Example #1
0
// Initialize Pin and SPI like specified into config file
void nrf24l01_init()
{
	// Init SPI pins
	ioport_set_pin_dir(CONF_NRF24L01_SS_PIN, IOPORT_DIR_INPUT);
	ioport_set_pin_mode(CONF_NRF24L01_SS_PIN, IOPORT_MODE_PULLUP);
	ioport_set_pin_dir(CONF_NRF24L01_MOSI_PIN, IOPORT_DIR_OUTPUT);
	ioport_set_pin_mode(CONF_NRF24L01_MOSI_PIN, IOPORT_MODE_PULLUP);
	ioport_set_pin_high(CONF_NRF24L01_MOSI_PIN);
	ioport_set_pin_dir(CONF_NRF24L01_MISO_PIN, IOPORT_DIR_INPUT);
	ioport_set_pin_dir(CONF_NRF24L01_SCK_PIN, IOPORT_DIR_OUTPUT);
	ioport_set_pin_high(CONF_NRF24L01_SCK_PIN);
	
	// Init nrf24l01 pins
	ioport_set_pin_dir(CONF_NRF24L01_CE_PIN, IOPORT_DIR_OUTPUT);
	ioport_set_pin_dir(CONF_NRF24L01_CSn_PIN, IOPORT_DIR_OUTPUT);
	ioport_set_pin_dir(CONF_NRF24L01_IRQ_PIN, IOPORT_DIR_INPUT);

	ioport_set_pin_low(CONF_NRF24L01_CE_PIN);
	spi_deselect_device(&CONF_NRF24L01_SPI, &nrf24l01_spi_device_conf);
	
	spi_master_init(&CONF_NRF24L01_SPI);
	spi_master_setup_device(&CONF_NRF24L01_SPI, &nrf24l01_spi_device_conf, SPI_MODE_0, CONF_NRF24L01_CLOCK_SPEED, 0);
	spi_enable(&CONF_NRF24L01_SPI);
	
	// Wait nrf24l01 power on reset
	delay_ms(Tpor);
	
	nrf24l01_power_off();
	
	// Reset registers to default state
	nrf24l01_write_register(NRF24L01_CONFIG_REG, NRF24L01_CONFIG_REG_DEF);
	nrf24l01_write_register(NRF24L01_STATUS_REG, NRF24L01_STATUS_REG_DEF);
	// TODO: reset all registers
	
	// Config parameters sets in CONF_NRF24L01
	nrf24l01_set_power_amplifier(CONF_NRF24L01_PA);
	nrf24l01_set_data_rate(CONF_NRF24L01_DATA_RATE);
	nrf24l01_set_crc(CONF_NRF24L01_CRC);
	nrf24l01_set_addr_len(CONF_NRF24L01_ADDR_LEN);

	uint8_t nrf24l01_rx_addr[5] = { CONF_NRF24L01_RX_ADDR };
	uint8_t nrf24l01_tx_addr[5] = { CONF_NRF24L01_TX_ADDR };

	nrf24l01_set_rx_addr(nrf24l01_rx_addr);
	nrf24l01_set_tx_addr(nrf24l01_tx_addr);
	
	nrf24l01_write_register(NRF24L01_RF_CH_REG, CONF_NRF24L01_RF_CHANNEL);
	nrf24l01_write_register(NRF24L01_RX_PW_P0_REG, CONF_NRF24L01_PAYLOAD);
	nrf24l01_write_register(NRF24L01_RX_PW_P1_REG, CONF_NRF24L01_PAYLOAD);
	
	// Power-up (Power Down -> Standby-I)
	uint8_t configReg = nrf24l01_read_register(NRF24L01_CONFIG_REG);
	nrf24l01_write_register(NRF24L01_CONFIG_REG, configReg | NRF24L01_PWR_UP_BM);
	
	delay_us(Tpd2stby);
}
uint8_t Radio_Transmit(radiopacket_t* payload, RADIO_TX_WAIT wait)
{
	//if (block && transmit_lock) while (transmit_lock);
	//if (!block && transmit_lock) return 0;
	uint8_t len = 32;

	// indicate that the driver is transmitting.
    transmit_lock = 1;

	// disable the radio while writing to the Tx FIFO.
    ioport_set_pin_low (CE);

	set_tx_mode();

    // for auto-ack to work, the pipe0 address must be set to the Tx address while the radio is transmitting.
    // The register will be set back to the original pipe 0 address when the TX_DS or MAX_RT interrupt is asserted.
    set_register(RX_ADDR_P0, (uint8_t*)tx_address, ADDRESS_LENGTH);

    // transfer the packet to the radio's Tx FIFO for transmission
    send_instruction(W_TX_PAYLOAD, payload, NULL, len);

    // start the transmission.
    ioport_set_pin_high (CE);

    if (wait == RADIO_WAIT_FOR_TX)
    {
    	while (transmit_lock);
    	return tx_last_status;
    }

    return RADIO_TX_SUCCESS;
}
Example #3
0
void SX1276WriteBuffer( uint8_t addr, uint8_t *buffer, uint8_t size )
{

    // #if OPTIMIZE_O0
    //
    //    spi_select_device(&SPIC, &spi_device_conf);
    //    spi_put(&SPIC, addr | 0x80);
    //    spi_write_packet(&SPIC,buffer,size);
    //    spi_deselect_device(&SPIC, &spi_device_conf);
    //
    // #elif  OPTIMIZE_OS

    ioport_set_pin_low(SX1276_CS_PIN);

    SpiInOut(addr | 0x80);

    for( uint16_t i = 0; i < size; i++ )
    {
        // 		usart_spi_write_single(SSD1306_USART_SPI,tx[i]);
        // 		rx[i]=usart_spi_get(SSD1306_USART_SPI);
        SpiInOut(buffer[i]);
    }

    ioport_set_pin_high(SX1276_CS_PIN);


