Example #1
0
static void controller_smart_access_complete (controller *currctlr, ioreq_event *curr)
{
   struct ioq *queue = currctlr->devices[curr->devno].queue;
   ioreq_event *done = ioreq_copy(curr);
   int devno = curr->devno;
   int numout;

   /* Responds to completion interrupt */

   done->type = IO_INTERRUPT_COMPLETE;
   currctlr->outbusowned = controller_get_downward_busno(currctlr, done, NULL);
   controller_send_event_down_path(currctlr, done, currctlr->ovrhd_disk_complete);
   currctlr->outbusowned = -1;

   /* Handles request completion, including call-backs into cache */

   curr = ioqueue_physical_access_done(queue, curr);
   while ((done = curr)) {
      curr = curr->next;
      /* call back into cache with completion -- let it do request_complete */
      controller_smart_wakeup(currctlr, currctlr->cache->cache_disk_access_complete(currctlr->cache, done));
   }

   /* Initiate another request, if any pending */

   numout = ioqueue_get_reqoutstanding(queue);
   if ((numout < currctlr->devices[devno].maxoutstanding) && (curr = ioqueue_get_next_request(queue))) {
      controller_send_event_down_path(currctlr, curr, currctlr->ovrhd_disk_request);
   }
}
Example #2
0
File: ssd.c Project: vishnu89/gijoe
static void ssd_access_complete_element(ioreq_event *curr)
{
   ssd_t *currdisk;
   int elem_num;
   ssd_element  *elem;
   ioreq_event *x;

   currdisk = getssd (curr->devno);
   elem_num = currdisk->timing_t->choose_element(currdisk->timing_t, curr->blkno);
   ASSERT(elem_num == curr->ssd_elem_num);
   elem = &currdisk->elements[elem_num];

   if ((x = ioqueue_physical_access_done(elem->queue,curr)) == NULL) {
      fprintf(stderr, "ssd_access_complete:  ioreq_event not found by ioqueue_physical_access_done call\n");
      exit(1);
   }

   // all the reqs are over
   if (ioqueue_get_reqoutstanding(elem->queue) == 0) {
    elem->media_busy = FALSE;
   }

   ssd_complete_parent(curr, currdisk);
   addtoextraq((event *) curr);
   ssd_activate_elem(currdisk, elem_num);
}
Example #3
0
static void simpledisk_request_arrive (ioreq_event *curr)
{
   ioreq_event *intrp;
   simpledisk_t *currdisk;

#ifdef DEBUG_SIMPLEDISK
   fprintf (outputfile, "*** %f: simpledisk_request_arrive - devno %d, blkno %d, bcount %d, flags 0x%x\n", simtime, curr->devno, curr->blkno, curr->bcount, curr->flags );
#endif

   currdisk = getsimpledisk(curr->devno);

   /* verify that request is valid. */
   if ((curr->blkno < 0) || (curr->bcount <= 0) ||
       ((curr->blkno + curr->bcount) > currdisk->numblocks)) {
      fprintf(stderr, "Invalid set of blocks requested from simpledisk - blkno %lld, bcount %d, numblocks %lld\n", curr->blkno, curr->bcount, currdisk->numblocks);
      exit(1);
   }

   /* create a new request, set it up for initial interrupt */
   currdisk->busowned = simpledisk_get_busno(curr);

   if (ioqueue_get_reqoutstanding (currdisk->queue) == 0) {
      ioqueue_add_new_request(currdisk->queue, curr);
      curr = ioqueue_get_next_request (currdisk->queue);
      intrp = curr;

      /* initiate media access if request is a READ */
      if (curr->flags & READ) {
         ioreq_event *tmp = ioreq_copy (curr);
         currdisk->media_busy = TRUE;
         stat_update (&currdisk->stat.acctimestats, currdisk->acctime);
         tmp->time = simtime + currdisk->acctime;
         tmp->type = DEVICE_ACCESS_COMPLETE;
         addtointq ((event *)tmp);
      }

