Example #1
0
//----------------------------------------------------------------------
//
//	doInterrupt
//
//	Handle an interrupt or trap.
//
//----------------------------------------------------------------------
void
dointerrupt (unsigned int cause, unsigned int iar, unsigned int isr,
	     uint32 *trapArgs)
{
  int	result;
  int	i;
  uint32	args[4];
  int	intrs;
  uint32 handle;
  int ihandle;

  dbprintf ('t',"Interrupt cause=0x%x iar=0x%x isr=0x%x args=0x%08x.\n",
	    cause, iar, isr, (int)trapArgs);
  // If the TRAP_INSTR bit is set, this was from a trap instruction.
  // If the bit isn't set, this was a system interrupt.
  if (cause & TRAP_TRAP_INSTR) {
    cause &= ~TRAP_TRAP_INSTR;
    switch (cause) {
    case TRAP_CONTEXT_SWITCH:
      dbprintf ('t', "Got a context switch trap!\n");
      ProcessSchedule ();
      ClkResetProcess();
      break;
    case TRAP_EXIT:
    case TRAP_USER_EXIT:
      dbprintf ('t', "Got an exit trap!\n");
      ProcessDestroy (currentPCB);
      ProcessSchedule ();
      ClkResetProcess();
      break;
    case TRAP_PROCESS_FORK:
      dbprintf ('t', "Got a fork trap!\n");
      break;
    case TRAP_PROCESS_SLEEP:
      dbprintf ('t', "Got a process sleep trap!\n");
      ProcessSuspend (currentPCB);
      ProcessSchedule ();
      ClkResetProcess();
      break;
    case TRAP_PRINTF:
      // Call the trap printf handler and pass the arguments and a flag
      // indicating whether the trap was called from system mode.
      dbprintf ('t', "Got a printf trap!\n");
      TrapPrintfHandler (trapArgs, isr & DLX_STATUS_SYSMODE);
      break;
    case TRAP_OPEN:
      // Get the arguments to the trap handler.  If this is a user mode trap,
      // copy them from user space.
      if (isr & DLX_STATUS_SYSMODE) {
	args[0] = trapArgs[0];
	args[1] = trapArgs[1];
      } else {
	char	filename[32];
	// trapArgs points to the trap arguments in user space.  There are
	// two of them, so copy them to to system space.  The first argument
	// is a string, so it has to be copied to system space and the
	// argument replaced with a pointer to the string in system space.
	MemoryCopyUserToSystem (currentPCB, (char *)trapArgs, (char *)args, sizeof(args[0])*2);
	MemoryCopyUserToSystem (currentPCB, (char *)(args[0]), (char *)filename, 31);
	// Null-terminate the string in case it's longer than 31 characters.
	filename[31] = '\0';
	// Set the argument to be the filename
	args[0] = (uint32)filename;
      }
      // Allow Open() calls to be interruptible!
      intrs = EnableIntrs ();
      ProcessSetResult (currentPCB, args[1] + 0x10000);
      printf ("Got an open with parameters ('%s',0x%x)\n", (char *)(args[0]), args[1]);
      RestoreIntrs (intrs);
      break;
    case TRAP_CLOSE:
      // Allow Close() calls to be interruptible!
      intrs = EnableIntrs ();
      ProcessSetResult (currentPCB, -1);
      RestoreIntrs (intrs);
      break;
    case TRAP_READ:
      // Allow Read() calls to be interruptible!
      intrs = EnableIntrs ();
      ProcessSetResult (currentPCB, -1);
      RestoreIntrs (intrs);
      break;
    case TRAP_WRITE:
      // Allow Write() calls to be interruptible!
