Example #1
0
static void check_vma_struct(void)
{
	size_t nr_used_pages_store = nr_used_pages();
	size_t slab_allocated_store = slab_allocated();

	struct mm_struct *mm = mm_create();
	assert(mm != NULL);

	int step1 = RB_MIN_MAP_COUNT * 2, step2 = step1 * 10;
//	int step1 = 2, step2 = step1 * 10;

	int i;
	for (i = step1; i >= 1; i--) {
		struct vma_struct *vma = vma_create(i * 5, i * 5 + 2, 0);
		assert(vma != NULL);
		insert_vma_struct(mm, vma);
	}

	for (i = step1 + 1; i <= step2; i++) {
		struct vma_struct *vma = vma_create(i * 5, i * 5 + 2, 0);
		assert(vma != NULL);
		insert_vma_struct(mm, vma);
	}

	list_entry_t *le = list_next(&(mm->mmap_list));

	for (i = 1; i <= step2; i++) {
		assert(le != &(mm->mmap_list));
		struct vma_struct *mmap = le2vma(le, list_link);
		assert(mmap->vm_start == i * 5 && mmap->vm_end == i * 5 + 2);
		le = list_next(le);
	}

	for (i = 5; i <= 5 * step2; i+=5) {
		struct vma_struct *vma1 = find_vma(mm, i);
		assert(vma1 != NULL);
		struct vma_struct *vma2 = find_vma(mm, i+1);
		assert(vma2 != NULL);
		struct vma_struct *vma3 = find_vma(mm, i+2);
		assert(vma3 == NULL);
		struct vma_struct *vma4 = find_vma(mm, i+3);
		assert(vma4 == NULL);
		struct vma_struct *vma5 = find_vma(mm, i+4);
		assert(vma5 == NULL);

		assert(vma1->vm_start == i  && vma1->vm_end == i  + 2);
		assert(vma2->vm_start == i  && vma2->vm_end == i  + 2);
	}

	for (i =4; i>=0; i--) {
		struct vma_struct *vma_below_5= find_vma(mm,i);
		assert(vma_below_5 == NULL);
	}
	mm_destroy(mm);

	__CHECK_MEMORY_LEAK();

	kprintf("check_vma_struct() succeeded!\n");
}
Example #2
0
static void
check_vma_struct(void) {
    size_t nr_free_pages_store = nr_free_pages();

    struct mm_struct *mm = mm_create();
    assert(mm != NULL);

    int step1 = 10, step2 = step1 * 10;

    int i;
    for (i = step1; i >= 1; i --) {
        struct vma_struct *vma = vma_create(i * 5, i * 5 + 2, 0);
        assert(vma != NULL);
        insert_vma_struct(mm, vma);
    }

    for (i = step1 + 1; i <= step2; i ++) {
        struct vma_struct *vma = vma_create(i * 5, i * 5 + 2, 0);
        assert(vma != NULL);
        insert_vma_struct(mm, vma);
    }

    list_entry_t *le = list_next(&(mm->mmap_list));

    for (i = 1; i <= step2; i ++) {
        assert(le != &(mm->mmap_list));
        struct vma_struct *mmap = le2vma(le, list_link);
        assert(mmap->vm_start == i * 5 && mmap->vm_end == i * 5 + 2);
        le = list_next(le);
    }

    for (i = 5; i <= 5 * step2; i +=5) {
        struct vma_struct *vma1 = find_vma(mm, i);
        assert(vma1 != NULL);
        struct vma_struct *vma2 = find_vma(mm, i+1);
        assert(vma2 != NULL);
        struct vma_struct *vma3 = find_vma(mm, i+2);
        assert(vma3 == NULL);
        struct vma_struct *vma4 = find_vma(mm, i+3);
        assert(vma4 == NULL);
        struct vma_struct *vma5 = find_vma(mm, i+4);
        assert(vma5 == NULL);

        assert(vma1->vm_start == i  && vma1->vm_end == i  + 2);
        assert(vma2->vm_start == i  && vma2->vm_end == i  + 2);
    }

    for (i =4; i>=0; i--) {
        struct vma_struct *vma_below_5= find_vma(mm,i);
        if (vma_below_5 != NULL ) {
           cprintf("vma_below_5: i %x, start %x, end %x\n",i, vma_below_5->vm_start, vma_below_5->vm_end); 
        }
        assert(vma_below_5 == NULL);
    }

    mm_destroy(mm);

    cprintf("check_vma_struct() succeeded!\n");
}
Example #3
0
File: vmm.c Project: jefjin/ucore
static void
check_vma_struct(void) {
    size_t nr_free_pages_store = nr_free_pages();
    size_t slab_allocated_store = slab_allocated();

    struct mm_struct *mm = mm_create();
    assert(mm != NULL);

    int step1 = RB_MIN_MAP_COUNT * 2, step2 = step1 * 10;

    int i;
    for (i = step1; i >= 0; i --) {
        struct vma_struct *vma = vma_create(i * 5, i * 5 + 2, 0);
        assert(vma != NULL);
        insert_vma_struct(mm, vma);
    }

    for (i = step1 + 1; i <= step2; i ++) {
        struct vma_struct *vma = vma_create(i * 5, i * 5 + 2, 0);
        assert(vma != NULL);
        insert_vma_struct(mm, vma);
    }