      /* if not disconnecting, then the READY_TO_TRANSFER is like a RECONNECT */
      currdisk->reconnect_reason = IO_INTERRUPT_ARRIVE;
      if (curr->flags & READ) {
         intrp->cause = (currdisk->neverdisconnect) ? READY_TO_TRANSFER : DISCONNECT;
      } else {
         intrp->cause = READY_TO_TRANSFER;
      }

   } else {
      intrp = ioreq_copy(curr);
      ioqueue_add_new_request(currdisk->queue, curr);
      intrp->cause = DISCONNECT;
   }

   intrp->type = IO_INTERRUPT_ARRIVE;
   simpledisk_send_event_up_path(intrp, currdisk->bus_transaction_latency);
}
Example #4
0
static void ssd_access_complete_element(ioreq_event *curr)
{
   ssd_t *currdisk;
   int elem_num;
   ssd_element  *elem;
   ioreq_event *x;
   int lba;

   currdisk = getssd (curr->devno);
   elem_num = ssd_choose_element(currdisk->user_params, curr->blkno);
   ASSERT(elem_num == curr->ssd_elem_num);
   elem = &currdisk->elements[elem_num];

   lba = ssd_logical_pageno(curr->blkno, currdisk);

   if(curr->flags & READ){
	   fprintf(outputfile5, "%10.6f %d %d %d\n", simtime, lba, elem_num, curr->blkno); 
   }
   else {
	   fprintf(outputfile4, "%10.6f %d %d %d\n", simtime, lba, elem_num, curr->blkno); 
   }

   if ((x = ioqueue_physical_access_done(elem->queue,curr)) == NULL) {
      fprintf(stderr, "ssd_access_complete:  ioreq_event not found by ioqueue_physical_access_done call\n");
      exit(1);
   }

   ssd_dpower(currdisk, 0);

   // all the reqs are over
   if (ioqueue_get_reqoutstanding(elem->queue) == 0) {
		elem->media_busy = FALSE;
   }

   ssd_complete_parent(curr, currdisk);
   addtoextraq((event *) curr);


   // added by tiel
   // activate request create simtime, type, elem_num
   //{
	  // ioreq_event *temp = (ioreq_event *)getfromextraq();
	  // temp->type = SSD_ACTIVATE_ELEM;
	  // temp->time = simtime + (2*currdisk->params.channel_switch_delay);
	  // //temp->time = simtime;
	  // temp->ssd_elem_num = elem_num;
	  // addtointq ((event *)temp);
   //}

   //printf("time %f \n",simtime);
   ssd_activate_elem(currdisk, elem_num);
}
Example #5
0
static void controller_smart_issue_access (void *issuefuncparam, ioreq_event *curr)
{
   controller *currctlr = issuefuncparam;
   struct ioq *queue = currctlr->devices[curr->devno].queue;
   int numout = ioqueue_get_reqoutstanding(queue);

   /* in case the cache changes to which device the request is sent */
//fprintf (stderr, "busno %x, buspath %x, slotno %x, slotpath %x\n", curr->busno, currctlr->devices[curr->devno].buspath.value, curr->slotno, currctlr->devices[curr->devno].slotpath.value);
   curr->busno = currctlr->devices[curr->devno].buspath.value;
   curr->slotno = currctlr->devices[curr->devno].slotpath.value;

   ioqueue_add_new_request(queue, curr);
   if (numout < currctlr->devices[curr->devno].maxoutstanding) {
      ioreq_event *sched = ioqueue_get_next_request(queue);
      controller_send_event_down_path(currctlr, sched, currctlr->ovrhd_disk_request);
   }
}
Example #6
0
static int check_send_out_request (iodriver *curriodriver, int devno)
{
   int numout;

   if ((curriodriver->consttime == IODRIVER_TRACED_QUEUE_TIMES) || (curriodriver->consttime == IODRIVER_TRACED_BOTH_TIMES)) {
      return(FALSE);
   }
   numout = ioqueue_get_reqoutstanding(curriodriver->devices[devno].queue);
   if (curriodriver->usequeue == TRUE) {
      int queuectlr = curriodriver->devices[devno].queuectlr;
      if (queuectlr != -1) {
         numout = curriodriver->ctlrs[queuectlr].numoutstanding;
/*
fprintf (outputfile, "Check send_out_req: queuectlr %d, numout %d, maxout %d, send %d\n", queuectlr, numout, curriodriver->ctlrs[queuectlr].maxoutstanding, (numout < curriodriver->ctlrs[queuectlr].maxoutstanding));
*/
         return(numout < curriodriver->ctlrs[queuectlr].maxoutstanding);
      } else {
         return(numout < curriodriver->devices[devno].maxoutstanding);
      }
   } else {
      return(!numout);
   }
}
Example #7
0
static void ssd_access_complete_element(ioreq_event *curr)
{
   ssd_t *currdisk;
   int elem_num;
   ssd_element  *elem;
   ioreq_event *x;
   int lba;

