void GeomData::calculate_CDL() {
    int i,dom, row;
    const int* indices = NULL;

    // elements' coordinates
    const double* coords[4] = {NULL,NULL,NULL,NULL};

    // vector created over elements' edges
    int num_edges = 3*(dim-1);
    double* vectors[6];
    for (i=0; i<num_edges; i++) {
        vectors[i] = new double[dim];
    }

    // indices to automate edge vectors creation
    int idx[6][2] = {{0,1},{1,2},{2,0},{0,3},{1,3},{2,3}};

    // Auxiliary variable
    int pos = dim+1;

    int k = 0;
    for (dom=0; dom<_ndom; dom++) {
        int nelements = numDomElem[dom];

        // loop over domains' elements
        for (row=0; row<nelements; row++) {
            getElement(dom,row,indices);

            // get vertices coordinates
            for (i=0; i<pos; i++) {
                getCoordinates(indices[i+pos],coords[i]);
            }

            // create edge vectors
            for (i=0; i<num_edges; i++) {
                const double* vtx1 = coords[ idx[i][0] ];
                const double* vtx2 = coords[ idx[i][1] ];
                for (int j=0; j<dim; j++) {
                    (vectors[i])[j] = vtx1[j] - vtx2[j];
                }
            }

            // vectors lengths summation
            for (i=0; i<num_edges; i++) {
                elem_CDL[k] = sqrt( inner_product(vectors[i],vectors[i],dim) );
            }

            // take average lenght
            elem_CDL[k] /= pos;
            k++;
        }
    }
    for (i=0; i<num_edges; i++) {
        delete[] vectors[i];
        vectors[i] = 0;
    }
}
Example #2
0
File: ex9.c Project: reinka/coding
int main(void)
{
	double a[N]={1, 2, 3}, b[N]={1, 2, 3}, *p = a, *q = b;

	printf("%f\n", inner_product(p, q, N));


	return 0;
}
void innerproductTest() {
    std::cout << "inner product ... ";
    std::vector<std::complex<double>> x = {1,2,3,4};
    std::vector<std::complex<double>> y = {1,std::complex<double>(0,1),1,std::complex<double>(0,1)};
    std::complex<double> expected = std::complex<double>(4,-6);
    bool pass = std::abs(expected - inner_product(x,y)) < 1e-8;
    if(pass) std::cout << "PASS" << std::endl;
    else std::cout << "FAIL" << std::endl;
}
Example #4
0
/*solution saved in b */
void conjugate_gradient(sparse_matrix A, double *b, int size) {
	double *x, *r, *p, *Ap, *aux, rnew, rold, alfa;
	int i;

    x = (double*) malloc(size*sizeof(double));
    r = (double*) malloc(size*sizeof(double));
    p = (double*) malloc(size*sizeof(double));
    Ap = (double*) malloc(size*sizeof(double));
    aux = (double*) malloc(size*sizeof(double));

	for (i = 0; i < size; i ++) {
		x[i] = 0;
		r[i] = b[i];
		p[i] = b[i];
	}

	rold = inner_product(r, r, size);
    /* result of operations from all void functions used here are stored in the last argument */
	while (1) {
		matrix_vector_product(A, p, Ap);
		alfa = rold / inner_product(p, Ap, size); /*step length*/
		vector_scalar_product(p, alfa, size, aux); 
		vector_sum(x, aux, size, x);
		vector_scalar_product(Ap, alfa, size, aux);
		vector_subtraction(r, aux, size, r);
		rnew = inner_product(r, r, size);
		if (sqrt(rnew) < E)
                        break;
                vector_scalar_product(p, rnew / rold, size, p);
                vector_sum(p, r, size, p);
		rold = rnew;
	}