    list_entry_t *le = list_next(&(mm->mmap_list));

    for (i = 0; i <= step2; i ++) {
        assert(le != &(mm->mmap_list));
        struct vma_struct *mmap = le2vma(le, list_link);
        assert(mmap->vm_start == i * 5 && mmap->vm_end == i * 5 + 2);
        le = list_next(le);
    }

    for (i = 0; i < 5 * step2 + 2; i ++) {
        struct vma_struct *vma = find_vma(mm, i);
        assert(vma != NULL);
        int j = i / 5;
        if (i >= 5 * j + 2) {
            j ++;
        }
        assert(vma->vm_start == j * 5 && vma->vm_end == j * 5 + 2);
    }

    mm_destroy(mm);

    assert(nr_free_pages_store == nr_free_pages());
    assert(slab_allocated_store == slab_allocated());

    cprintf("check_vma_struct() succeeded!\n");
}
Example #4
0
int
mm_map(struct mm_struct *mm, uintptr_t addr, size_t len, uint32_t vm_flags,
       struct vma_struct **vma_store) {
    uintptr_t start = ROUNDDOWN(addr, PGSIZE), end = ROUNDUP(addr + len, PGSIZE);
    if (!USER_ACCESS(start, end)) {
        return -E_INVAL;
    }

    assert(mm != NULL);

    int ret = -E_INVAL;

    struct vma_struct *vma;
    if ((vma = find_vma(mm, start)) != NULL && end > vma->vm_start) {
        goto out;
    }
    ret = -E_NO_MEM;

    if ((vma = vma_create(start, end, vm_flags)) == NULL) {
        goto out;
    }
    insert_vma_struct(mm, vma);
    if (vma_store != NULL) {
        *vma_store = vma;
    }
    ret = 0;

out:
    return ret;
}
Example #5
0
File: vmm.c Project: jefjin/ucore
int
dup_mmap(struct mm_struct *to, struct mm_struct *from) {
    assert(to != NULL && from != NULL);
    list_entry_t *list = &(from->mmap_list), *le = list;
    while ((le = list_prev(le)) != list) {
        struct vma_struct *vma, *nvma;
        vma = le2vma(le, list_link);
        nvma = vma_create(vma->vm_start, vma->vm_end, vma->vm_flags);
        if (nvma == NULL) {
            return -E_NO_MEM;
        }
        else {
            if (vma->vm_flags & VM_SHARE) {
                nvma->shmem = vma->shmem;
                nvma->shmem_off = vma->shmem_off;
                shmem_ref_inc(vma->shmem);
            }
        }
        insert_vma_struct(to, nvma);
        bool share = (vma->vm_flags & VM_SHARE);
        if (copy_range(to->pgdir, from->pgdir, vma->vm_start, vma->vm_end, share) != 0) {
            return -E_NO_MEM;
        }
    }
    return 0;
}
Example #6
0
// check_pgfault - check correctness of pgfault handler
static void check_pgfault(void)
{
#ifdef UCONFIG_CHECK_PGFAULT
	kprintf("starting check_pgfault()\n");
	size_t nr_used_pages_store = nr_used_pages();
	size_t slab_allocated_store = slab_allocated();

	check_mm_struct = mm_create();
	assert(check_mm_struct != NULL);

	struct mm_struct *mm = check_mm_struct;
	pgd_t *pgdir = mm->pgdir = init_pgdir_get();
	assert(pgdir[PGX(TEST_PAGE)] == 0);

	struct vma_struct *vma =
	    vma_create(TEST_PAGE, TEST_PAGE + PTSIZE, VM_WRITE);
	assert(vma != NULL);

	insert_vma_struct(mm, vma);
	uintptr_t addr = TEST_PAGE + 0x100;
	assert(find_vma(mm, addr) == vma);

	int i, sum = 0;
	for (i = 0; i < 100; i++) {
		*(char *)(addr + i) = i;
		sum += i;
	}
	for (i = 0; i < 100; i++) {
		sum -= *(char *)(addr + i);
	}
	assert(sum == 0);

	page_remove(pgdir, ROUNDDOWN(addr, PGSIZE));
#if PMXSHIFT != PUXSHIFT
	free_page(pa2page(PMD_ADDR(*get_pmd(pgdir, addr, 0))));
#endif
#if PUXSHIFT != PGXSHIFT
	free_page(pa2page(PUD_ADDR(*get_pud(pgdir, addr, 0))));
#endif
	free_page(pa2page(PGD_ADDR(*get_pgd(pgdir, addr, 0))));
	pgdir[PGX(TEST_PAGE)] = 0;

	mm->pgdir = NULL;
	mm_destroy(mm);
	check_mm_struct = NULL;

	assert(nr_used_pages_store == nr_used_pages());
	assert(slab_allocated_store == slab_allocated());

	kprintf("check_pgfault() succeeded!\n");
#endif
}
Example #7
0
File: vmm.c Project: spinlock/ucore
// check_pgfault - check correctness of pgfault handler
static void
check_pgfault(void) {
    size_t nr_free_pages_store = nr_free_pages();
    size_t slab_allocated_store = slab_allocated();

    check_mm_struct = mm_create();
    assert(check_mm_struct != NULL);

    struct mm_struct *mm = check_mm_struct;
    pgd_t *pgdir = mm->pgdir = boot_pgdir;
    assert(pgdir[0] == 0);