    // #else
    // 	#error Neni definovana optimalizace
    // #endif


}
Example #4
0
void nrf24l01_RX_config_slave(void)
{
	ioport_set_pin_low(nrf24l01S_CE);
	
	SPI_MasterSSHigh(&PORTC, PIN4_bm);
	delay_us(20);
	SPI_MasterSSLow(&PORTC, PIN4_bm);
	delay_us(20);
	
	rf_writebuf_slave(WRITE_REG + RX_ADDR_P0, TX_ADDRESS, TX_ADR_WIDTH);
	rf_writereg_slave(WRITE_REG + EN_AA, 0x01);//enable autoactive 0x01
	rf_writereg_slave(WRITE_REG + EN_RXADDR, 0x01);
	rf_writereg_slave(WRITE_REG + RF_CH, 40);
	rf_writereg_slave(WRITE_REG + RX_PW_P0, TX_PLOAD_WIDTH);
	rf_writereg_slave(WRITE_REG + RF_SETUP, 0x09);
	rf_writereg_slave(WRITE_REG + CONFIG, 0x0f);
	
	//SPI_MasterSSLow(ssPort, PIN4_bm);
	ioport_set_pin_high(nrf24l01S_CE);
	delay_us(150);//at least 130us
	
	PORT_ConfigurePins( &PORTC,
	0x01,	//set pin PK0 as input 'IRQ';
	false,
	false,
	PORT_OPC_TOTEM_gc,
	PORT_ISC_FALLING_gc );//set falling edge as trigger;
	
	PORT_SetPinsAsInput( &PORTC, 0x01 );
	
	/* Configure Interrupt0 to have medium interrupt level, triggered by pin 0. */
	PORT_ConfigureInterrupt0( &PORTC, PORT_INT0LVL_MED_gc, 0x01 );		
}
Example #5
0
void CheckButtons(void)
{
	uint8_t statmp;
	uint8_t checkack;
	if (!ioport_get_value(GPIO_PUSH_BUTTON_4))
	{
		delay_ms(20);
		if (!ioport_get_value(GPIO_PUSH_BUTTON_4))
		{
			ioport_set_pin_low(LED4_GPIO);
			TX_BUF[0] = DATA;
			nrf24l01_TX_config_master(TX_BUF);
			Check_ACK_master(1); 

			delay_ms(100);
			ioport_set_pin_high(LED4_GPIO);
			//nrf24l01_RX_config();
			
			while(!ioport_get_value(GPIO_PUSH_BUTTON_4));	//wait the button the release
			DATA <<= 1;
			if(!DATA)
			   DATA = 0x01;
			   
		}
	}
}
Example #6
0
int main (void)
{
	/* Insert system clock initialization code here (sysclk_init()). */
	board_init();
	sysclk_init();
	delay_init(sysclk_get_cpu_hz());
	
	//gpio_configure_pin(PORTA5,1);
	
	ioport_init();
		
	ioport_set_pin_dir(LED_GREEN,IOPORT_DIR_OUTPUT);
	ioport_set_pin_dir(LED_RED,IOPORT_DIR_OUTPUT);
	
	/* Insert application code here, after the board has been initialized. */
	
	ioport_set_pin_high(LED_RED);
	ioport_set_pin_low(LED_GREEN);
	
	
	
	
	//gpio_set_pin_high(PORTA5);
	
	while(true){
		ioport_toggle_pin(LED_GREEN);
		ioport_toggle_pin(LED_RED);
		delay_ms(500);
	}
	
}
Example #7
0
void SX1276InitIo( void )
{

    ioport_configure_pin(SX1276_MOSI_PIN, IOPORT_DIR_OUTPUT);
    ioport_configure_pin(SX1276_MISO_PIN, IOPORT_DIR_INPUT);
    ioport_configure_pin(SX1276_SCK_PIN, IOPORT_DIR_OUTPUT);
    ioport_configure_pin(SX1276_RxTx_PIN, IOPORT_DIR_OUTPUT);
    ioport_set_pin_high(SX1276_RxTx_PIN);


    // Initializing of GPS SPI - via USART
    //*************************************************************************/
    //ioport_set_pin_dir(SX1276_CS_PIN,   IOPORT_DIR_OUTPUT );
    ioport_configure_pin(SX1276_CS_PIN, IOPORT_DIR_OUTPUT | IOPORT_INIT_HIGH );
    //*************************************************************************//
    //ioport_set_pin_dir(SX1276_RxTx_PIN,  IOPORT_DIR_OUTPUT );
    //ioport_configure_pin(SX1276_RxTx_PIN, IOPORT_DIR_OUTPUT | IOPORT_INIT_HIGH );
    //ioport_set_pin_dir(SX1276_RESET_PIN, IOPORT_DIR_OUTPUT );
    ioport_configure_pin(SX1276_RESET_PIN, IOPORT_DIR_OUTPUT  | IOPORT_INIT_LOW);

    //NIRQ
    //ioport_set_pin_dir(SX1276_DI0_PIN,   IOPORT_DIR_INPUT  );
    ioport_configure_pin(SX1272_DI0_PIN, IOPORT_DIR_INPUT);
// 	ioport_configure_pin(SX1276_DIO1_PIN, IOPORT_DIR_INPUT);
// 	ioport_configure_pin(SX1276_DIO2_PIN, IOPORT_DIR_INPUT);

// 	spi_master_init(&SPIC);
// 	spi_master_setup_device(&SPIC, &spi_device_conf, SPI_MODE_0, 8000000, 0);	//Max 10 MHz
// 	spi_enable(&SPIC);
}
int main(void)
{
	pmic_init();
	board_init();
	sysclk_init();
	sleepmgr_init();

	cpu_irq_enable();