	for (i = 0; i < size; i ++) {
		b[i] = x[i];
	}

	free(x);
	free(r);
	free(p);
	free(Ap);
	free(aux);
}
Example #5
0
    double sPredModule::solveCoef(double wrss) {
	Rcpp::NumericMatrix
	    cc = d_fac.solve(CHOLMOD_L, d_fac.solve(CHOLMOD_P, d_Vtr));
	double ans = sqrt(inner_product(cc.begin(), cc.end(),
					cc.begin(), double())/wrss);
	Rcpp::NumericMatrix
	    bb = d_fac.solve(CHOLMOD_Pt, d_fac.solve(CHOLMOD_Lt, cc));
	copy(bb.begin(), bb.end(), d_coef.begin());
	return ans;
    }
Example #6
0
    /** 
     * Solve (V'V)coef = Vtr for coef.
     *
     * @param wrss weighted residual sum of squares (defaults to 1.)
     * @return convergence criterion
     */
    double dPredModule::solveCoef(double wrss) {
	if (d_coef.size() == 0) return 0.;
	copy(d_Vtr.begin(), d_Vtr.end(), d_coef.begin());
	d_fac.update(d_V);
	d_fac.dtrtrs('T', d_coef.begin()); // solve R'c = Vtr
	double ans = sqrt(inner_product(d_coef.begin(), d_coef.end(),
					d_coef.begin(), double())/wrss);
	d_fac.dtrtrs('N', d_coef.begin()); // solve R beta = c;
	return ans;
    }
Example #7
0
double blok::deviation(){
	double total = std::accumulate(content.begin(), content.end(), 0);
	double mean = total / content.size();
	vector<unsigned int> zero_mean( content );
	transform( zero_mean.begin(), zero_mean.end(), zero_mean.begin(),bind2nd( minus<double>(), mean ) );

	double deviation = inner_product( zero_mean.begin(),zero_mean.end(), zero_mean.begin(), 0.0 );
	deviation = sqrt( deviation / ( content.size() - 1 ) );
	return deviation;
}
Example #8
0
int main(int argc, char *argv[])
{
   double a[5] = {1,2,3,4,5};
   double b[5] = {1,2,3,4,5};
   
   printf("The sum of the product of the two arrays is %f\n", inner_product(a,b,5));
   
   getchar();
   getchar();
   return 0;
}
Example #9
0
	const vector DOK::conjugate_gradient(const vector& b, vector& x, size_t max_iter, double eps) const {
//		vector x;
		vector r = b - *this * x;
		vector p = r;
		double rsold = inner_product(r, r);

		size_t i;
		for(i = 0; i < max_iter && rsold > eps; ++i) {
			vector Ap = *this * p;
			double alpha = rsold / inner_product(p, Ap);
			x += alpha * p;
			r -= alpha * Ap;
			double rsnew = inner_product(r, r);
			p *= rsnew / rsold;
			p += r;
			rsold = rsnew;
		}
		if (i == max_iter)
			printf("exce\n");
		return x;
	}
Example #10
0
REAL CMetaModel::Test( const REAL* prInputs, const REAL* prOutputs, int count )
{
	vector<REAL> vcOutputs( GetOutputs() );

	//calculate the error function under the current weight
	REAL rError = 0;
	for( int i=0; i<count; i++ ){
		Predict( prInputs + i*GetInputs(), &vcOutputs[0] );
		rError += inner_product( vcOutputs.begin(), vcOutputs.end(), prOutputs, 0.0,
			plus<REAL>(), minus_pow<REAL>(2.0) ) / GetOutputs();
	}
	return rError/count;
}
Example #11
0
matrix1d calc_mean_var(matrix1d points) {
    double sum  = 0, mu = 0, sigma_sq = 0, sdev = 0, dev = 0;
    sum = accumulate(points.begin(), points.end(), 0.0);
    mu = sum / points.size();
    sdev = inner_product(points.begin(), points.end(), points.begin(), 0.0);
    sigma_sq = sdev/points.size() - mu*mu;

    matrix1d m_and_v;
    m_and_v.push_back(mu);
    m_and_v.push_back(sigma_sq);

