }

  /* main loop */
  for(iteration = 0; iteration < max_iter; iteration++) {

    /*   Q^2*p and then (p,Q^2*p)  */
    f(solver_field[4], solver_field[2]);
    pro = scalar_prod_r(solver_field[2], solver_field[4], N, 1);

    /* For the update of the coeff. of the shifted pol. we need alpha_cg(i-1) and alpha_cg(i).
       This is the reason why we need this double definition of alpha */
    alpham1 = alpha_cg;

    /* Compute alpha_cg(i+1) */
    alpha_cg = normsq/pro;
    for(im = 0; im < g_no_extra_masses; im++) {

      /* Now gamma is a temp variable that corresponds to zita(i+1) */ 
      gamma = zita[im]*alpham1/(alpha_cg*beta_cg*(1.-zita[im]/zitam1[im]) 
				+ alpham1*(1.+sigma[im]*alpha_cg));

      /* Now zita(i-1) is put equal to the old zita(i) */
      zitam1[im] = zita[im];
      /* Now zita(i+1) is updated */
      zita[im] = gamma;
      /* Update of alphas(i) = alpha_cg(i)*zita(i+1)/zita(i) */ 
      alphas[im] = alpha_cg*zita[im]/zitam1[im];
      /* Compute xs(i+1) = xs(i) + alphas(i)*ps(i) */
      assign_add_mul_r(xs_mms_solver[im], ps_mms_solver[im], alphas[im], N); 
    }

    /*  Compute x_(i+1) = x_i + alpha_cg(i+1) p_i    */
    assign_add_mul_r(solver_field[0], solver_field[2],  alpha_cg, N);
    /*  Compute r_(i+1) = r_i - alpha_cg(i+1) Qp_i   */
    assign_add_mul_r(solver_field[1], solver_field[4], -alpha_cg, N);

    /* Check whether the precision eps_sq is reached */

    err = square_norm(solver_field[1], N, 1);
    if(g_debug_level > 2 && g_proc_id == g_stdio_proc) {
      printf("CGMMS iteration: %d residue: %g\n", iteration, err); fflush( stdout );
    }

    if( ((err <= eps_sq) && (rel_prec == 0)) ||
      ((err <= eps_sq*squarenorm) && (rel_prec == 1)) ) {

      assign(P, solver_field[0], N);
      f(solver_field[2], P);
      diff(solver_field[3], solver_field[2], Q, N);
      err = square_norm(solver_field[3], N, 1);
      if(g_debug_level > 0 && g_proc_id == g_stdio_proc) {
        printf("# CG MMS true residue at final iteration (%d) was %g.\n", iteration, err); 
        fflush( stdout);
      }
      g_sloppy_precision = 0;
      g_mu = tmp_mu;

      /* save all the results of (Q^dagger Q)^(-1) \gamma_5 \phi */
      /* here ... */
      /* when im == -1 save the base mass*/
      for(im = -1; im < g_no_extra_masses; im++) {
        if(im==-1) {
          temp_save=solver_field[0];
        } else {
          temp_save=xs_mms_solver[im];
        }

        if(SourceInfo.type != 1) {
          if (PropInfo.splitted) {
            sprintf(filename, "%s.%.4d.%.2d.%.2d.cgmms.%.2d.inverted", SourceInfo.basename, SourceInfo.nstore, SourceInfo.t, SourceInfo.ix, im+1);
          } else {
            sprintf(filename, "%s.%.4d.%.2d.cgmms.%.2d.inverted", SourceInfo.basename, SourceInfo.nstore, SourceInfo.t, im+1);
          }
        }
        else {
          sprintf(filename, "%s.%.4d.%.5d.cgmms.%.2d.0", SourceInfo.basename, SourceInfo.nstore, SourceInfo.sample, im+1);
        }
        if(g_kappa != 0) {
          mul_r(temp_save, (2*g_kappa)*(2*g_kappa), temp_save, N);
        }

        append = !PropInfo.splitted;

        construct_writer(&writer, filename, append);

