// Just calls intervalTimer_reset on all timers. u32 intervalTimer_resetAll() { int i; for (i=0; i<INTERVAL_TIMER_MAX_TIMER_INDEX; i++) { intervalTimer_reset(i); } return 0; }
//used to reset all of the timers at the same time uint32_t intervalTimer_resetAll() { for (int i=0; i<=2; i++) { intervalTimer_reset(i);//calls each of the timers } }
uint32_t intervalTimer_runTest(uint32_t timerNumber) { intervalTimer_init(timerNumber); intervalTimer_reset(timerNumber); // Show that the timer is reset. printf("timer %ld TCR0 should be 0 at this point:%ld\n\r", timerNumber , readTimerRegister(INTERVALTIMER_TCR0_ADDRESS, timerNumber)); printf("timer %ld TCR1 should be 0 at this point:%ld\n\r", timerNumber , readTimerRegister(INTERVALTIMER_TCR0_ADDRESS, timerNumber)); // Statements returns false if TCR0 and TCR1 aren't 0 if (readTimerRegister(INTERVALTIMER_TCR0_ADDRESS , timerNumber) !=INTERVALTIMER_INITIALIZE) { return INTERVALTIMER_VALID_TIMER_FALSE; } if (readTimerRegister(INTERVALTIMER_TCR1_ADDRESS , timerNumber) !=INTERVALTIMER_INITIALIZE) { return INTERVALTIMER_VALID_TIMER_FALSE; } intervalTimer_start(timerNumber); // Show that the timer is running. // Test points for comparison u32 TP_One; u32 TP_Two; printf("The following register values should be changing while reading them.\n\r"); printf("timer %ld TCR0 should be changing at this point:%ld\n\r", timerNumber , readTimerRegister(INTERVALTIMER_TCR0_ADDRESS, timerNumber)); TP_One = readTimerRegister(INTERVALTIMER_TCR0_ADDRESS , timerNumber); printf("timer %ld TCR0 should be changing at this point:%ld\n\r", timerNumber , readTimerRegister(INTERVALTIMER_TCR0_ADDRESS, timerNumber)); printf("timer %ld TCR0 should be changing at this point:%ld\n\r", timerNumber , readTimerRegister(INTERVALTIMER_TCR0_ADDRESS, timerNumber)); printf("timer %ld TCR0 should be changing at this point:%ld\n\r", timerNumber , readTimerRegister(INTERVALTIMER_TCR0_ADDRESS, timerNumber)); TP_Two = readTimerRegister(INTERVALTIMER_TCR0_ADDRESS , timerNumber); printf("timer %ld TCR0 should be changing at this point:%ld\n\r", timerNumber , readTimerRegister(INTERVALTIMER_TCR0_ADDRESS, timerNumber)); // Statement returns false if TCR0 isn't changing if (TP_One == TP_Two) { return INTERVALTIMER_VALID_TIMER_FALSE; } // Wait about 2 minutes so that you roll over to TCR1. // If you don't see a '1' in TCR1 after this long wait you probably haven't programmed the timer correctly. waitALongTime(); printf("timer %ld TCR0 value after wait:%lx\n\r", timerNumber , readTimerRegister(INTERVALTIMER_TCR0_ADDRESS, timerNumber)); printf("timer %ld TCR1 should have changed at this point:%ld\n\r", timerNumber ,readTimerRegister(INTERVALTIMER_TCR1_ADDRESS, timerNumber)); // Statement returns false if TCR1 didn't change if (readTimerRegister(INTERVALTIMER_TCR1_ADDRESS,timerNumber) == INTERVALTIMER_INITIALIZE) { return INTERVALTIMER_VALID_TIMER_FALSE; } return INTERVALTIMER_VALID_TIMER_TRUE; }
// runs a test to see if timers are operating correctly uint32_t intervalTimer_runTest(uint32_t timerNumber) { intervalTimer_init(timerNumber); //initialize the timer intervalTimer_reset(timerNumber); //reset the timer printf("timer_0 TCR0 should be 0 at this point:%ld\n\r", readTimerRegister(timerNumber, INTERVALTIMER_TCR0_OFFSET)); // Show that the timer is reset. printf("timer_0 TCR1 should be 0 at this point:%ld\n\r", readTimerRegister(timerNumber, INTERVALTIMER_TCR1_OFFSET)); //reset the TCR1 as well as TCR0 intervalTimer_start(timerNumber); // Show that the timer is running. printf("The following register values should be changing while reading them.\n\r"); //print statement to the screen printf("timer_0 TCR0 should be changing at this point:%ld\n\r", readTimerRegister(timerNumber, INTERVALTIMER_TCR0_OFFSET)); //these print the current values of the timer printf("timer_0 TCR0 should be changing at this point:%ld\n\r", readTimerRegister(timerNumber, INTERVALTIMER_TCR0_OFFSET)); //repeat multiple times to show that change is continuous as time passes printf("timer_0 TCR0 should be changing at this point:%ld\n\r", readTimerRegister(timerNumber, INTERVALTIMER_TCR0_OFFSET)); printf("timer_0 TCR0 should be changing at this point:%ld\n\r", readTimerRegister(timerNumber, INTERVALTIMER_TCR0_OFFSET)); printf("timer_0 TCR0 should be changing at this point:%ld\n\r", readTimerRegister(timerNumber, INTERVALTIMER_TCR0_OFFSET)); waitALongTime(); // Wait about 2 minutes so that you roll over to TCR1. printf("timer_0 TCR0 value after wait:%lx\n\r", readTimerRegister(timerNumber, INTERVALTIMER_TCR0_OFFSET));// If you don't see a '1' in TCR1 after this long wait you probably haven't programmed the timer correctly. printf("timer_0 TCR1 should have changed at this point:%ld\n\r", readTimerRegister(timerNumber, INTERVALTIMER_TCR1_OFFSET));//this shows the time that has passed }