#if (BOARD == XMEGA_A3BU_XPLAINED)
	/* The status LED must be used as LED2, so we turn off
	 * the green led which is in the same packaging. */
	ioport_set_pin_high(LED3_GPIO);
#endif

	/*
	* Unmask clock for TIMER_EXAMPLE
	*/
	tc_enable(&TIMER_EXAMPLE);

	/*
	* Configure interrupts callback functions for TIMER_EXAMPLE
	* overflow interrupt, CCA interrupt and CCB interrupt
	*/
	tc_set_overflow_interrupt_callback(&TIMER_EXAMPLE,
			example_ovf_interrupt_callback);
	tc_set_cca_interrupt_callback(&TIMER_EXAMPLE,
			example_cca_interrupt_callback);
	tc_set_ccb_interrupt_callback(&TIMER_EXAMPLE,
			example_ccb_interrupt_callback);

	/*
	* Configure TC in normal mode, configure period, CCA and CCB
	* Enable both CCA and CCB channels
	*/

	tc_set_wgm(&TIMER_EXAMPLE, TC_WG_NORMAL);
	tc_write_period(&TIMER_EXAMPLE, TIMER_EXAMPLE_PERIOD);
	tc_write_cc(&TIMER_EXAMPLE, TC_CCA, TIMER_EXAMPLE_PERIOD / 2);
	tc_write_cc(&TIMER_EXAMPLE, TC_CCB, TIMER_EXAMPLE_PERIOD / 4);
	tc_enable_cc_channels(&TIMER_EXAMPLE,(enum tc_cc_channel_mask_enable_t)(TC_CCAEN | TC_CCBEN));

	/*
	* Enable TC interrupts (overflow, CCA and CCB)
	*/
	tc_set_overflow_interrupt_level(&TIMER_EXAMPLE, TC_INT_LVL_LO);
	tc_set_cca_interrupt_level(&TIMER_EXAMPLE, TC_INT_LVL_LO);
	tc_set_ccb_interrupt_level(&TIMER_EXAMPLE, TC_INT_LVL_LO);

	/*
	* Run TIMER_EXAMPLE at TIMER_EXAMPLE_PERIOD(31250Hz) resolution
	*/
	tc_set_resolution(&TIMER_EXAMPLE, TIMER_EXAMPLE_PERIOD);

	do {
		/* Go to sleep, everything is handled by interrupts. */
		sleepmgr_enter_sleep();
	} while (1);
}
Example #9
0
int main(void)
{
	struct adc_config         adc_conf;
	struct adc_channel_config adcch_conf;

	board_init();
	sysclk_init();
	sleepmgr_init();
	irq_initialize_vectors();
	cpu_irq_enable();
	gfx_mono_init();

	// Enable back light of display
	ioport_set_pin_high(LCD_BACKLIGHT_ENABLE_PIN);

	// Initialize configuration structures.
	adc_read_configuration(&ADCA, &adc_conf);
	adcch_read_configuration(&ADCA, ADC_CH0, &adcch_conf);

	/* Configure the ADC module:
	 * - unsigned, 12-bit results
	 * - VCC voltage reference
	 * - 200 kHz maximum clock rate
	 * - manual conversion triggering
	 * - temperature sensor enabled
	 * - callback function
	 */
	adc_set_conversion_parameters(&adc_conf, ADC_SIGN_ON, ADC_RES_12,
			ADC_REF_VCC);
	adc_set_clock_rate(&adc_conf, 200000UL);
	adc_set_conversion_trigger(&adc_conf, ADC_TRIG_MANUAL, 1, 0);
	adc_enable_internal_input(&adc_conf, ADC_INT_TEMPSENSE);

	adc_write_configuration(&ADCA, &adc_conf);
	adc_set_callback(&ADCA, &adc_handler);

	/* Configure ADC channel 0:
	 * - single-ended measurement from temperature sensor
	 * - interrupt flag set on completed conversion
	 * - interrupts disabled
	 */
	adcch_set_input(&adcch_conf, ADCCH_POS_PIN1, ADCCH_NEG_NONE,
			1);
	adcch_set_interrupt_mode(&adcch_conf, ADCCH_MODE_COMPLETE);
	adcch_enable_interrupt(&adcch_conf);

	adcch_write_configuration(&ADCA, ADC_CH0, &adcch_conf);

	// Enable the ADC and start the first conversion.
	adc_enable(&ADCA);
	adc_start_conversion(&ADCA, ADC_CH0);

	do {
		// Sleep until ADC interrupt triggers.
		sleepmgr_enter_sleep();
	} while (1);
}
/**
 * \brief This function is used to indicate a test failure
 */
void test_fail_indication(void)
{
	while (1) {
		ioport_set_pin_low(LED_CRIT);
		delay_ms(200);
		ioport_set_pin_high(LED_CRIT);
		delay_ms(200);
	}
}
Example #11
0
int main(void)
{
	board_init();

	// Initialize graphics library
	gfx_mono_init();