    struct vma_struct *vma = vma_create(0, PTSIZE, VM_WRITE);
    assert(vma != NULL);

    insert_vma_struct(mm, vma);

    uintptr_t addr = 0x100;
    assert(find_vma(mm, addr) == vma);

    int i, sum = 0;
    for (i = 0; i < 100; i ++) {
        *(char *)(addr + i) = i;
        sum += i;
    }
    for (i = 0; i < 100; i ++) {
        sum -= *(char *)(addr + i);
    }
    assert(sum == 0);

    page_remove(pgdir, ROUNDDOWN(addr, PGSIZE));
    free_page(pa2page(PMD_ADDR(*get_pmd(pgdir, addr, 0))));
    free_page(pa2page(PUD_ADDR(*get_pud(pgdir, addr, 0))));
    free_page(pa2page(PGD_ADDR(*get_pgd(pgdir, addr, 0))));
    pgdir[0] = 0;

    mm->pgdir = NULL;
    mm_destroy(mm);
    check_mm_struct = NULL;

    assert(nr_free_pages_store == nr_free_pages());
    assert(slab_allocated_store == slab_allocated());

    cprintf("check_pgfault() succeeded!\n");
}
Example #8
0
// check_pgfault - check correctness of pgfault handler
static void
check_pgfault(void) {
    size_t nr_free_pages_store = nr_free_pages();

    check_mm_struct = mm_create();
    assert(check_mm_struct != NULL);

    struct mm_struct *mm = check_mm_struct;
    pde_t *pgdir = mm->pgdir = boot_pgdir;
    assert(pgdir[0] == 0);

    struct vma_struct *vma = vma_create(0, PTSIZE, VM_WRITE);
    assert(vma != NULL);

    insert_vma_struct(mm, vma);

    uintptr_t addr = 0x100;
    assert(find_vma(mm, addr) == vma);

    int i, sum = 0;
    for (i = 0; i < 100; i ++) {
        // cprintf("%d\n", i);
        *(char *)(addr + i) = i;
        sum += i;
    }
    // assert(0);
    for (i = 0; i < 100; i ++) {
        sum -= *(char *)(addr + i);
    }
    assert(sum == 0);

    page_remove(pgdir, ROUNDDOWN(addr, PGSIZE));
    free_page(pde2page(pgdir[0]));
    pgdir[0] = 0;

    mm->pgdir = NULL;
    mm_destroy(mm);
    check_mm_struct = NULL;

    assert(nr_free_pages_store == nr_free_pages());

    cprintf("check_pgfault() succeeded!\n");
}
Example #9
0
File: vmm.c Project: jefjin/ucore
int
mm_brk(struct mm_struct *mm, uintptr_t addr, size_t len) {
    uintptr_t start = ROUNDDOWN(addr, PGSIZE), end = ROUNDUP(addr + len, PGSIZE);
    if (!USER_ACCESS(start, end)) {
        return -E_INVAL;
    }

    int ret;
    if ((ret = mm_unmap(mm, start, end - start)) != 0) {
        return ret;
    }
    uint32_t vm_flags = VM_READ | VM_WRITE;
    struct vma_struct *vma = find_vma(mm, start - 1);
    if (vma != NULL && vma->vm_end == start && vma->vm_flags == vm_flags) {
        vma->vm_end = end;
        return 0;
    }
    if ((vma = vma_create(start, end, vm_flags)) == NULL) {
        return -E_NO_MEM;
    }
    insert_vma_struct(mm, vma);
    return 0;
}
Example #10
0
static void check_swap(void)
{
	//backup mem env
	int ret, count = 0, total = 0, i;
	list_entry_t *le = &free_list;
	while ((le = list_next(le)) != &free_list)
	{
		struct Page *p = le2page(le, page_link);
		assert(PageProperty(p));
		count++, total += p->property;
	}
	assert(total == nr_free_pages());
	cprintf("BEGIN check_swap: count %d, total %d\n", count, total);

	//now we set the phy pages env
	struct mm_struct *mm = mm_create();
	assert(mm != NULL);

	extern struct mm_struct *check_mm_struct;
	assert(check_mm_struct == NULL);

	check_mm_struct = mm;

	pde_t *pgdir = mm->pgdir = boot_pgdir;
	assert(pgdir[0] == 0);

	struct vma_struct *vma = vma_create(BEING_CHECK_VALID_VADDR,
			CHECK_VALID_VADDR, VM_WRITE | VM_READ);
	assert(vma != NULL);

	insert_vma_struct(mm, vma);

	//setup the temp Page Table vaddr 0~4MB
	cprintf("setup Page Table for vaddr 0X1000, so alloc a page\n");
	pte_t *temp_ptep = NULL;
	temp_ptep = get_pte(mm->pgdir, BEING_CHECK_VALID_VADDR, 1);
	assert(temp_ptep!= NULL);
	cprintf("setup Page Table vaddr 0~4MB OVER!\n");

	for (i = 0; i < CHECK_VALID_PHY_PAGE_NUM; i++)
	{
		check_rp[i] = alloc_page();
		assert(check_rp[i] != NULL);
		assert(!PageProperty(check_rp[i]));
	}
	list_entry_t free_list_store = free_list;
	list_init(&free_list);
	assert(list_empty(&free_list));