    return m_and_v;
}
Example #12
0
void CRegionalMetaModel::ComputeDistance( vector< vector<REAL> >& vcInputs, vector<REAL>& vcPtCen, dist_pair_vector& vcDists )
{
	int nsize = vcInputs.size();
	vcDists.clear();
	vcDists.reserve( nsize );
	for( int i=0; i<nsize; i++ ){
		REAL dist = inner_product( vcInputs[i].begin(), vcInputs[i].end(), vcPtCen.begin(), 0.0,
			plus<REAL>(), diff_sqr<REAL>() );
		dist = sqrt(dist);
		vcDists.push_back( dist_pair(i, dist) );
	}
	sort( vcDists.begin(), vcDists.end(), op_dist_less() );
}
Example #13
0
static float _diff_disc_formfactor(Vertex *p, Element *e_src, Vertex *p_disc, float area, Vertex *normal, long process_id)
{
    Vertex vec_sd ;
    float dist_sq ;
    float fnorm ;
    float  cos_s, cos_d, angle_factor ;

    vec_sd.x = p_disc->x - p->x ;
    vec_sd.y = p_disc->y - p->y ;
    vec_sd.z = p_disc->z - p->z ;
    dist_sq = vec_sd.x*vec_sd.x + vec_sd.y*vec_sd.y + vec_sd.z*vec_sd.z ;

    fnorm = area / ((float)M_PI * dist_sq  + area) ;

    /* (2) Now, consider angle to the other patch from the normal. */
    normalize_vector( &vec_sd, &vec_sd ) ;
    cos_s =  inner_product( &vec_sd, &e_src->patch->plane_equ.n ) ;
    cos_d = -inner_product( &vec_sd, normal ) ;
    angle_factor = cos_s * cos_d ;

    /* Return the form factor */
    return( fnorm * angle_factor ) ;
}
Example #14
0
    Field<dim> lbfgs(
      const Functional& F,
      const Gradient& dF,
      const Field<dim>& phi_start,
      const unsigned int m,
      const double eps
    )
    {
      double cost_old = std::numeric_limits<double>::infinity();
      double cost = F(phi_start);

      Field<dim> phi0(phi_start);
      DualField<dim> df0 = dF(phi_start);
      const auto& discretization = phi0.get_discretization();

      // Create vectors for storing the last few differences of the guesses,
      // differences of the gradients, and the inverses of their inner products
      std::vector<Field<dim>> s(m, Field<dim>(discretization));
      std::vector<DualField<dim>> y(m, DualField<dim>(discretization));
      std::vector<double> rho(m);

      // As an initial guess, we will assume that the Hessian inverse is a
      // multiple of the inverse of the mass matrix
      double gamma = 1.0;

      for (unsigned int k = 0; std::abs(cost_old - cost)/cost > eps; ++k) {
        const Field<dim> p = -lbfgs_two_loop(df0, s, y, rho, gamma);
        const Field<dim> phi1 = line_search(F, phi0, df0, p, eps);
        const DualField<dim> df1 = dF(phi1);

        s[0] = phi1 - phi0;
        y[0] = df1 - df0;

        const double cos_angle = inner_product(y[0], s[0]);
        const double norm_y = norm(y[0]);
        rho[0] = 1.0 / cos_angle;
        gamma = cos_angle / (norm_y * norm_y);

        std::rotate(s.begin(), s.begin() + 1, s.end());
        std::rotate(y.begin(), y.begin() + 1, y.end());
        std::rotate(rho.begin(), rho.begin() + 1, rho.end());

        phi0 = phi1;
        df0 = df1;
        cost_old = cost;
        cost = F(phi0);
      }

      return phi0;
    }
Example #15
0
  inline Real mixed_product (const T1& v1,
                             const T2& v2,
                             const T3& v3,
                             T4& temp)
  {
    // sanity checks
    cf3_assert(v1.size() == 3);
    cf3_assert(v2.size() == 3);
    cf3_assert(v3.size() == 3);
    cf3_assert(temp.size() == 3);

    cross_product(v1, v2, temp);
    return inner_product(v3, temp);
  }
Example #16
0
// calculate linear interpolation of relative frequency estimates based on joint count and marginal counts
//unused for now; enable in config?
double LinearInterpolationFromCounts(vector<float> &joint_counts, vector<float> &marginals, vector<float> &multimodelweights)
{

  vector<float> p(marginals.size());

  for (size_t i=0; i < marginals.size(); i++) {
    if (marginals[i] != 0) {
      p[i] = joint_counts[i]/marginals[i];
    }
  }

  double p_weighted = inner_product(p.begin(), p.end(), multimodelweights.begin(), 0.0);