      intrs = EnableIntrs ();
      ProcessSetResult (currentPCB, -1);
      RestoreIntrs (intrs);
      break;
    case TRAP_DELETE:
      intrs = EnableIntrs ();
      ProcessSetResult (currentPCB, -1);
      RestoreIntrs (intrs);
      break;
    case TRAP_SEEK:
      intrs = EnableIntrs ();
      ProcessSetResult (currentPCB, -1);
      RestoreIntrs (intrs);
      break;
    case TRAP_PROCESS_GETPID:
      ProcessSetResult(currentPCB, GetCurrentPid()); 
      break;
    case TRAP_PROCESS_CREATE:
      TrapProcessCreateHandler(trapArgs, isr & DLX_STATUS_SYSMODE);
      break;
    case TRAP_SEM_CREATE:
      ihandle = GetIntFromTrapArg(trapArgs, isr & DLX_STATUS_SYSMODE);
      ihandle = SemCreate(ihandle);
      ProcessSetResult(currentPCB, ihandle); //Return handle
      break;
    case TRAP_SEM_WAIT:
      ihandle = GetIntFromTrapArg(trapArgs, isr & DLX_STATUS_SYSMODE);
      handle = SemHandleWait(ihandle);
      ProcessSetResult(currentPCB, handle); //Return 1 or 0
      break;
    case TRAP_SEM_SIGNAL:
      ihandle = GetIntFromTrapArg(trapArgs, isr & DLX_STATUS_SYSMODE);
      handle = SemHandleSignal(ihandle);
      ProcessSetResult(currentPCB, handle); //Return 1 or 0
      break;
    case TRAP_MALLOC:
      ihandle = GetIntFromTrapArg(trapArgs, isr & DLX_STATUS_SYSMODE);
      ihandle = (int)malloc(currentPCB, ihandle);
      ProcessSetResult(currentPCB, ihandle); //Return handle
      break;
    case TRAP_MFREE:
      ihandle = GetIntFromTrapArg(trapArgs, isr & DLX_STATUS_SYSMODE);
      ihandle = mfree(currentPCB, (void*)ihandle);
      ProcessSetResult(currentPCB, ihandle); //Return handle
      break;
    case TRAP_LOCK_CREATE:
      ihandle = LockCreate();
      ProcessSetResult(currentPCB, ihandle); //Return handle
      break;
    case TRAP_LOCK_ACQUIRE:
      ihandle = GetIntFromTrapArg(trapArgs, isr & DLX_STATUS_SYSMODE);
      handle = LockHandleAcquire(ihandle);
      ProcessSetResult(currentPCB, handle); //Return 1 or 0
      break;
    case TRAP_LOCK_RELEASE:
      ihandle = GetIntFromTrapArg(trapArgs, isr & DLX_STATUS_SYSMODE);
      handle = LockHandleRelease(ihandle);
      ProcessSetResult(currentPCB, handle); //Return 1 or 0
      break;
    case TRAP_COND_CREATE:
      ihandle = GetIntFromTrapArg(trapArgs, isr & DLX_STATUS_SYSMODE);
      ihandle = CondCreate(ihandle);
      ProcessSetResult(currentPCB, ihandle); //Return handle
      break;
    case TRAP_COND_WAIT:
      ihandle = GetIntFromTrapArg(trapArgs, isr & DLX_STATUS_SYSMODE);
      ihandle = CondHandleWait(ihandle);
      ProcessSetResult(currentPCB, ihandle); //Return 1 or 0
      break;
    case TRAP_COND_SIGNAL:
      ihandle = GetIntFromTrapArg(trapArgs, isr & DLX_STATUS_SYSMODE);
      ihandle = CondHandleSignal(ihandle);
      ProcessSetResult(currentPCB, ihandle); //Return 1 or 0
      break;
    case TRAP_COND_BROADCAST:
      ihandle = GetIntFromTrapArg(trapArgs, isr & DLX_STATUS_SYSMODE);
      ihandle = CondHandleBroadcast(ihandle);
      ProcessSetResult(currentPCB, ihandle); //Return 1 or 0
      break;
    default:
      printf ("Got an unrecognized trap (0x%x) - exiting!\n",
	      cause);
      exitsim ();
      break;
    }
  } else {
    switch (cause) {
    case TRAP_TIMER:
      dbprintf ('t', "Got a timer interrupt!\n");
      // ClkInterrupt returns 1 when 1 "process quantum" has passed, meaning
      // that it's time to call ProcessSchedule again.