	//assert(alloc_page() == NULL);

	unsigned int nr_free_store = nr_free;
	nr_free = 0;
	for (i = 0; i < CHECK_VALID_PHY_PAGE_NUM; i++)
	{
		free_pages(check_rp[i], 1);
	}
	assert(nr_free==CHECK_VALID_PHY_PAGE_NUM);

	cprintf("set up init env for check_swap begin!\n");
	//setup initial vir_page<->phy_page environment for page relpacement algorithm

	pgfault_num = 0;

	check_content_set();
	assert(nr_free == 0);
	for (i = 0; i < MAX_SEQ_NO; i++)
		swap_out_seq_no[i] = swap_in_seq_no[i] = -1;

	for (i = 0; i < CHECK_VALID_PHY_PAGE_NUM; i++)
	{
		check_ptep[i] = 0;
		check_ptep[i] = get_pte(pgdir, (i + 1) * 0x1000, 0);
		//cprintf("i %d, check_ptep addr %x, value %x\n", i, check_ptep[i], *check_ptep[i]);
		assert(check_ptep[i] != NULL);
		assert(pte2page(*check_ptep[i]) == check_rp[i]);
		assert((*check_ptep[i] & PTE_P));
	}
	cprintf("set up init env for check_swap over!\n");
	// now access the virt pages to test  page relpacement algorithm
	ret = check_content_access();
	assert(ret == 0);

	//restore kernel mem env
	for (i = 0; i < CHECK_VALID_PHY_PAGE_NUM; i++)
	{
		free_pages(check_rp[i], 1);
	}

	//free_page(pte2page(*temp_ptep));
	free_page(pde2page(pgdir[0]));
	pgdir[0] = 0;
	mm->pgdir = NULL;
	mm_destroy(mm);
	check_mm_struct = NULL;

	nr_free = nr_free_store;
	free_list = free_list_store;

	le = &free_list;
	while ((le = list_next(le)) != &free_list)
	{
		struct Page *p = le2page(le, page_link);
		count--, total -= p->property;
	}
	cprintf("count is %d, total is %d\n", count, total);
	//assert(count == 0);

	cprintf("check_swap() succeeded!\n");
}
Example #11
0
// check_swap - check the correctness of swap & page replacement algorithm
static void
check_swap(void) {
    size_t nr_used_pages_store = nr_used_pages();
    size_t slab_allocated_store = slab_allocated();

    size_t offset;
    for (offset = 2; offset < max_swap_offset; offset ++) {
        mem_map[offset] = 1;
    }

    struct mm_struct *mm = mm_create();
    assert(mm != NULL);

    extern struct mm_struct *check_mm_struct;
    assert(check_mm_struct == NULL);

    check_mm_struct = mm;

    pgd_t *pgdir = mm->pgdir = init_pgdir_get();
    assert(pgdir[PGX(TEST_PAGE)] == 0);

    struct vma_struct *vma = vma_create(TEST_PAGE, TEST_PAGE + PTSIZE, VM_WRITE | VM_READ);
    assert(vma != NULL);

    insert_vma_struct(mm, vma);

    struct Page *rp0 = alloc_page(), *rp1 = alloc_page();
    assert(rp0 != NULL && rp1 != NULL);

    pte_perm_t perm;
	ptep_unmap (&perm);
	ptep_set_u_write(&perm);
    int ret = page_insert(pgdir, rp1, TEST_PAGE, perm);
    assert(ret == 0 && page_ref(rp1) == 1);

    page_ref_inc(rp1);
    ret = page_insert(pgdir, rp0, TEST_PAGE, perm);
    assert(ret == 0 && page_ref(rp1) == 1 && page_ref(rp0) == 1);

    // check try_alloc_swap_entry

    swap_entry_t entry = try_alloc_swap_entry();
    assert(swap_offset(entry) == 1);
    mem_map[1] = 1;
    assert(try_alloc_swap_entry() == 0);

    // set rp1, Swap, Active, add to hash_list, active_list

    swap_page_add(rp1, entry);
    swap_active_list_add(rp1);
    assert(PageSwap(rp1));

    mem_map[1] = 0;
    entry = try_alloc_swap_entry();
    assert(swap_offset(entry) == 1);
    assert(!PageSwap(rp1));

    // check swap_remove_entry

    assert(swap_hash_find(entry) == NULL);
    mem_map[1] = 2;
    swap_remove_entry(entry);
    assert(mem_map[1] == 1);

    swap_page_add(rp1, entry);
    swap_inactive_list_add(rp1);
    swap_remove_entry(entry);
    assert(PageSwap(rp1));
    assert(rp1->index == entry && mem_map[1] == 0);

    // check page_launder, move page from inactive_list to active_list

    assert(page_ref(rp1) == 1);
    assert(nr_active_pages == 0 && nr_inactive_pages == 1);
    assert(list_next(&(inactive_list.swap_list)) == &(rp1->swap_link));

    page_launder();
    assert(nr_active_pages == 1 && nr_inactive_pages == 0);
    assert(PageSwap(rp1) && PageActive(rp1));

    entry = try_alloc_swap_entry();
    assert(swap_offset(entry) == 1);
    assert(!PageSwap(rp1) && nr_active_pages == 0);
    assert(list_empty(&(active_list.swap_list)));