	// Enable backlight
	ioport_set_pin_high(LCD_BACKLIGHT_ENABLE_PIN);

	gfx_mono_draw_string("Tests successful: \r\n1   2   3   4   5",
			0, 0, &sysfont);

	if (test_erase() == STATUS_OK) {
		gfx_mono_draw_string("OK",
				0, 2 * SYSFONT_HEIGHT + 1, &sysfont);
	} else {
		gfx_mono_draw_string("ERR",
				0, 2 * SYSFONT_HEIGHT + 1, &sysfont);
	}

	if (test_write() == STATUS_OK) {
		gfx_mono_draw_string("OK",
				4 * SYSFONT_WIDTH, 2 * SYSFONT_HEIGHT + 1, &sysfont);
	} else {
		gfx_mono_draw_string("ERR",
				4 * SYSFONT_WIDTH, 2 * SYSFONT_HEIGHT + 1, &sysfont);
	}

	if (test_atomic_write() == STATUS_OK) {
		gfx_mono_draw_string("OK",
				8 * SYSFONT_WIDTH, 2 * SYSFONT_HEIGHT + 1, &sysfont);
	} else {
		gfx_mono_draw_string("ERR",
				8 * SYSFONT_WIDTH, 2 * SYSFONT_HEIGHT + 1, &sysfont);
	}

	if (test_split_write() == STATUS_OK) {
		gfx_mono_draw_string("OK",
				12 * SYSFONT_WIDTH, 2 * SYSFONT_HEIGHT + 1, &sysfont);
	} else {
		gfx_mono_draw_string("ERR",
				12 * SYSFONT_WIDTH, 2 * SYSFONT_HEIGHT + 1, &sysfont);
	}

	if (test_erase_bytes() == STATUS_OK) {
		gfx_mono_draw_string("OK",
				16 * SYSFONT_WIDTH, 2 * SYSFONT_HEIGHT + 1, &sysfont);
	} else {
		gfx_mono_draw_string("ERR",
				16 * SYSFONT_WIDTH, 2 * SYSFONT_HEIGHT + 1, &sysfont);
	}

	while (true) {}

}
Example #12
0
/**
 * \brief Main application routine
 *  - Initializes the board and LCD display
 *  - Initialize ADC ,to read ADC offset and configure for oversampling
 *  - If number of sample Reached to  total number of oversample required,
 *    call function to start process on oversampled ADC readings
 */
int main( void )
{
	/*
	 * Initialize basic features for the AVR XMEGA family.
	 *  - PMIC is needed to enable all interrupt levels.
	 *  - Board init for setting up GPIO and board specific features.
	 *  - Sysclk init for configuring clock speed and turning off unused
	 *    peripherals.
	 *  - Sleepmgr init for setting up the basics for the sleep manager,
	 */

	board_init();
	sysclk_init();
	pmic_init();
	sleepmgr_init();

	/* Initialize ST7565R controller and LCD display */
	gfx_mono_init();

	/* Display headings on LCD for oversampled result */
	gfx_mono_draw_string("Oversampled", 0, 0, &sysfont);

	/* Display headings on LCD for normal result */
	gfx_mono_draw_string("Normal", 80, 0, &sysfont);

	/* Initialize ADC ,to read ADC offset and configure ADC for oversampling
	**/
	init_adc();

	/* Enable global interrupt */
	cpu_irq_enable();

	/* Switch ON LCD back light */
	ioport_set_pin_high(NHD_C12832A1Z_BACKLIGHT);

	/* Set LCD contrast */
	st7565r_set_contrast(ST7565R_DISPLAY_CONTRAST_MIN);

	/* Continuous Execution Loop */
	while (1) {
		/*
		 * Check if number of sample reached to  total Number of
		 * oversample required by checking status of
		 * adc_oversampled_flag
		 */
		if (adc_oversampled_flag == true) {
			/* Reset the adc_oversampled_flag */
			adc_oversampled_flag = false;

			/* Process all received ADC samples and calculate analog
			 * input */
			adc_oversampled();
		}
	}
}
Example #13
0
int main(void)
{
	board_init();

#if (BOARD == XMEGA_A3BU_XPLAINED)
	/* Turn off status LED and back light,
	 * as it is used to show success of tests. */
	ioport_set_pin_high(LED3_GPIO);

#endif

	if (test_atomic_write_app_table() == STATUS_OK) {
		/* Toggle LED to indicate success */
		gpio_toggle_pin(LED_PIN_0);
	}

	if (test_split_write_app_table() == STATUS_OK) {
		/* Toggle LED to indicate success */
		gpio_toggle_pin(LED_PIN_1);
	}

	if (test_atomic_write_boot() == STATUS_OK) {
		/* Toggle LED to indicate success */
		gpio_toggle_pin(LED_PIN_2);
	}

	if (test_split_write_boot() == STATUS_OK) {
		/* Toggle LED to indicate success */
		gpio_toggle_pin(LED_PIN_3);
	}

#if (BOARD == XMEGA_A3BU_XPLAINED)
	/* Turn on the LCD back light to show that we are done */
	ioport_set_pin_high(LCD_BACKLIGHT_ENABLE_PIN);
#else
	/* Turn on LED 7 to show that we are done */
	gpio_toggle_pin(LED_PIN_7);
#endif

	while (true) {}

}
RADIO_RX_STATUS Radio_Receive(radiopacket_t* buffer)
{
	uint8_t len = 32;
	uint8_t status;
	uint8_t pipe_number;
	uint8_t doMove = 1;
	RADIO_RX_STATUS result;

	transmit_lock = 0;

	ioport_set_pin_low (CE);

    status = get_status();
	pipe_number =  (status & 0xE) >> 1;

	if (pipe_number == RADIO_PIPE_EMPTY)
	{
		result = RADIO_RX_FIFO_EMPTY;
		doMove = 0;
	}

	if (rx_pipe_widths[pipe_number] > len)
	{
		// the buffer isn't big enough, so don't copy the data.
		result = RADIO_RX_INVALID_ARGS;
		doMove = 0;
	}

	if (doMove)
	{
		// Move the data payload into the local
		send_instruction(R_RX_PAYLOAD, (uint8_t*)buffer, (uint8_t*)buffer, rx_pipe_widths[pipe_number]);

		status = get_status();
		pipe_number =  (status & 0xE) >> 1;

		if (pipe_number != RADIO_PIPE_EMPTY)
			result = RADIO_RX_MORE_PACKETS;
		else
			result = RADIO_RX_SUCCESS;
	}

	ioport_set_pin_high (CE);

	transmit_lock = 0;