      if (ClkInterrupt()) {
        ProcessSchedule ();
      }
      break;
    case TRAP_KBD:
      do {
	i = *((uint32 *)DLX_KBD_NCHARSIN);
	result = *((uint32 *)DLX_KBD_GETCHAR);
	printf ("Got a keyboard interrupt (char=0x%x(%c), nleft=%d)!\n",
		result, result, i);
      } while (i > 1);
      break;
    case TRAP_ACCESS:
      printf ("Exiting after illegal access at iar=0x%x, isr=0x%x\n", iar, isr);
      exitsim ();
      break;
    case TRAP_ADDRESS:
      printf ("Exiting after illegal address at iar=0x%x, isr=0x%x\n",
	      iar, isr);
      exitsim ();
      break;
    case TRAP_ILLEGALINST:
      printf ("Exiting after illegal instruction at iar=0x%x, isr=0x%x\n",
	      iar, isr);
      exitsim ();
      break;
    case TRAP_PAGEFAULT:
      MemoryPageFaultHandler(currentPCB);
      break;
    default:
      printf ("Got an unrecognized system interrupt (0x%x) - exiting!\n",
	      cause);
      exitsim ();
      break;
    }
  }
  dbprintf ('t',"About to return from dointerrupt.\n");
  // Note that this return may schedule a new process!
  intrreturn ();
}
Example #2
0
//----------------------------------------------------------------------
//
//	main
//
//	This routine is called when the OS starts up.  It allocates a
//	PCB for the first process - the one corresponding to the initial
//	thread of execution.  Note that the stack pointer is already
//	set correctly by _osinit (assembly language code) to point
//	to the stack for the 0th process.  This stack isn't very big,
//	though, so it should be replaced by the system stack of the
//	currently running process.
//
//----------------------------------------------------------------------
main (int argc, char *argv[])
{
  int		i, j;
  int		n;
  char	buf[120];
  char		*userprog = (char *)0;
  static PCB	temppcb;
  uint32	addr;
  extern void	SysprocCreateProcesses ();
  char *param[12]={NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  	 	   NULL, NULL, NULL, NULL};
  int base;

  debugstr[0] = '\0';
  MyFuncRetZero();
  printf ("Got %d arguments.\n", argc);
  printf ("Available memory: 0x%x -> 0x%x.\n", lastosaddress,
	  MemoryGetSize ());
  printf ("Argument count is %d.\n", argc);
  for (i = 0; i < argc; i++) {
    printf ("Argument %d is %s.\n", i, argv[i]);
  }
//  *((int *)0xfff00100) = 't';
  FsModuleInit ();
  for (i = 0; i < argc; i++)
  {
    if (argv[i][0] == '-')
    {
      switch (argv[i][1])
      {
      case 'D':
	dstrcpy (debugstr, argv[++i]);
	break;
      case 'i':
	n = dstrtol (argv[++i], (void *)0, 0);
	ditoa (n, buf);
	printf ("Converted %s to %d=%s\n", argv[i], n, buf);
	break;
      case 'f':
      {
	int	start, codeS, codeL, dataS, dataL, fd, j;
	int	addr = 0;
	static unsigned char buf[200];
	fd = ProcessGetCodeInfo (argv[++i], &start, &codeS, &codeL, &dataS,
				 &dataL);
	printf ("File %s -> start=0x%08x\n", argv[i], start);
	printf ("File %s -> code @ 0x%08x (size=0x%08x)\n", argv[i], codeS,
		codeL);
	printf ("File %s -> data @ 0x%08x (size=0x%08x)\n", argv[i], dataS,
		dataL);
	while ((n = ProcessGetFromFile (fd, buf, &addr, sizeof (buf))) > 0)
	{
	  for (j = 0; j < n; j += 4)
	  {
	    printf ("%08x: %02x%02x%02x%02x\n", addr + j - n, buf[j], buf[j+1],
		    buf[j+2], buf[j+3]);
	  }
	}
	close (fd);
	break;
      }
      case 'u':
	userprog = argv[++i];
        base = i;
	break;
      default:
	printf ("Option %s not recognized.\n", argv[i]);
	break;
      }
      if(userprog)
        break;
    }
  }
  dbprintf ('i', "About to initialize queues.\n");
  QueueModuleInit ();
  dbprintf ('i', "After initializing queues.\n");
  MemoryModuleInit ();