    // set rp1 inactive again

    assert(page_ref(rp1) == 1);
    swap_page_add(rp1, 0);
    assert(PageSwap(rp1) && swap_offset(rp1->index) == 1);
    swap_inactive_list_add(rp1);
    mem_map[1] = 1;
    assert(nr_inactive_pages == 1);
    page_ref_dec(rp1);

    size_t count = nr_used_pages();
    swap_remove_entry(entry);
    assert(nr_inactive_pages == 0 && nr_used_pages() == count - 1);

    // check swap_out_mm

    pte_t *ptep0 = get_pte(pgdir, TEST_PAGE, 0), *ptep1;
    assert(ptep0 != NULL && pte2page(*ptep0) == rp0);

    ret = swap_out_mm(mm, 0);
    assert(ret == 0);

    ret = swap_out_mm(mm, 10);
    assert(ret == 1 && mm->swap_address == TEST_PAGE + PGSIZE);

    ret = swap_out_mm(mm, 10);
    assert(ret == 0 && *ptep0 == entry && mem_map[1] == 1);
    assert(PageDirty(rp0) && PageActive(rp0) && page_ref(rp0) == 0);
    assert(nr_active_pages == 1 && list_next(&(active_list.swap_list)) == &(rp0->swap_link));

    // check refill_inactive_scan()

    refill_inactive_scan();
    assert(!PageActive(rp0) && page_ref(rp0) == 0);
    assert(nr_inactive_pages == 1 && list_next(&(inactive_list.swap_list)) == &(rp0->swap_link));

    page_ref_inc(rp0);
    page_launder();
    assert(PageActive(rp0) && page_ref(rp0) == 1);
    assert(nr_active_pages == 1 && list_next(&(active_list.swap_list)) == &(rp0->swap_link));

    page_ref_dec(rp0);
    refill_inactive_scan();
    assert(!PageActive(rp0));

    // save data in rp0

    int i;
    for (i = 0; i < PGSIZE; i ++) {
        ((char *)page2kva(rp0))[i] = (char)i;
    }

    page_launder();
    assert(nr_inactive_pages == 0 && list_empty(&(inactive_list.swap_list)));
    assert(mem_map[1] == 1);

    rp1 = alloc_page();
    assert(rp1 != NULL);
    ret = swapfs_read(entry, rp1);
    assert(ret == 0);

    for (i = 0; i < PGSIZE; i ++) {
        assert(((char *)page2kva(rp1))[i] == (char)i);
    }

    // page fault now

    *(char *)(TEST_PAGE) = 0xEF;

    rp0 = pte2page(*ptep0);
    assert(page_ref(rp0) == 1);
    assert(PageSwap(rp0) && PageActive(rp0));

    entry = try_alloc_swap_entry();
    assert(swap_offset(entry) == 1 && mem_map[1] == SWAP_UNUSED);
    assert(!PageSwap(rp0) && nr_active_pages == 0 && nr_inactive_pages == 0);

    // clear accessed flag

    assert(rp0 == pte2page(*ptep0));
    assert(!PageSwap(rp0));

    ret = swap_out_mm(mm, 10);
    assert(ret == 0);
    assert(!PageSwap(rp0) && ptep_present(ptep0));

    // change page table

    ret = swap_out_mm(mm, 10);
    assert(ret == 1);
    assert(*ptep0 == entry && page_ref(rp0) == 0 && mem_map[1] == 1);

    count = nr_used_pages();
    refill_inactive_scan();
    page_launder();
    assert(count - 1 == nr_used_pages());

    ret = swapfs_read(entry, rp1);
    assert(ret == 0 && *(char *)(page2kva(rp1)) == (char)0xEF);
    free_page(rp1);

    // duplictate *ptep0

    ptep1 = get_pte(pgdir, TEST_PAGE + PGSIZE, 0);
    assert(ptep1 != NULL && ptep_invalid(ptep1));
    swap_duplicate(*ptep0);
	ptep_copy(ptep1, ptep0);
	mp_tlb_invalidate (pgdir, TEST_PAGE + PGSIZE);

    // page fault again
    // update for copy on write

    *(char *)(TEST_PAGE + 1) = 0x88;
    *(char *)(TEST_PAGE + PGSIZE) = 0x8F;
    *(char *)(TEST_PAGE + PGSIZE + 1) = 0xFF;
    assert(pte2page(*ptep0) != pte2page(*ptep1));
    assert(*(char *)(TEST_PAGE) == (char)0xEF);
    assert(*(char *)(TEST_PAGE + 1) == (char)0x88);
    assert(*(char *)(TEST_PAGE + PGSIZE) == (char)0x8F);
    assert(*(char *)(TEST_PAGE + PGSIZE + 1) == (char)0xFF);

    rp0 = pte2page(*ptep0);
    rp1 = pte2page(*ptep1);
    assert(!PageSwap(rp0) && PageSwap(rp1) && PageActive(rp1));

    entry = try_alloc_swap_entry();
    assert(!PageSwap(rp0) && !PageSwap(rp1));
    assert(swap_offset(entry) == 1 && mem_map[1] == SWAP_UNUSED);
    assert(list_empty(&(active_list.swap_list)));
    assert(list_empty(&(inactive_list.swap_list)));

	ptep_set_accessed(&perm);
    page_insert(pgdir, rp0, TEST_PAGE + PGSIZE, perm);