   currdisk = getssd (curr->devno);
   elem_num = ssd_choose_element(currdisk->user_params, curr->blkno);
   ASSERT(elem_num == curr->ssd_elem_num);
   elem = &currdisk->elements[elem_num];
   lba = ssd_logical_blockno(curr->blkno, currdisk);

   if(curr->flags & READ){
	   fprintf(outputfile5, "%10.6f %d %d %d\n", simtime, lba, elem_num, curr->blkno); 
   }
   else {
	   fprintf(outputfile4, "%10.6f %d %d %d\n", simtime, lba, elem_num, curr->blkno); 
   }

   if ((x = ioqueue_physical_access_done(elem->queue,curr)) == NULL) {
      fprintf(stderr, "ssd_access_complete:  ioreq_event not found by ioqueue_physical_access_done call\n");
      exit(1);
   }

   ssd_dpower(currdisk, 0);

   // all the reqs are over
   if (ioqueue_get_reqoutstanding(elem->queue) == 0) {
		elem->media_busy = FALSE;
   }

   ssd_complete_parent(curr, currdisk);
   addtoextraq((event *) curr);
   ssd_activate_elem(currdisk, elem_num);
}
Example #8
0
/*
 * collects 1 request from each chip in the gang
 */
static void ssd_collect_req_in_gang
(ssd_t *s, int gang_num, ssd_req ***rd_q, ssd_req ***wr_q, int *rd_total, int *wr_total)
{
    int i;
    int start;
    gang_metadata *g;

    g = &s->gang_meta[gang_num];

    // start from the first element of the gang
    start = gang_num * s->params.elements_per_gang;
    i = start;

    *rd_total = 0;
    *wr_total = 0;

    do {
        ssd_element *elem;
        ioreq_event *req;
        int tot_rd_reqs;
        int tot_wr_reqs;
        int j;

        elem = &s->elements[i];
        ASSERT(ioqueue_get_reqoutstanding(elem->queue) == 0);
        j = i % s->params.elements_per_gang;

        // collect the requests
        tot_rd_reqs = 0;
        tot_wr_reqs = 0;
        if ((req = ioqueue_get_next_request(elem->queue)) != NULL) {
            int found;

            if (req->flags & READ) {
                found = ssd_already_present(rd_q[j], tot_rd_reqs, req);
            } else {
                found = ssd_already_present(wr_q[j], tot_wr_reqs, req);
            }

            if (!found) {
                // this is a valid request
                ssd_req *r = malloc(sizeof(ssd_req));
                r->blk = req->blkno;
                r->count = req->bcount;
                r->is_read = req->flags & READ;
                r->org_req = req;
                r->plane_num = -1; // we don't know to which plane this req will be directed at

                if (req->flags & READ) {
                    rd_q[j][tot_rd_reqs] = r;
                    tot_rd_reqs ++;
                } else {
                    wr_q[j][tot_wr_reqs] = r;
                    tot_wr_reqs ++;
                }
            } else {
                // throw this request -- it doesn't make sense
                stat_update (&s->stat.acctimestats, 0);
                req->time = simtime;
                req->ssd_elem_num = i;
                req->ssd_gang_num = gang_num;

                req->type = DEVICE_ACCESS_COMPLETE;
                addtointq ((event *)req);
            }

            ASSERT((tot_rd_reqs < MAX_REQS) && (tot_wr_reqs < MAX_REQS))
        }

        *rd_total = *rd_total + tot_rd_reqs;
        *wr_total = *wr_total + tot_wr_reqs;