  dbprintf ('i', "After initializing memory.\n");

  ProcessModuleInit ();
  dbprintf ('i', "After initializing processes.\n");
  ShareModuleInit ();
  dbprintf ('i', "After initializing shared memory.\n");
  SynchModuleInit ();
  dbprintf ('i', "After initializing synchronization tools.\n");
  KbdModuleInit ();
  dbprintf ('i', "After initializing keyboard.\n");
  for (i = 0; i < 100; i++) {
    buf[i] = 'a';
  }
  i = FsOpen ("vm", FS_MODE_WRITE);
  dbprintf ('i', "VM Descriptor is %d\n", i);
  FsSeek (i, 0, FS_SEEK_SET);
  FsWrite (i, buf, 80);
  FsClose (i);
  if (userprog != (char *)0) {
      for(i=base;i<argc&&i-base<11; i++)
      {
        param[i-base] = argv[i];
      }
      process_create(0,0,param[0], param[1], param[2], param[3], param[4],
      		     param[5], param[6], param[7], param[8], param[9],
		     param[10], param[11]);
//    ProcessFork (0, (uint32)"Help Me man!", userprog, 1);
  }
  SysprocCreateProcesses ();
  dbprintf ('i', "Created processes - about to set timer quantum.\n");
  TimerSet (processQuantum);
  dbprintf ('i', "Set timer quantum to %d, about to run first process.\n",
	    processQuantum);
  intrreturn ();
  // Should never be called because the scheduler exits when there
  // are no runnable processes left.
  exitsim();	// NEVER RETURNS!
}
Example #3
0
//----------------------------------------------------------------------
//
//	main
//
//	This routine is called when the OS starts up.  It allocates a
//	PCB for the first process - the one corresponding to the initial
//	thread of execution.  Note that the stack pointer is already
//	set correctly by _osinit (assembly language code) to point
//	to the stack for the 0th process.  This stack isn't very big,
//	though, so it should be replaced by the system stack of the
//	currently running process.
//
//----------------------------------------------------------------------
void main (int argc, char *argv[])
{
  int		i,j;
  int		n;
  char	buf[120];
  char		*userprog = (char *)0;
  int base=0;
  int numargs=0;
  char allargs[SIZE_ARG_BUFF];
  int allargs_offset = 0;
  
  debugstr[0] = '\0';

  printf ("Got %d arguments.\n", argc);
  printf ("Available memory: 0x%x -> 0x%x.\n", (int)lastosaddress, MemoryGetSize ());
  printf ("Argument count is %d.\n", argc);
  for (i = 0; i < argc; i++) {
    printf ("Argument %d is %s.\n", i, argv[i]);
  }

  FsModuleInit ();
  for (i = 0; i < argc; i++) 
  {
    if (argv[i][0] == '-') 
    {
      switch (argv[i][1]) 
      {
      case 'D':
	dstrcpy (debugstr, argv[++i]);
	break;
      case 'i':
	n = dstrtol (argv[++i], (void *)0, 0);
	ditoa (n, buf);
	printf ("Converted %s to %d=%s\n", argv[i], n, buf);
	break;
      case 'f':
      {
	int	start, codeS, codeL, dataS, dataL, fd, j;
	int	addr = 0;
	static unsigned char buf[200];
	fd = ProcessGetCodeInfo (argv[++i], &start, &codeS, &codeL, &dataS,
				 &dataL);
	printf ("File %s -> start=0x%08x\n", argv[i], start);
	printf ("File %s -> code @ 0x%08x (size=0x%08x)\n", argv[i], codeS,
		codeL);
	printf ("File %s -> data @ 0x%08x (size=0x%08x)\n", argv[i], dataS,
		dataL);
	while ((n = ProcessGetFromFile (fd, buf, &addr, sizeof (buf))) > 0) 
	{
	  for (j = 0; j < n; j += 4) 
	  {
	    printf ("%08x: %02x%02x%02x%02x\n", addr + j - n, buf[j], buf[j+1],
		    buf[j+2], buf[j+3]);
	  }
	}
	close (fd);
	break;
      }
      case 'u':
	userprog = argv[++i];
        base = i; // Save the location of the user program's name 
	break;
      default:
	printf ("Option %s not recognized.\n", argv[i]);
	break;
      }
      if(userprog)
        break;
    }
  }