    // check swap_out_mm

    *(char *)(TEST_PAGE) = *(char *)(TEST_PAGE + PGSIZE) = 0xEE;
    mm->swap_address = TEST_PAGE + PGSIZE * 2;
    ret = swap_out_mm(mm, 2);
    assert(ret == 0);
    assert(ptep_present(ptep0) && ! ptep_accessed(ptep0));
    assert(ptep_present(ptep1) && ! ptep_accessed(ptep1));

    ret = swap_out_mm(mm, 2);
    assert(ret == 2);
    assert(mem_map[1] == 2 && page_ref(rp0) == 0);

    refill_inactive_scan();
    page_launder();
    assert(mem_map[1] == 2 && swap_hash_find(entry) == NULL);

    // check copy entry

    swap_remove_entry(entry);
	ptep_unmap(ptep1);
    assert(mem_map[1] == 1);

    swap_entry_t store;
    ret = swap_copy_entry(entry, &store);
    assert(ret == -E_NO_MEM);
    mem_map[2] = SWAP_UNUSED;

    ret = swap_copy_entry(entry, &store);
    assert(ret == 0 && swap_offset(store) == 2 && mem_map[2] == 0);
    mem_map[2] = 1;
	ptep_copy(ptep1, &store);

    assert(*(char *)(TEST_PAGE + PGSIZE) == (char)0xEE && *(char *)(TEST_PAGE + PGSIZE + 1)== (char)0x88);

    *(char *)(TEST_PAGE + PGSIZE) = 1, *(char *)(TEST_PAGE + PGSIZE + 1) = 2;
    assert(*(char *)TEST_PAGE == (char)0xEE && *(char *)(TEST_PAGE + 1) == (char)0x88);

    ret = swap_in_page(entry, &rp0);
    assert(ret == 0);
    ret = swap_in_page(store, &rp1);
    assert(ret == 0);
    assert(rp1 != rp0);

    // free memory

    swap_list_del(rp0), swap_list_del(rp1);
    swap_page_del(rp0), swap_page_del(rp1);

    assert(page_ref(rp0) == 1 && page_ref(rp1) == 1);
    assert(nr_active_pages == 0 && list_empty(&(active_list.swap_list)));
    assert(nr_inactive_pages == 0 && list_empty(&(inactive_list.swap_list)));

    for (i = 0; i < HASH_LIST_SIZE; i ++) {
        assert(list_empty(hash_list + i));
    }

    page_remove(pgdir, TEST_PAGE);
    page_remove(pgdir, (TEST_PAGE + PGSIZE));

#if PMXSHIFT != PUXSHIFT
    free_page(pa2page(PMD_ADDR(*get_pmd(pgdir, TEST_PAGE, 0))));
#endif
#if PUXSHIFT != PGXSHIFT
    free_page(pa2page(PUD_ADDR(*get_pud(pgdir, TEST_PAGE, 0))));
#endif
    free_page(pa2page(PGD_ADDR(*get_pgd(pgdir, TEST_PAGE, 0))));
    pgdir[PGX(TEST_PAGE)] = 0;

    mm->pgdir = NULL;
    mm_destroy(mm);
    check_mm_struct = NULL;

    assert(nr_active_pages == 0 && nr_inactive_pages == 0);
    for (offset = 0; offset < max_swap_offset; offset ++) {
        mem_map[offset] = SWAP_UNUSED;
    }

    assert(nr_used_pages_store == nr_used_pages());
    assert(slab_allocated_store == slab_allocated());

    kprintf("check_swap() succeeded.\n");
}
Example #12
0
File: swap.c Project: jefjin/ucore
// check_swap - check the correctness of swap & page replacement algorithm
static void
check_swap(void) {
    size_t nr_free_pages_store = nr_free_pages();
    size_t slab_allocated_store = slab_allocated();

    size_t offset;
    for (offset = 2; offset < max_swap_offset; offset ++) {
        mem_map[offset] = 1;
    }

    struct mm_struct *mm = mm_create();
    assert(mm != NULL);

    extern struct mm_struct *check_mm_struct;
    assert(check_mm_struct == NULL);

    check_mm_struct = mm;

    pde_t *pgdir = mm->pgdir = boot_pgdir;
    assert(pgdir[0] == 0);

    struct vma_struct *vma = vma_create(0, PTSIZE, VM_WRITE | VM_READ);
    assert(vma != NULL);

    insert_vma_struct(mm, vma);

    struct Page *rp0 = alloc_page(), *rp1 = alloc_page();
    assert(rp0 != NULL && rp1 != NULL);

    uint32_t perm = PTE_U | PTE_W;
    int ret = page_insert(pgdir, rp1, 0, perm);
    assert(ret == 0 && page_ref(rp1) == 1);

    page_ref_inc(rp1);
    ret = page_insert(pgdir, rp0, 0, perm);
    assert(ret == 0 && page_ref(rp1) == 1 && page_ref(rp0) == 1);

    // check try_alloc_swap_entry

    swap_entry_t entry = try_alloc_swap_entry();
    assert(swap_offset(entry) == 1);
    mem_map[1] = 1;
    assert(try_alloc_swap_entry() == 0);

    // set rp1, Swap, Active, add to hash_list, active_list

    swap_page_add(rp1, entry);
    swap_active_list_add(rp1);
    assert(PageSwap(rp1));

    mem_map[1] = 0;
    entry = try_alloc_swap_entry();
    assert(swap_offset(entry) == 1);
    assert(!PageSwap(rp1));