	//release_radio();

	return result;
}
Example #15
0
void SX1276WriteRxTx( uint8_t txEnable )
{
    if( txEnable != 0 )
    {
        // High in TX
        //ioport_set_pin_level(Sx1276_RxTxSwitch_PIN, true);
        ioport_set_pin_high(SX1276_RxTx_PIN);
    }
    else
    {
        //ioport_set_pin_level(Sx1276_RxTxSwitch_PIN, false);
        ioport_set_pin_low(SX1276_RxTx_PIN);
    }
}
Example #16
0
// Power Up in RX Mode
void nrf24l01_primary_rx()
{
	PTX = 0;
	ioport_set_pin_low(CONF_NRF24L01_CE_PIN);
	
	uint8_t configReg = nrf24l01_read_register(NRF24L01_CONFIG_REG);
	nrf24l01_write_register(NRF24L01_CONFIG_REG, configReg | NRF24L01_PWR_UP_BM | NRF24L01_PRIM_RX_BM);
	
	ioport_set_pin_high(CONF_NRF24L01_CE_PIN);
	delay_us(Tstby2a);
	
	//uint8_t statusReg = nrf24l01_read_register(NRF24L01_STATUS_REG);
	nrf24l01_write_register(NRF24L01_STATUS_REG, NRF24L01_TX_DS_BM | NRF24L01_MAX_RT_BM);
}
Example #17
0
void SX1276ReadBuffer( uint8_t addr, uint8_t *buffer, uint8_t size )
{

    ioport_set_pin_low(SX1276_CS_PIN);

    SpiInOut(addr & 0x7F);

    for( uint16_t i = 0; i < size; i++ )
    {
        // 		usart_spi_write_single(SSD1306_USART_SPI,tx[i]);
        // 		rx[i]=usart_spi_get(SSD1306_USART_SPI);
        buffer[i]=SpiInOut(0xFF);
    }

    ioport_set_pin_high(SX1276_CS_PIN);

}
void Radio_Init()
{
	transmit_lock = 0;

	// disable radio during config
	ioport_set_pin_low (CE);
		
	/* IRQ */
	// Enable radio interrupt.  This interrupt is triggered when data are received and when a transmission completes.
	ioport_configure_port_pin(&PORTC, PIN2_bm, IOPORT_PULL_UP | IOPORT_DIR_INPUT | IOPORT_SENSE_FALLING);
	PORTC.INT0MASK = PIN2_bm;
	PORTC.INTCTRL = PORT_INT0LVL_LO_gc;
	PMIC.CTRL |= PMIC_LOLVLEN_bm;

	/* CE */
	ioport_configure_port_pin(&PORTC, PIN3_bm, IOPORT_INIT_HIGH | IOPORT_DIR_OUTPUT);

	// A 10.3 ms delay is required between power off and power on states (controlled by 3.3 V supply).
	_delay_ms(11);
	
	/* Set up SPI */
	/* Slave select */
	ioport_configure_port_pin(&PORTC, PIN4_bm, IOPORT_INIT_HIGH | IOPORT_DIR_OUTPUT);

	/* MOSI, MISO, SCK */
	ioport_configure_port_pin(&PORTC, PIN5_bm, IOPORT_INIT_HIGH | IOPORT_DIR_OUTPUT);
	ioport_configure_port_pin(&PORTC, PIN6_bm, IOPORT_DIR_INPUT);
	ioport_configure_port_pin(&PORTC, PIN7_bm, IOPORT_INIT_HIGH | IOPORT_DIR_OUTPUT);
	
	spi_master_init(&SPID);
	spi_master_setup_device(&SPID, &spi_device_conf, SPI_MODE_0, 1000000, 0);
	spi_enable(&SPID);

	// Configure the radio registers that are not application-dependent.
	configure_registers();

	// A 1.5 ms delay is required between power down and power up states (controlled by PWR_UP bit in CONFIG)
	_delay_ms(2);

	// enable radio as a receiver
	ioport_set_pin_high (CE);
}
Example #19
0
void nrf24l01_TX_config_slave(uint8_t * writebuf)
{
	ioport_set_pin_low(nrf24l01S_CE);
	
	SPI_MasterSSHigh(&PORTC, PIN4_bm);
	delay_us(20);
	SPI_MasterSSLow(&PORTC, PIN4_bm);
	delay_us(20);
	
	rf_writebuf_slave(WRITE_REG + TX_ADDR, TX_ADDRESS, TX_ADR_WIDTH);
	rf_writebuf_slave(WRITE_REG + RX_ADDR_P0, TX_ADDRESS, TX_ADR_WIDTH);
	rf_writebuf_slave(WR_TX_PLOAD, writebuf, TX_PLOAD_WIDTH);
	rf_writereg_slave(WRITE_REG + EN_AA, 0x01);//enable autoactive 0x01
	rf_writereg_slave(WRITE_REG + EN_RXADDR, 0x01);
	rf_writereg_slave(WRITE_REG + SETUP_RETR, 0x0a);
	rf_writereg_slave(WRITE_REG + RF_CH, 40);
	rf_writereg_slave(WRITE_REG + RF_SETUP, 0x09);
	rf_writereg_slave(WRITE_REG + CONFIG, 0x0e);
	
	ioport_set_pin_high(nrf24l01S_CE);
	delay_us(12);//at least 10us
}
Example #20
0
void nrf24l01_RX_config_master(void)
{
	ioport_set_pin_low(nrf24l01M_CE);
	