  dbprintf ('i', "About to initialize queues.\n");
  AQueueModuleInit ();
  dbprintf ('i', "After initializing queues.\n");
  MemoryModuleInit ();
  dbprintf ('i', "After initializing memory.\n");

  ProcessModuleInit ();
  dbprintf ('i', "After initializing processes.\n");
  SynchModuleInit ();
  dbprintf ('i', "After initializing synchronization tools.\n");
  KbdModuleInit ();
  dbprintf ('i', "After initializing keyboard.\n");
  ClkModuleInit ();
  dbprintf ('i', "After initializing clock.\n");
  for (i = 0; i < 100; i++) {
    buf[i] = 'a';
  }
  i = FsOpen ("vm", FS_MODE_WRITE);
  dbprintf ('i', "VM Descriptor is %d\n", i);
  FsSeek (i, 0, FS_SEEK_SET);
  FsWrite (i, buf, 80);
  FsClose (i);

  // Setup command line arguments
  if (userprog != (char *)0) {
    numargs=0;
    allargs_offset = 0;
    // Move through each of the argv addresses
    for(i=0; i<argc-base; i++) {
      // At each argv address, copy the string into allargs, including the '\0'
      for(j=0; allargs_offset < SIZE_ARG_BUFF; j++) {
        allargs[allargs_offset++] = argv[i+base][j];
        if (argv[i+base][j] == '\0') break; // end of this string
      }
      numargs++;
    }
    allargs[SIZE_ARG_BUFF-1] = '\0'; // set last char to NULL for safety
    ProcessFork(0, (uint32)allargs, userprog, 1);
  } else {
    dbprintf('i', "No user program passed!\n");
  }
  ClkStart();
  dbprintf ('i', "Set timer quantum to %d, about to run first process.\n",
	    processQuantum);
  intrreturn ();
  // Should never be called because the scheduler exits when there
  // are no runnable processes left.
  exitsim();	// NEVER RETURNS!
}
//----------------------------------------------------------------------
//
//	doInterrupt
//
//	Handle an interrupt or trap.
//
//----------------------------------------------------------------------
void
dointerrupt (unsigned int cause, unsigned int iar, unsigned int isr,
	     uint32 *trapArgs)
{
  int	result;
  int	i;
  uint32	args[4];
  int	intrs;

  dbprintf ('t',"Interrupt cause=0x%x iar=0x%x isr=0x%x args=0x%08x.\n",
	    cause, iar, isr, (int)trapArgs);
  // If the TRAP_INSTR bit is set, this was from a trap instruction.
  // If the bit isn't set, this was a system interrupt.
  if (cause & TRAP_TRAP_INSTR) {
    cause &= ~TRAP_TRAP_INSTR;
    switch (cause) {
    case TRAP_CONTEXT_SWITCH:
      dbprintf ('t', "Got a context switch trap!\n");
      ProcessSchedule ();
      break;
    case TRAP_EXIT:
      dbprintf ('t', "Got an exit trap!\n");
      ProcessDestroy (currentPCB);
      ProcessSchedule ();
      break;
    case TRAP_PROCESS_FORK:
      dbprintf ('t', "Got a fork trap!\n");
      break;
    case TRAP_PROCESS_SLEEP:
      dbprintf ('t', "Got a process sleep trap!\n");
      ProcessSuspend (currentPCB);
      ProcessSchedule ();
      break;
    case TRAP_PRINTF:
      // Call the trap printf handler and pass the arguments and a flag
      // indicating whether the trap was called from system mode.
      dbprintf ('t', "Got a printf trap!\n");
      TrapPrintfHandler (trapArgs, isr & DLX_STATUS_SYSMODE);
      break;
    case TRAP_OPEN:
      // Get the arguments to the trap handler.  If this is a user mode trap,
      // copy them from user space.
      if (isr & DLX_STATUS_SYSMODE) {
	args[0] = trapArgs[0];
	args[1] = trapArgs[1];
      } else {
	char	filename[32];
	// trapArgs points to the trap arguments in user space.  There are
	// two of them, so copy them to to system space.  The first argument
	// is a string, so it has to be copied to system space and the
	// argument replaced with a pointer to the string in system space.