    // check swap_remove_entry

    assert(swap_hash_find(entry) == NULL);
    mem_map[1] = 2;
    swap_remove_entry(entry);
    assert(mem_map[1] == 1);

    swap_page_add(rp1, entry);
    swap_inactive_list_add(rp1);
    swap_remove_entry(entry);
    assert(PageSwap(rp1));
    assert(rp1->index == entry && mem_map[1] == 0);

    // check page_launder, move page from inactive_list to active_list

    assert(page_ref(rp1) == 1);
    assert(nr_active_pages == 0 && nr_inactive_pages == 1);
    assert(list_next(&(inactive_list.swap_list)) == &(rp1->swap_link));

    page_launder();
    assert(nr_active_pages == 1 && nr_inactive_pages == 0);
    assert(PageSwap(rp1) && PageActive(rp1));

    entry = try_alloc_swap_entry();
    assert(swap_offset(entry) == 1);
    assert(!PageSwap(rp1) && nr_active_pages == 0);
    assert(list_empty(&(active_list.swap_list)));

    // set rp1 inactive again

    assert(page_ref(rp1) == 1);
    swap_page_add(rp1, 0);
    assert(PageSwap(rp1) && swap_offset(rp1->index) == 1);
    swap_inactive_list_add(rp1);
    mem_map[1] = 1;
    assert(nr_inactive_pages == 1);
    page_ref_dec(rp1);

    size_t count = nr_free_pages();
    swap_remove_entry(entry);
    assert(nr_inactive_pages == 0 && nr_free_pages() == count + 1);

    // check swap_out_mm

    pte_t *ptep0 = get_pte(pgdir, 0, 0), *ptep1;
    assert(ptep0 != NULL && pte2page(*ptep0) == rp0);

    ret = swap_out_mm(mm, 0);
    assert(ret == 0);

    ret = swap_out_mm(mm, 10);
    assert(ret == 1 && mm->swap_address == PGSIZE);

    ret = swap_out_mm(mm, 10);
    assert(ret == 0 && *ptep0 == entry && mem_map[1] == 1);
    assert(PageDirty(rp0) && PageActive(rp0) && page_ref(rp0) == 0);
    assert(nr_active_pages == 1 && list_next(&(active_list.swap_list)) == &(rp0->swap_link));

    // check refill_inactive_scan()

    refill_inactive_scan();
    assert(!PageActive(rp0) && page_ref(rp0) == 0);
    assert(nr_inactive_pages == 1 && list_next(&(inactive_list.swap_list)) == &(rp0->swap_link));

    page_ref_inc(rp0);
    page_launder();
    assert(PageActive(rp0) && page_ref(rp0) == 1);
    assert(nr_active_pages == 1 && list_next(&(active_list.swap_list)) == &(rp0->swap_link));

    page_ref_dec(rp0);
    refill_inactive_scan();
    assert(!PageActive(rp0));

    // save data in rp0

    int i;
    for (i = 0; i < PGSIZE; i ++) {
        ((char *)page2kva(rp0))[i] = (char)i;
    }

    page_launder();
    assert(nr_inactive_pages == 0 && list_empty(&(inactive_list.swap_list)));
    assert(mem_map[1] == 1);

    rp1 = alloc_page();
    assert(rp1 != NULL);
    ret = swapfs_read(entry, rp1);
    assert(ret == 0);

    for (i = 0; i < PGSIZE; i ++) {
        assert(((char *)page2kva(rp1))[i] == (char)i);
    }

    // page fault now

    *(char *)0 = 0xEF;

    rp0 = pte2page(*ptep0);
    assert(page_ref(rp0) == 1);
    assert(PageSwap(rp0) && PageActive(rp0));

    entry = try_alloc_swap_entry();
    assert(swap_offset(entry) == 1 && mem_map[1] == SWAP_UNUSED);
    assert(!PageSwap(rp0) && nr_active_pages == 0 && nr_inactive_pages == 0);

    // clear accessed flag

    assert(rp0 == pte2page(*ptep0));
    assert(!PageSwap(rp0));

    ret = swap_out_mm(mm, 10);
    assert(ret == 0);
    assert(!PageSwap(rp0) && (*ptep0 & PTE_P));

    // change page table

    ret = swap_out_mm(mm, 10);
    assert(ret == 1);
    assert(*ptep0 == entry && page_ref(rp0) == 0 && mem_map[1] == 1);

    count = nr_free_pages();
    refill_inactive_scan();
    page_launder();
    assert(count + 1 == nr_free_pages());

    ret = swapfs_read(entry, rp1);
    assert(ret == 0 && *(char *)(page2kva(rp1)) == (char)0xEF);
    free_page(rp1);

    // duplictate *ptep0

    ptep1 = get_pte(pgdir, PGSIZE, 0);
    assert(ptep1 != NULL && *ptep1 == 0);
    swap_duplicate(*ptep0);
    *ptep1 = *ptep0;