	SPI_MasterSSHigh(&PORTF, PIN4_bm);
	delay_us(20);
	SPI_MasterSSLow(&PORTF, PIN4_bm);	
	delay_us(20);
	
	rf_writebuf_master(WRITE_REG + RX_ADDR_P0, TX_ADDRESS, TX_ADR_WIDTH);
	rf_writereg_master(WRITE_REG + EN_AA, 0x01);//enable autoactive 0x01
	rf_writereg_master(WRITE_REG + EN_RXADDR, 0x01);
	rf_writereg_master(WRITE_REG + RF_CH, 40);
	rf_writereg_master(WRITE_REG + RX_PW_P0, TX_PLOAD_WIDTH);
	//rf_writereg(WRITE_REG + RF_SETUP, 0x07);//1Mbps, 0dBm
	rf_writereg_master(WRITE_REG + RF_SETUP, 0x09);
	rf_writereg_master(WRITE_REG + CONFIG, 0x0f);
	
	//SPI_MasterSSLow(ssPort, PIN4_bm);	
	ioport_set_pin_high(nrf24l01M_CE);
	delay_us(150);//at least 130us
}
Example #21
0
// Sends a data package to the default address. Be sure to send the correct
// amount of bytes as configured as payload on the receiver.
void nrf24l01_send_data(uint8_t* value)
{
	// Wait until last packet is sent if in TX mode
	while (PTX) {
		uint8_t status = nrf24l01_read_register(NRF24L01_STATUS_REG);
		// Packet transmitted or Max retransmission
		if((status & (NRF24L01_TX_DS_BM  | NRF24L01_MAX_RT_BM))){
			PTX = 0;
			break;
		}
	}

	nrf24l01_write_register(NRF24L01_STATUS_REG, NRF24L01_TX_DS_BM | NRF24L01_MAX_RT_BM);

	ioport_set_pin_low(CONF_NRF24L01_CE_PIN);
	nrf24l01_primary_tx();
	spi_select_device(&CONF_NRF24L01_SPI, &nrf24l01_spi_device_conf);
	spi_write_single_packet(&CONF_NRF24L01_SPI, NRF24L01_W_TX_PAYLOAD);
	spi_write_packet(&CONF_NRF24L01_SPI, value, CONF_NRF24L01_PAYLOAD);
	spi_deselect_device(&CONF_NRF24L01_SPI, &nrf24l01_spi_device_conf);
	ioport_set_pin_high(CONF_NRF24L01_CE_PIN);                     // Start transmission
	delay_us(Thce);
	delay_us(Tstby2a);
}
Example #22
0
/**
 * \brief Deselect given device on the SPI bus
 *
 * Calls board chip deselect.
 *
 * \param spi Base address of the SPI instance.
 * \param device SPI device
 */
void spi_deselect_device(volatile void *spi, struct spi_device *device)
{
	ioport_set_pin_high(device->id);
}
Example #23
0
static void PowerUpInternalAnalogSensor(void){
	ioport_set_pin_high(INTERNAL_ANALOG_SENSOR_SUPPLY);
}
int main(void)
{
	static uint8_t ret = 0;
	uint8_t i = 0;
	uint8_t ibuf[16] = {0};
	static uint8_t test_pattern[PATTERN_TEST_LENGTH];
	sensor_data_t sensor_data;
	twi_master_options_t opt;

	irq_initialize_vectors();

	sysclk_init();

	/* Initialize the board.
	 * The board-specific conf_board.h file contains the configuration of
	 * the board initialization.
	 */
	board_init();
	gfx_mono_init();
	ioport_set_pin_high(NHD_C12832A1Z_BACKLIGHT);
	gfx_mono_draw_string("Reading....\r\n", 0, 0, &sysfont);
	gfx_mono_generic_draw_filled_rect(0, 8, 128, 8, GFX_PIXEL_CLR);

	/* configure the pins connected to LEDs as output and set their default
	 * initial state to low (LEDs off).
	 */
	ioport_configure_pin(LED_LOW, IOPORT_DIR_OUTPUT);
	ioport_configure_pin(LED_HIGH, IOPORT_DIR_OUTPUT);
	ioport_configure_pin(LED_CRIT, IOPORT_DIR_OUTPUT);
	ioport_configure_pin(LED_NORM, IOPORT_DIR_OUTPUT);

	ioport_set_pin_low(LED_LOW);
	ioport_set_pin_low(LED_HIGH);
	ioport_set_pin_low(LED_CRIT);
	ioport_set_pin_low(LED_NORM);

	/* Configure the ALERT/EVENT pin which is
	 * routed to pin 2 of J2 on A3BU Xplained
	 * This pin can be used for polling or interrupt
	 */
	ioport_configure_pin(EVENT_PIN, IOPORT_DIR_INPUT);

	attach_device(EXAMPLE_TS_DEVICE_ADDR, EXAMPLE_TS_DEVICE);
	opt.chip = EXAMPLE_TS_DEVICE_ADDR;
	opt.speed = TWI_SPEED;

	/* Initialize TWI driver with options */
	twi_master_setup(TWI_MODULE, &opt);

	sensor_data.config_reg.value = 0;
	/* Set configuration register to 12-bis resolution */
	sensor_data.config_reg.option.RES  = AT30TS7_RES12;

	if (write_config(sensor_data.config_reg.value) != TWI_SUCCESS) {
		test_fail_indication();
	}

	/* Set the polarity of ALERT/EVENT pin to low */

	if (set_config_option(&sensor_data, AT30TS_POL, AT30TS7_POL_ACTIVE_LOW) !=
	TWI_SUCCESS) {
	test_fail_indication();
	}

	/* Read the configuration register */
	if (read_config(&sensor_data) != TWI_SUCCESS) {
		test_fail_indication();
	}

#if defined _AT30TS00_ || defined _AT30TSE002B_
	/* Set t_high limit register to +75.0000C */
	if (write_tcrit(pos, 75, 0000) != TWI_SUCCESS) {
		test_fail_indication();
	}
#endif