        if (PropInfo.splitted || SourceInfo.ix == index_start) {
          //Create the inverter info NOTE: always set to TWILSON=12 and 1 flavour (to be adjusted)
          inverterInfo = construct_paramsInverterInfo(err, iteration+1, 12, 1);
          if (im == -1) {
            inverterInfo->cgmms_mass = inverterInfo->mu;
          } else {
            inverterInfo->cgmms_mass = g_extra_masses[im]/(2 * inverterInfo->kappa);
          }
          write_spinor_info(writer, PropInfo.format, inverterInfo, append);
          //Create the propagatorFormat NOTE: always set to 1 flavour (to be adjusted)
          propagatorFormat = construct_paramsPropagatorFormat(cg_mms_default_precision, 1);
          write_propagator_format(writer, propagatorFormat);
          free(inverterInfo);
          free(propagatorFormat);
        }
        convert_lexic_to_eo(solver_field[2], solver_field[1], temp_save);
        write_spinor(writer, &solver_field[2], &solver_field[1], 1, 32);
        destruct_writer(writer);
      }
      finalize_solver(solver_field, nr_sf);
      return(iteration+1);
    }

    /* Compute beta_cg(i+1) = (r(i+1),r(i+1))/(r(i),r(i))
       Compute p(i+1) = r(i+1) + beta(i+1)*p(i)  */
    beta_cg = err/normsq;
    assign_mul_add_r(solver_field[2], beta_cg, solver_field[1], N);
    normsq = err;

    /* Compute betas(i+1) = beta_cg(i)*(zita(i+1)*alphas(i))/(zita(i)*alpha_cg(i))
       Compute ps(i+1) = zita(i+1)*r(i+1) + betas(i+1)*ps(i)  */
    for(im = 0; im < g_no_extra_masses; im++) {
      betas[im] = beta_cg*zita[im]*alphas[im]/(zitam1[im]*alpha_cg);
      assign_mul_add_mul_r(ps_mms_solver[im], solver_field[1], betas[im], zita[im], N);
    }
  }
  assign(P, solver_field[0], N);
  g_sloppy_precision = 0;
  finalize_solver(solver_field, nr_sf);
  return(-1);
}
Example #2
0
/* P output = solution , Q input = source */
int cg_mms_tm(spinor ** const P, spinor * const Q,
		 solver_params_t * solver_params, double * cgmms_reached_prec) {

  static double normsq, pro, err, squarenorm;
  int iteration, N = solver_params->sdim, no_shifts = solver_params->no_shifts;
  static double gamma, alpham1;
  spinor ** solver_field = NULL;
  double atime, etime;
  const int nr_sf = 3;

  atime = gettime();
  if(solver_params->sdim == VOLUME) {
    init_solver_field(&solver_field, VOLUMEPLUSRAND, nr_sf);
    init_mms_tm(no_shifts, VOLUMEPLUSRAND);
  } 
  else {
    init_solver_field(&solver_field, VOLUMEPLUSRAND/2, nr_sf); 
    init_mms_tm(no_shifts, VOLUMEPLUSRAND/2);
  } 

  zero_spinor_field(P[0], N);
  alphas[0] = 1.0;
  betas[0] = 0.0;
  sigma[0] = solver_params->shifts[0]*solver_params->shifts[0];
  if(g_proc_id == 0 && g_debug_level > 1) printf("# CGMMS: shift %d is %e\n", 0, sigma[0]);

  for(int im = 1; im < no_shifts; im++) {
    sigma[im] = solver_params->shifts[im]*solver_params->shifts[im] - sigma[0];
    if(g_proc_id == 0 && g_debug_level > 1) printf("# CGMMS: shift %d is %e\n", im, sigma[im]);
    // these will be the result spinor fields
    zero_spinor_field(P[im], N);
    // these are intermediate fields
    assign(ps_mms_solver[im-1], Q, N);
    zitam1[im] = 1.0;
    zita[im] = 1.0;
    alphas[im] = 1.0;
    betas[im] = 0.0;
  }

  /* currently only implemented for P=0 */
  squarenorm = square_norm(Q, N, 1);
  /* if a starting solution vector equal to zero is chosen */
  assign(solver_field[0], Q, N);
  assign(solver_field[1], Q, N);
  normsq = squarenorm;

  /* main loop */
  for(iteration = 0; iteration < solver_params->max_iter; iteration++) {

    /*   Q^2*p and then (p,Q^2*p)  */
    solver_params->M_psi(solver_field[2], solver_field[1]);
    // add the zero's shift
    assign_add_mul_r(solver_field[2], solver_field[1], sigma[0], N);
    pro = scalar_prod_r(solver_field[1], solver_field[2], N, 1);