    // page fault again

    *(char *)0 = 0xFF;
    *(char *)(PGSIZE + 1) = 0x88;
    assert(pte2page(*ptep0) == pte2page(*ptep1));
    rp0 = pte2page(*ptep0);
    assert(*(char *)1 == (char)0x88 && *(char *)PGSIZE == (char)0xFF);

    assert(page_ref(rp0) == 2 && rp0->index == entry && mem_map[1] == 0);

    assert(PageSwap(rp0) && PageActive(rp0));
    entry = try_alloc_swap_entry();
    assert(swap_offset(entry) == 1 && mem_map[1] == SWAP_UNUSED);
    assert(!PageSwap(rp0));
    assert(list_empty(&(active_list.swap_list)));
    assert(list_empty(&(inactive_list.swap_list)));

    // check swap_out_mm

    *(char *)0 = *(char *)PGSIZE = 0xEE;
    mm->swap_address = PGSIZE * 2;
    ret = swap_out_mm(mm, 2);
    assert(ret == 0);
    assert((*ptep0 & PTE_P) && !(*ptep0 & PTE_A));
    assert((*ptep1 & PTE_P) && !(*ptep1 & PTE_A));

    ret = swap_out_mm(mm, 2);
    assert(ret == 2);
    assert(mem_map[1] == 2 && page_ref(rp0) == 0);

    refill_inactive_scan();
    page_launder();
    assert(mem_map[1] == 2 && swap_hash_find(entry) == NULL);

    // check copy entry

    swap_remove_entry(entry);
    *ptep1 = 0;
    assert(mem_map[1] == 1);

    swap_entry_t store;
    ret = swap_copy_entry(entry, &store);
    assert(ret == -E_NO_MEM);
    mem_map[2] = SWAP_UNUSED;

    ret = swap_copy_entry(entry, &store);
    assert(ret == 0 && swap_offset(store) == 2 && mem_map[2] == 0);
    mem_map[2] = 1;
    *ptep1 = store;

    assert(*(char *)PGSIZE == (char)0xEE && *(char *)(PGSIZE + 1)== (char)0x88);

    *(char *)PGSIZE = 1, *(char *)(PGSIZE + 1) = 2;
    assert(*(char *)0 == (char)0xEE && *(char *)1 == (char)0x88);

    ret = swap_in_page(entry, &rp0);
    assert(ret == 0);
    ret = swap_in_page(store, &rp1);
    assert(ret == 0);
    assert(rp1 != rp0);

    // free memory

    swap_list_del(rp0), swap_list_del(rp1);
    swap_page_del(rp0), swap_page_del(rp1);

    assert(page_ref(rp0) == 1 && page_ref(rp1) == 1);
    assert(nr_active_pages == 0 && list_empty(&(active_list.swap_list)));
    assert(nr_inactive_pages == 0 && list_empty(&(inactive_list.swap_list)));

    for (i = 0; i < HASH_LIST_SIZE; i ++) {
        assert(list_empty(hash_list + i));
    }

    page_remove(pgdir, 0);
    page_remove(pgdir, PGSIZE);

    free_page(pa2page(pgdir[0]));
    pgdir[0] = 0;

    mm->pgdir = NULL;
    mm_destroy(mm);
    check_mm_struct = NULL;

    assert(nr_active_pages == 0 && nr_inactive_pages == 0);
    for (offset = 0; offset < max_swap_offset; offset ++) {
        mem_map[offset] = SWAP_UNUSED;
    }

    assert(nr_free_pages_store == nr_free_pages());
    assert(slab_allocated_store == slab_allocated());

    cprintf("check_swap() succeeded.\n");
}
Example #13
0
File: vmm.c Project: jefjin/ucore
int
mm_unmap(struct mm_struct *mm, uintptr_t addr, size_t len) {
    uintptr_t start = ROUNDDOWN(addr, PGSIZE), end = ROUNDUP(addr + len, PGSIZE);
    if (!USER_ACCESS(start, end)) {
        return -E_INVAL;
    }

    assert(mm != NULL);

    struct vma_struct *vma;
    if ((vma = find_vma(mm, start)) == NULL || end <= vma->vm_start) {
        return 0;
    }

    if (vma->vm_start < start && end < vma->vm_end) {
        struct vma_struct *nvma;
        if ((nvma = vma_create(vma->vm_start, start, vma->vm_flags)) == NULL) {
            return -E_NO_MEM;
        }
        vma_resize(vma, end, vma->vm_end);
        insert_vma_struct(mm, nvma);
        unmap_range(mm->pgdir, start, end);
        return 0;
    }

    list_entry_t free_list, *le;
    list_init(&free_list);
    while (vma->vm_start < end) {
        le = list_next(&(vma->list_link));
        remove_vma_struct(mm, vma);
        list_add(&free_list, &(vma->list_link));
        if (le == &(mm->mmap_list)) {
            break;
        }
        vma = le2vma(le, list_link);
    }

    le = list_next(&free_list);
    while (le != &free_list) {
        vma = le2vma(le, list_link);
        le = list_next(le);
        uintptr_t un_start, un_end;
        if (vma->vm_start < start) {
            un_start = start, un_end = vma->vm_end;
            vma_resize(vma, vma->vm_start, un_start);
            insert_vma_struct(mm, vma);
        }
        else {
            un_start = vma->vm_start, un_end = vma->vm_end;
            if (end < un_end) {
                un_end = end;
                vma_resize(vma, un_end, vma->vm_end);
                insert_vma_struct(mm, vma);
            }
            else {
                vma_destroy(vma);
            }
        }
        unmap_range(mm->pgdir, un_start, un_end);
    }
    return 0;
}