// // This will configure the counter, start it, see if it runs, stop it, see if it stays stopped. // Pretty good way to test for the existence of the counter hardware. u32 intervalTimer_test(u32 timerNumber) { u32 errorValue = 0; // See if the hardware appears to be present by writing a value to the load register and reading it back. u32 loadValue = 0x55AA; intervalTimer_writeRegister(timerNumber, INTERVAL_TIMER_TLR0_REG_OFFSET, loadValue); if (loadValue != intervalTimer_readRegister(timerNumber, INTERVAL_TIMER_TLR0_REG_OFFSET)) { printf("intervalTimer_test: hardware for timer: %lu does not appear to be present.\n\r", timerNumber); } intervalTimer_init(timerNumber); // Init the timer. intervalTimer_reset(timerNumber); // Reset the timer to 0. u32 counter0Value = intervalTimer_readRegister(timerNumber, INTERVAL_TIMER_TCR0_REG_OFFSET); // See if the timer is reset. Timer should be zero at this point. if (counter0Value) { printf("intervalTimer_test: counter 0 should be zero after initialization. Value is: %lu.\n", counter0Value); errorValue = 1; } else { // OK, see if the timer will run. intervalTimer_start(timerNumber); volatile int i; // Wait for a bit. for (i=0; i<1000; i++); counter0Value = intervalTimer_readRegister(timerNumber, INTERVAL_TIMER_TCR0_REG_OFFSET); if (!counter0Value) { printf("intervalTimer_test: counter 0 does not seem to be running. Value is: %lu.\n\r", counter0Value); errorValue = 1; } else { // OK. See if the timer will stop. intervalTimer_stop(timerNumber); counter0Value = intervalTimer_readRegister(timerNumber, INTERVAL_TIMER_TCR0_REG_OFFSET); int i; // Wait for a bit. for (i=0; i<1000; i++); u32 secondCounter0Value = intervalTimer_readRegister(timerNumber, INTERVAL_TIMER_TCR0_REG_OFFSET); if (counter0Value != secondCounter0Value) { printf("intervalTimer_test: counter 0 does not seem to be stopped.\n\r"); errorValue = 1; } } } return errorValue; }
uint32_t intervalTimer_resetAll() { // Returns 1 if timer0 and timer1 and timer2 are all reset. Returns 0 if one isn't reset return intervalTimer_reset(INTERVALTIMER_2_ID) & intervalTimer_reset(INTERVALTIMER_1_ID) & intervalTimer_reset(INTERVALTIMER_0_ID); }
int main() { //buttonHandler_runTest(10); //flashSequence_runTest(); //verifySequence_runTest(); // The formula for computing the load value is based upon the formula from 4.1.1 (calculating timer intervals) // in the Cortex-A9 MPCore Technical Reference Manual 4-2. // Assuming that the prescaler = 0, the formula for computing the load value based upon the desired period is: // load-value = (period * timer-clock) - 1 // Initialize the GPIO LED driver and print out an error message if it fails (argument = true). // You need to init the LEDs so that LD4 can function as a heartbeat. leds_init(true); // Init all interrupts (but does not enable the interrupts at the devices). // Prints an error message if an internal failure occurs because the argument = true. interrupts_initAll(true); interrupts_setPrivateTimerLoadValue(TIMER_LOAD_VALUE); u32 privateTimerTicksPerSecond = interrupts_getPrivateTimerTicksPerSecond(); printf("private timer ticks per second: %ld\n\r", privateTimerTicksPerSecond); // Allow the timer to generate interrupts. interrupts_enableTimerGlobalInts(); // Initialization of the Simon game state machines is not time-dependent so we do it outside of the state machine. display_init(); display_fillScreen(DISPLAY_BLACK); // Keep track of your personal interrupt count. Want to make sure that you don't miss any interrupts. int32_t personalInterruptCount = 0; // Start the private ARM timer running. interrupts_startArmPrivateTimer(); // Enable interrupts at the ARM. interrupts_enableArmInts(); // interrupts_isrInvocationCount() returns the number of times that the timer ISR was invoked. // This value is maintained by the timer ISR. Compare this number with your own local // interrupt count to determine if you have missed any interrupts. double *seconds; while (interrupts_isrInvocationCount() < (TOTAL_SECONDS * privateTimerTicksPerSecond)) { if (interrupts_isrFlagGlobal) { // This is a global flag that is set by the timer interrupt handler. // Count ticks. personalInterruptCount++; verifySequence_tick(); flashSequence_tick(); buttonHandler_tick(); intervalTimer_start(1); simonControl_tick(); intervalTimer_stop(1); intervalTimer_getTotalDurationInSeconds(1,seconds); printf("%f \r\n",*seconds); //printf("interrupt count: %lu \r\n", interrupts_isrInvocationCount()); intervalTimer_reset(1); interrupts_isrFlagGlobal = 0; } } interrupts_disableArmInts(); printf("isr invocation count: %ld\n\r", interrupts_isrInvocationCount()); printf("internal interrupt count: %ld\n\r", personalInterruptCount); return 0; }