	MemoryCopyUserToSystem (currentPCB, trapArgs, args, sizeof(args[0])*2);
	MemoryCopyUserToSystem (currentPCB, args[0], filename, 31);
	// Null-terminate the string in case it's longer than 31 characters.
	filename[31] = '\0';
	// Set the argument to be the filename
	args[0] = (uint32)filename;
      }
      // Allow Open() calls to be interruptible!
      intrs = EnableIntrs ();
      ProcessSetResult (currentPCB, args[1] + 0x10000);
      printf ("Got an open with parameters ('%s',0x%x)\n", (char *)args[0], args[1]);
      RestoreIntrs (intrs);
      break;
    case TRAP_CLOSE:
      // Allow Close() calls to be interruptible!
      intrs = EnableIntrs ();
      ProcessSetResult (currentPCB, -1);
      RestoreIntrs (intrs);
      break;
    case TRAP_READ:
      // Allow Read() calls to be interruptible!
      intrs = EnableIntrs ();
      ProcessSetResult (currentPCB, -1);
      RestoreIntrs (intrs);
      break;
    case TRAP_WRITE:
      // Allow Write() calls to be interruptible!
      intrs = EnableIntrs ();
      ProcessSetResult (currentPCB, -1);
      RestoreIntrs (intrs);
      break;
    case TRAP_DELETE:
      intrs = EnableIntrs ();
      ProcessSetResult (currentPCB, -1);
      RestoreIntrs (intrs);
      break;
    case TRAP_SEEK:
      intrs = EnableIntrs ();
      ProcessSetResult (currentPCB, -1);
      RestoreIntrs (intrs);
      break;
    case TRAP_PROCESS_GETPID:
      intrs = EnableIntrs ();
      ProcessSetResult (currentPCB, GetCurrentPid());
      RestoreIntrs (intrs);
      break;
    default:
      printf ("Got an unrecognized trap (0x%x) - exiting!\n",
	      cause);
      exitsim ();
      break;
    }
  } else {
    switch (cause) {
    case TRAP_TIMER:
      dbprintf ('t', "Got a timer interrupt!\n");
      ProcessSchedule ();
      break;
    case TRAP_KBD:
      do {
	i = *((uint32 *)DLX_KBD_NCHARSIN);
	result = *((uint32 *)DLX_KBD_GETCHAR);
	printf ("Got a keyboard interrupt (char=0x%x(%c), nleft=%d)!\n",
		result, result, i);
      } while (i > 1);
      break;
    case TRAP_ACCESS:
      printf ("Exiting after illegal access at iar=0x%x, isr=0x%x\n",
	      iar, isr);
      exitsim ();
      break;
    case TRAP_ADDRESS:
      printf ("Exiting after illegal address at iar=0x%x, isr=0x%x\n",
	      iar, isr);
      exitsim ();
      break;
    case TRAP_ILLEGALINST:
      printf ("Exiting after illegal instruction at iar=0x%x, isr=0x%x\n",
	      iar, isr);
      exitsim ();
      break;
    case TRAP_PAGEFAULT:
      printf ("Exiting after page fault at iar=0x%x, isr=0x%x\n",
	      iar, isr);
      exitsim ();
      break;
    default:
      printf ("Got an unrecognized system interrupt (0x%x) - exiting!\n",
	      cause);
      exitsim ();
      break;
    }
  }
  dbprintf ('t',"About to return from dointerrupt.\n");
  // Note that this return may schedule a new process!
  intrreturn ();
}