    /* For the update of the coeff. of the shifted pol. we need alphas[0](i-1) and alpha_cg(i).
       This is the reason why we need this double definition of alpha */
    alpham1 = alphas[0];

    /* Compute alphas[0](i+1) */
    alphas[0] = normsq/pro;
    for(int im = 1; im < no_shifts; im++) {

      /* Now gamma is a temp variable that corresponds to zita(i+1) */ 
      gamma = zita[im]*alpham1/(alphas[0]*betas[0]*(1.-zita[im]/zitam1[im]) 
				+ alpham1*(1.+sigma[im]*alphas[0]));

      // Now zita(i-1) is put equal to the old zita(i)
      zitam1[im] = zita[im];
      // Now zita(i+1) is updated 
      zita[im] = gamma;
      // Update of alphas(i) = alphas[0](i)*zita(i+1)/zita(i) 
      alphas[im] = alphas[0]*zita[im]/zitam1[im];

      // Compute xs(i+1) = xs(i) + alphas(i)*ps(i) 
      assign_add_mul_r(P[im], ps_mms_solver[im-1], alphas[im], N); 
      // in the CG the corrections are decreasing with the iteration number increasing
      // therefore, we can remove shifts when the norm of the correction vector
      // falls below a threshold
      // this is useful for computing time and needed, because otherwise
      // zita might get smaller than DOUBLE_EPS and, hence, zero
      if(iteration > 0 && (iteration % 20 == 0) && (im == no_shifts-1)) {
	double sn = square_norm(ps_mms_solver[im-1], N, 1);
	if(alphas[no_shifts-1]*alphas[no_shifts-1]*sn <= solver_params->squared_solver_prec) {
	  no_shifts--;
	  if(g_debug_level > 2 && g_proc_id == 0) {
	    printf("# CGMMS: at iteration %d removed one shift, %d remaining\n", iteration, no_shifts);
      	  }
	}
      }
    }
    
    /*  Compute x_(i+1) = x_i + alphas[0](i+1) p_i    */
    assign_add_mul_r(P[0], solver_field[1],  alphas[0], N);
    /*  Compute r_(i+1) = r_i - alphas[0](i+1) Qp_i   */
    assign_add_mul_r(solver_field[0], solver_field[2], -alphas[0], N);

    /* Check whether the precision eps_sq is reached */

    err = square_norm(solver_field[0], N, 1);

    if(g_debug_level > 2 && g_proc_id == g_stdio_proc) {
      printf("# CGMMS iteration: %d residue: %g\n", iteration, err); fflush( stdout );
    }

    if( ((err <= solver_params->squared_solver_prec) && (solver_params->rel_prec == 0)) ||
        ((err <= solver_params->squared_solver_prec*squarenorm) && (solver_params->rel_prec > 0)) ||
        (iteration == solver_params->max_iter -1) ) {
      /* FIXME temporary output of precision until a better solution can be found */
      *cgmms_reached_prec = err;
      break;
    }

    /* Compute betas[0](i+1) = (r(i+1),r(i+1))/(r(i),r(i))
       Compute p(i+1) = r(i+1) + beta(i+1)*p(i)  */
    betas[0] = err/normsq;
    assign_mul_add_r(solver_field[1], betas[0], solver_field[0], N);
    normsq = err;

    /* Compute betas(i+1) = betas[0](i+1)*(zita(i+1)*alphas(i))/(zita(i)*alphas[0](i))
       Compute ps(i+1) = zita(i+1)*r(i+1) + betas(i+1)*ps(i)  */
    for(int im = 1; im < no_shifts; im++) {
      betas[im] = betas[0]*zita[im]*alphas[im]/(zitam1[im]*alphas[0]);
      assign_mul_add_mul_r(ps_mms_solver[im-1], solver_field[0], betas[im], zita[im], N);
    }
  }
  etime = gettime();
  g_sloppy_precision = 0;
  if(iteration == solver_params->max_iter -1) iteration = -1;
  else iteration++;
  if(g_debug_level > 0 && g_proc_id == 0) {
    printf("# CGMMS (%d shifts): iter: %d eps_sq: %1.4e %1.4e t/s\n", solver_params->no_shifts, iteration, solver_params->squared_solver_prec, etime - atime); 
  }
  
  finalize_solver(solver_field, nr_sf);
  return(iteration);
}