	/* Set t_high limit register to +50.7500C */
	if (write_temperature_high(pos, 50, 7500) != TWI_SUCCESS) {
		test_fail_indication();
	}

	/* Set t_low limit register to -25.2500C */

	/*
	 * if (write_temperature_low(neg, 25, 2500)!= TWI_SUCCESS) {
	 * test_fail_indication();
	 * }
	 */

	/* Set t_low limit register to +35.5000C */
	if (write_temperature_low(pos, 35, 5000) != TWI_SUCCESS) {
		test_fail_indication();
	}

#if defined _AT30TS00_ || defined _AT30TSE002B_
	/* Read t_crit register register */
	if (read_tcrit(&sensor_data) != TWI_SUCCESS) {
		test_fail_indication();
	}
#endif

	/* Read t_high limit register */
	if (read_temperature_high(&sensor_data) != TWI_SUCCESS) {
		test_fail_indication();
	}

	/* Read t_low register register */
	if (read_temperature_low(&sensor_data) != TWI_SUCCESS) {
		test_fail_indication();
	}

	/* Non volatile register functionality */
#if defined _AT30TS750_  || defined _AT30TSE752_ || \
	defined _AT30TSE754_ || defined _AT30TSE758_

	/* Copy volatile registers to nonvolatile registers
	 * vol configuration register  -> nonvol configuration register
	 * vol t_high register -> nonvol t_high register
	 * vol t_low  register -> nonvol t_low register
	 */
        ret = ts75_copy_vol_nonvol_register();
	if (ret != TWI_SUCCESS) {
		test_fail_indication();
	}

	/* Read the nonvol configuration register */
	if (read_nvconfig(&sensor_data) != TWI_SUCCESS) {
		test_fail_indication();
	}

	/* Read the nonvol t_high register */
	if (read_nvthigh(&sensor_data) != TWI_SUCCESS) {
		test_fail_indication();
	}

	/* Read the nonvol t_low register */
	if (read_nvtlow(&sensor_data) != TWI_SUCCESS) {
		test_fail_indication();
	}

	/* Clear vol configuration register */
	if (write_config(0x0000) != TWI_SUCCESS) {
		test_fail_indication();
	}

	/* Read the vol configuration register */
	if (read_config(&sensor_data) != TWI_SUCCESS) {
		test_fail_indication();
	}

	/* Copy nonvolatile registers to volatile registers */
	if (ts75_copy_nonvol_vol_register() != TWI_SUCCESS) {
		test_fail_indication();
	}

	/* Read the configuration register */
	if (read_config(&sensor_data) != TWI_SUCCESS) {
		test_fail_indication();
	}
#endif
        /* To avoid 'variable unused' warning */
        test_pattern[0] = ibuf[0];
        ibuf[0] = test_pattern[0];

	/* EEPROM Test */
#if defined _AT30TSE002B_  || defined _AT30TSE752_ || \
	defined _AT30TSE754_   || defined _AT30TSE758_

	/* Generate Test Pattern */
	for (i = 0; i < PATTERN_TEST_LENGTH; i++) {
		test_pattern[i] = 0x41 + i; // 'ABCD...'
	}

	/* Perform a write access & check write result */
	if ((ret = ts_write_memory(EE_TEST_ADDR, PATTERN_TEST_LENGTH,
	(void *)test_pattern)) != TWI_SUCCESS) {
		gfx_mono_draw_string("EE Write Failed ", 0, 24, &sysfont);
		test_fail_indication();
	}

	/* Allow time for EEPROM to settle */
	delay_ms(5);
	/* Clear test_pattern */
	memset(ibuf, 0, sizeof(ibuf));

	/* Perform a read access & check read result */
	if (ts_read_eeprom(EE_TEST_ADDR, PATTERN_TEST_LENGTH,
			ibuf) != TWI_SUCCESS) {
		gfx_mono_draw_string("EE Read Failed ", 0, 24, &sysfont);
		test_fail_indication();
	}

	/* Check received data against sent data */
	for (i = 0; i < PATTERN_TEST_LENGTH; i++) {
		if (ibuf[i] != test_pattern[i]) {
			gfx_mono_draw_string("EE Read mismatch ", 0, 24,
				&sysfont);
			test_fail_indication();
		}
	}

	gfx_mono_draw_string("EE Write/Read OK", 0, 24, &sysfont);
	gfx_mono_draw_string((char const*)ibuf, 0, 16, &sysfont);
#endif
	/*
	 * Temperature reading contained in struct,i.e.
	 * temperature register value = 0x3240 (+50.25C), AT30TSE758 device
	 * sensor_data.temperature.itemp = 50 //!< integer part
	 * sensor_data.temperature.ftemp = 2500 //!< fractional part
	 * sensor_data.temperature.sign = 0 //!< sign (pos(+) = 0, neg(-) = 1)
	 * sensor_data.temperature.raw_value = 0x324 //!< raw data
	 */

	char senseData[50] = {0};
	while (1) {
		/* Read temperature */
		read_temperature(&sensor_data);
		sprintf(senseData, "%d.%04d DegC",
					sensor_data.temperature.itemp,
						sensor_data.temperature.ftemp);
		gfx_mono_draw_string(senseData, 0, 8, &sysfont);
		ioport_set_pin_low(LED_NORM);
		delay_ms(200);
		ioport_set_pin_high(LED_NORM);
		delay_ms(200);
	}
}
int main(void)
{
	// Set the sleep mode to initially lock.
	enum sleepmgr_mode mode = SLEEPMGR_ACTIVE;
	PORT_t *port;

	board_init();
	sysclk_init();