  return p_weighted;
}
Example #17
0
void update_vector(double *b, double **Q, int rows, int columns, double *gamma) {
	int i, k;
	double *u, factor;
	u = malloc((rows) * sizeof(double));
	for (k = 0; k < columns; k ++) {
		u[0] = 1;
		for (i = k + 1; i < rows; i ++)
			u[i - k] = Q[i][k];
	
		factor = gamma[k]*inner_product(u, b, rows, k);

		for (i = k; i < rows; i ++)
			b[i] -= factor*u[i - k];
	}
	free(u);
}
Example #18
0
//数值算法
void stl_numeric_algo(){
    double array[] = {-2,2,4,4,5};
    double array1[] = {2,3,4,5,6};
    vector<double> a(array,array + sizeof(array)/sizeof(double));
    vector<double> b(array1,array1 + sizeof(array1)/sizeof(double));
    vector<double> result(10);

    cout<<"accumulate func: "<<accumulate(a.begin(), a.end(), 0, minus<double>())<<endl;
    cout<<"inner product func: "<<inner_product(a.begin(),a.end(),b.begin(),0.0,plus<double>(),multiplies<double>())<<endl;
    adjacent_difference(a.begin(),a.end(),result.begin());
    cout<<"adjacent_difference : "<<result<<endl;
    partial_sum(result.begin(),result.end(),result.begin());
    cout<<"partial_sum : "<<result<<endl;
    ostream_iterator<double> myout(cout, " ");
    copy(result.begin(), result.end(), myout);
}
Example #19
0
 //------------------------------------------------------------------------------------
 void calcShadowMatrix(const float groundplane[],
                       const float lightpos[],
                       float shadowMatrix[])
 {
     float dot = inner_product(groundplane, groundplane+4, lightpos, 0.f);
     
     for(int y = 0; y < 4;++y) {
         for(int x = 0; x < 4; ++x) {
             
             shadowMatrix[y*4+x] = - groundplane[y]*lightpos[x];
             
             if (x == y) shadowMatrix[y*4+x] += dot;
         }
     }
     
 }
    virtual double
    energy( const typename domain_space_type::element_type & de,
            const typename dual_image_space_type::element_type & ie ) const
    {

        auto matrix = M_backend->newMatrix( _test=this->dualImageSpace(), _trial=this->domainSpace(), _pattern=M_pattern );
        sumAllMatrices( matrix, true );
        matrix->close();

        vector_ptrtype _v1( M_backend->newVector( _test=de.functionSpace() ) );
        *_v1 = de;_v1->close();
        vector_ptrtype _v2( M_backend->newVector( _test=ie.functionSpace() ) );
        *_v2 = ie;
        vector_ptrtype _v3( M_backend->newVector( _test=ie.functionSpace() ) );
        M_backend->prod( matrix, _v1, _v3 );
        return inner_product( _v2, _v3 );
    }
int main(int argc, char** argv)
{
    _();
    vec_as_string();
    vec_fill_and_remove();
    vec_not1();
    vec_bind2nd();
    verse_iterator_find_if();
    reverse_iterator_find_if();
    inner_product();
    descending_sort();
    deque_push_erase();
    deque_invalidate();
    deque_assign();

    return EXIT_SUCCESS;
}
Example #22
0
double correlation(const Cit &start1, const Cit &end1, const Cit &start2) {
  const auto end2 = start2 + distance(start1, end1);
  const auto mean1 = accumulate(start1, end1, 0.0) / distance(start1, end1);
  const auto mean2 = accumulate(start2, end2, 0.0) / distance(start2, end2);
  const auto numerator = inner_product(
      start1, end1, start2, 0.0, plus<double>(),
      [=](double a, double b) noexcept { return (a - mean1) * (b - mean2); });
  const auto squaredError1 =
      accumulate(start1, end1, 0.0, [mean1](double sum, double x) noexcept {
        return sum + (x - mean1) * (x - mean1);
      });
  const auto squaredError2 =
      accumulate(start2, end2, 0.0, [mean2](double sum, double x) noexcept {
        return sum + (x - mean2) * (x - mean2);
      });
  const auto denominator = sqrt(squaredError1) * sqrt(squaredError2);
  return numerator / denominator;
}
Example #23
0
int main(void)
{
	double a[N], b[N], n = 0, sum, *p;

	printf("Enter %d elements for array A: ", N);
	for (p = a; p < a + N; p++){
		scanf("%lf", p);
		n++;
	}
	printf("Enter %d elements for array B: ", N);
	for (p = b; p < b + N; p++){
		scanf("%lf", p);
	}

	sum = inner_product(a, b, n);
	printf("%lf\n", sum);
	return 0;
}
Example #24
0
double entropy(const Matrix3_3 &matrix) {
  array<double, 3> H;
  for (int i = 0; i < 3; i++) {
    const auto _row = row(matrix, i);
    array<double, 3> multipliedByLog;
    transform(begin(_row), end(_row), begin(multipliedByLog),
              [](double x) { return x * log(x) / log(2); });
    H[i] = accumulate(begin(multipliedByLog), end(multipliedByLog), 0.0);
  }

  array<double, 3> P;
  for (int i = 0; i < 3; i++) {
    const auto column = col(matrix, i);
    P[i] = accumulate(begin(column), end(column), 0.0);
  }

  return -inner_product(begin(P), end(P), begin(H), 0.0);
}
Example #25
0
void polarization(double * function_1, double left_endpoint, double right_endpoint, int num_points, double * integral){
		
	int flag = 1;
	int ii; 
	double beta = 1.0; 
	//defining the size of the interval(s). note this is num_points+1 because the interval can't start at zero. 
	double h = (right_endpoint - left_endpoint)/(num_points+1.0); 

	//allocating memory for new vector for X * some arbitrary vector.  
	double * psi_hat; 
	psi_hat = (double*)malloc(num_points*sizeof(double));

	X_operator(beta, num_points, right_endpoint, left_endpoint, psi_hat, function_1, flag); 

	inner_product(&function_1[0], &psi_hat[0], left_endpoint, right_endpoint, num_points, integral);   

	free(psi_hat);

}
Example #26
0
void Do_Statistics( std::vector < std::vector <double>> data) {
	std::cout << "Doing Stats" << std::endl;
	
	std::string rchange = "flat";

	std::ofstream statisticsOutputFile;
	statisticsOutputFile.open("Statistic_Output_" + rchange +".txt");

	std::vector<int> binCount;
	std::vector<double> typeAverage;

	std::vector<int> weights;

	double maxCellNumber = data.at(0).at(1);

	for(int i =0; i < data.size(); i++){
		weights.push_back(i);
	} 

	//Type average is the dot product between the 0:number_muts 
	//Bin count is counting the non zero bins

	for(int rows=0; rows < data.size(); rows++){

		auto countt = std::count(data.at(rows).begin()+1, data.at(rows).end(), 0); 
		binCount.push_back(data.at(rows).size() - 1 - countt);	

		double dotProduct = inner_product(data.at(rows).begin()+1, data.at(rows).end(), weights.begin(), 0)/maxCellNumber;
		typeAverage.push_back(dotProduct);

	} 


	//wirting to a file the r$i is for ggplot
	for(int j = 0; j < binCount.size(); j++){
		statisticsOutputFile << data.at(j).at(0) << "\t"  << typeAverage.at(j) << "\t" << binCount.at(j) << "\t" << rchange << std::endl;
	}

	statisticsOutputFile.close();

}
Example #27
0
//the compute distance is undertaken an overhaull. I prefere to compute the probability instead of the 
//euclidean distance.
void CRegionalMetaModel::ComputeDistance( vector< vector<REAL> >& mxInputs, vector<REAL>& vcPtCen, dist_pair_vector& vcDists )
{
	int rows = mxInputs.size();
	int cols = mxInputs.front().size();

	/*compute the center of the hyperecllipsoid*/
	vector<REAL> center(cols, 0.0);
	for( vector< vector<REAL> >::iterator iter=mxInputs.begin(); iter!=mxInputs.end(); iter++ )
		transform( center.begin(), center.end(), iter->begin(), center.begin(), plus<REAL>() );
	transform( center.begin(), center.end(), center.begin(), bind2nd(divides<REAL>(), rows) );