	// Turn on LED to indicate the device is active.
	ioport_set_pin_low(LED_PIN);

	// Configure pin change interrupt for asynch. wake-up on button pin.
	ioport_configure_pin(BUTTON_PIN, IOPORT_DIR_INPUT | IOPORT_PULL_UP |
			IOPORT_FALLING);

	port = ioport_pin_to_port(BUTTON_PIN);
#if XMEGA_E
	port->INTMASK = PIN2_bm;
	port->INTCTRL = PORT_INTLVL_LO_gc;
#else
	port->INT0MASK = PIN2_bm;
	port->INTCTRL = PORT_INT0LVL_LO_gc;
#endif


	// Enable RTC with ULP as clock source.
	sysclk_enable_module(SYSCLK_PORT_GEN, SYSCLK_RTC);
	CLK.RTCCTRL = CLK_RTCSRC_ULP_gc | CLK_RTCEN_bm;

	// Configure RTC for wakeup at 1.5 second period (at 256x prescaling).
	RTC.PER = 6;
	RTC.INTCTRL = RTC_OVFINTLVL_LO_gc;

	// Wait until RTC is ready before continuing.
	do { } while (RTC.STATUS & RTC_SYNCBUSY_bm);

	// Initialize the sleep manager, lock initial mode.
	sleepmgr_init();
	sleepmgr_lock_mode(mode);

	// Enable low level interrupts for wakeups to occur.
	PMIC.CTRL = PMIC_LOLVLEN_bm;

	do {
		// Delay for 3 seconds to show the device is awake.
		mdelay(3000);

		// Turn off the LED, restart the RTC and go to sleep.
		ioport_set_pin_high(LED_PIN);
		RTC.CNT = 0;
		RTC.CTRL = RTC_PRESCALER_DIV256_gc;
		do { } while (RTC.STATUS & RTC_SYNCBUSY_bm);
		sleepmgr_enter_sleep();

		// Stop the RTC and turn on the LED.
		RTC.CTRL = RTC_PRESCALER_OFF_gc;
		ioport_set_pin_low(LED_PIN);

		// Unlock current mode, then lock the next one.
		sleepmgr_unlock_mode(mode);
		if (++mode < SLEEPMGR_NR_OF_MODES) {
			sleepmgr_lock_mode(mode);
		} else {
			mode = SLEEPMGR_ACTIVE;
			sleepmgr_lock_mode(mode);
		}
	} while (1);
}
Example #26
0
/**
 * \brief Deselect given device on the SPI bus
 *
 * Calls board chip deselect.
 *
 * \param spi Base address of the SPI instance.
 * \param device SPI device
 *
 * \pre SPI device must be selected with spi_select_device() first
 */
void spi_deselect_device(SPI_t *spi, struct spi_device *device)
{
	ioport_set_pin_high(device->id);	
}
Example #27
0
static void PowerUpVFC(void){
	ioport_set_pin_high(VFC_SUPPLY);
}
Example #28
0
void usart_spi_deselect_device(USART_t *usart, struct usart_spi_device *device)
{
	ioport_set_pin_high(device->id);	
}
Example #29
0
int main(void)
{
	struct adc_config         adc_conf;
	struct adc_channel_config adcch_conf;

	board_init();
	sysclk_init();
	sleepmgr_init();
	irq_initialize_vectors();
	cpu_irq_enable();

	// Initialize configuration structures.
	adc_read_configuration(&ADCA, &adc_conf);
	adcch_read_configuration(&ADCA, ADC_CH0, &adcch_conf);

	/* Configure the ADC module:
	 * - unsigned, 12-bit results
	 * - bandgap (1 V) voltage reference
	 * - 200 kHz maximum clock rate
	 * - manual conversion triggering
	 */
	adc_set_conversion_parameters(&adc_conf, ADC_SIGN_OFF, ADC_RES_12,
			ADC_REF_BANDGAP);
	adc_set_clock_rate(&adc_conf, 200000UL);
	adc_set_conversion_trigger(&adc_conf, ADC_TRIG_MANUAL, 1, 0);

	adc_write_configuration(&ADCA, &adc_conf);

	/* Configure ADC channel 0:
	 * - single-ended measurement from configured input pin
	 * - interrupt flag set on completed conversion
	 */
	adcch_set_input(&adcch_conf, INPUT_PIN, ADCCH_NEG_NONE,
			1);
	adcch_set_interrupt_mode(&adcch_conf, ADCCH_MODE_COMPLETE);
	adcch_disable_interrupt(&adcch_conf);

	adcch_write_configuration(&ADCA, ADC_CH0, &adcch_conf);

	// Enable the ADC and do one dummy conversion.
	adc_enable(&ADCA);
	adc_start_conversion(&ADCA, ADC_CH0);
	adc_wait_for_interrupt_flag(&ADCA, ADC_CH0);

	// Light up LED 1, wait for button press.
	ioport_set_pin_low(LED1_PIN);
	wait_for_button();

	// Perform oversampling of offset.
	cal_data.offset = get_mean_sample_value();

	// Light up LED 2, wait for button press.
	ioport_set_pin_low(LED2_PIN);
	wait_for_button();

	// Perform oversampling of 0.9 V for gain calibration.
	cal_data.gain = get_mean_sample_value() - cal_data.offset;

	// Turn off LEDs.
	ioport_set_pin_high(LED1_PIN);
	ioport_set_pin_high(LED2_PIN);

	// Enable interrupts on ADC channel, then trigger first conversion.
	adcch_enable_interrupt(&adcch_conf);
	adcch_write_configuration(&ADCA, ADC_CH0, &adcch_conf);
	adc_start_conversion(&ADCA, ADC_CH0);

	do {
		// Sleep until ADC interrupt triggers.
		sleepmgr_enter_sleep();
	} while (1);
}