	/*compute the standard deviation of the columns*/
	//compute sum( (x-u)*(x-u) ) for each column
	vector<REAL> stds(cols, 0.0);
	for( int i=0; i<rows; i++ )
		for( int j=0; j<cols; j++ )stds[j] += sqr( center[j] - mxInputs[i][j] );
	
	//using compose function operator to do "sqrt( sum/N-1 )"
	transform( stds.begin(), stds.end(), stds.begin(), 
		compose_f_gx( 
			ptr_fun(sqrt), bind2nd(divides<double>(), rows-1) 
		)
	);

	/* compute the radius */
	REAL alpha = 1.5;
	vector<REAL> radius(cols);
	transform( stds.begin(), stds.end(), radius.begin(), bind2nd(multiplies<REAL>(), alpha) );
	for( i=0; i<cols; i++ )if( radius[i]<=0.0001 )radius[i]=0.0001;

	/* compute the distance for each point */
	vector<REAL> radius_sqr(cols);
	transform( radius.begin(), radius.end(), radius.begin(), radius_sqr.begin(), multiplies<REAL>() );
	for( i=0; i<rows; i++ ){
		vector<REAL> temp(cols);
		transform( mxInputs[i].begin(), mxInputs[i].end(), center.begin(), temp.begin(), diff_sqr<REAL>() );
		REAL distance = inner_product( temp.begin(), temp.end(), radius_sqr.begin(), 0.0, plus<REAL>(), divides<REAL>() );
		vcDists.push_back( dist_pair(i, distance) );
	}
	sort( vcDists.begin(), vcDists.end(), op_dist_less() );
}
Example #28
0
static void set_init_cond_magnt(double *B)
{
	for (int i = 0; i < N0;   i++)
	for (int k = 0; k < N2-1; k++)
	for (int j = 0; j < N1-1; j++) {
		const struct vector pos = {(double)i, (double)j+0.5, (double)k+0.5};

		// othnormal component
		const struct vector p_xyz = othnormal_position<c>(pos);
		const struct vector b_xyz = init_cond_magnt(p_xyz);

		// physical component vertical with the grid
		// Covariant basic vector is a member of coordinate transformation
		// matrix here.
		const double b = inner_product(
				covariant_basic_vector<c, c>(pos), b_xyz);

		// Convert to physical length.
		*magnt_flux<N1, N2>(i, j, k, B) =
				b * vector_length(contravariant_basic_vector<c, c>(pos));
	}
}
Example #29
0
static void set_init_cond_elect(double *E)
{
	for (int i = 0; i < N0-1; i++)
	for (int k = 0; k < N2;   k++)
	for (int j = 0; j < N1;   j++) {
		const struct vector pos = {(double)i+0.5, (double)j, (double)k};

		// othnormal component
		const struct vector p_xyz = othnormal_position<c>(pos);
		const struct vector e_xyz = init_cond_elect(p_xyz);

		// unphysical components along to the grid.
		// Contravariant basic vector is a member of coordinate transformation
		// matrix here.
		const double e = inner_product(
				contravariant_basic_vector<c, c>(pos), e_xyz);

		// Convert to physical length.
		*elect_field<N1, N2>(i, j, k, E) =
				e * vector_length(covariant_basic_vector<c, c>(pos));
	}
}
// calculate a unit vector normal to each external face
void GeomData::calculate_extFaceVersor(pMesh theMesh) {
    int row = 0;
    double dij[3], norma;
    int ndom = getNumDomains();
    for (int i=0; i<ndom; i++) {
        FIter fit = M_faceIter(theMesh);
        while ( pFace face = FIter_next(fit) ) {

            // only external boudanry faces
            if (F_numRegions(face)==1) {
                if (faceBelongToDomain(face,domainList[i])) {
                    getDij(face,domainList[i],dij);
                    norma = sqrt( inner_product(dij,dij,3) );
                    versor_ExtBdryElem[0].setValue(row,0,dij[0]/norma);
                    versor_ExtBdryElem[0].setValue(row,1,dij[1]/norma);
                    versor_ExtBdryElem[0].setValue(row,2,dij[2]/norma);
                    row++;
                }
            }
        }
        FIter_delete(fit);
    }
}