        // go to the next element
        i = ssd_next_elem_in_gang(s, gang_num, i);
    } while (i != start);
Example #9
0
File: ssd.c Project: vishnu89/gijoe
static void ssd_activate_elem(ssd_t *currdisk, int elem_num)
{
    ioreq_event *req;
    ssd_req **read_reqs;
    ssd_req **write_reqs;
    int i;
    int read_total = 0;
    int write_total = 0;
    double schtime = 0;
    int max_reqs;
    int tot_reqs_issued;
    double max_time_taken = 0;


    ssd_element *elem = &currdisk->elements[elem_num];

    // if the media is busy, we can't do anything, so return
    if (elem->media_busy == TRUE) {
        return;
    }

    ASSERT(ioqueue_get_reqoutstanding(elem->queue) == 0);

    // we can invoke cleaning in the background whether there
    // is request waiting or not
    if (currdisk->params.cleaning_in_background) {
        // if cleaning was invoked, wait until
        // it is over ...
        if (ssd_invoke_element_cleaning(elem_num, currdisk)) {
            return;
        }
    }

    ASSERT(elem->metadata.reqs_waiting == ioqueue_get_number_in_queue(elem->queue));

    if (elem->metadata.reqs_waiting > 0) {

        // invoke cleaning in foreground when there are requests waiting
        if (!currdisk->params.cleaning_in_background) {
            // if cleaning was invoked, wait until
            // it is over ...
            if (ssd_invoke_element_cleaning(elem_num, currdisk)) {
                return;
            }
        }

        // how many reqs can we issue at once
        if (currdisk->params.copy_back == SSD_COPY_BACK_DISABLE) {
            max_reqs = 1;
        } else {
            if (currdisk->params.num_parunits == 1) {
                max_reqs = 1;
            } else {
                max_reqs = MAX_REQS_ELEM_QUEUE;
            }
        }

        // ideally, we should issue one req per plane, overlapping them all.
        // in order to simplify the overlapping strategy, let's issue
        // requests of the same type together.

        read_reqs = (ssd_req **) malloc(max_reqs * sizeof(ssd_req *));
        write_reqs = (ssd_req **) malloc(max_reqs * sizeof(ssd_req *));

        // collect the requests
        while ((req = ioqueue_get_next_request(elem->queue)) != NULL) {
            int found = 0;

            elem->metadata.reqs_waiting --;

            // see if we already have the same request in the list.
            // this usually doesn't happen -- but on synthetic traces
            // this weird case can occur.
            if (req->flags & READ) {
                found = ssd_already_present(read_reqs, read_total, req);
            } else {
                found = ssd_already_present(write_reqs, write_total, req);
            }

            if (!found) {
                // this is a valid request
                ssd_req *r = malloc(sizeof(ssd_req));
                r->blk = req->blkno;
                r->count = req->bcount;
                r->is_read = req->flags & READ;
                r->org_req = req;
                r->plane_num = -1; // we don't know to which plane this req will be directed at

                if (req->flags & READ) {
                    read_reqs[read_total] = r;
                    read_total ++;
                } else {
                    write_reqs[write_total] = r;
                    write_total ++;
                }

                // if we have more reqs than we can handle, quit
                if ((read_total >= max_reqs) ||
                    (write_total >= max_reqs)) {
                    break;
                }
            } else {
                // throw this request -- it doesn't make sense
                stat_update (&currdisk->stat.acctimestats, 0);
                req->time = simtime;
                req->ssd_elem_num = elem_num;
                req->type = DEVICE_ACCESS_COMPLETE;
                addtointq ((event *)req);
            }
        }

        if (read_total > 0) {
            // first issue all the read requests (it doesn't matter what we
            // issue first). i chose read because reads are mostly synchronous.
            // find the time taken to serve these requests.
            ssd_compute_access_time(currdisk, elem_num, read_reqs, read_total);

            // add an event for each request completion
            for (i = 0; i < read_total; i ++) {
              elem->media_busy = TRUE;

              // find the maximum time taken by a request
              if (schtime < read_reqs[i]->schtime) {
                  schtime = read_reqs[i]->schtime;
              }

              stat_update (&currdisk->stat.acctimestats, read_reqs[i]->acctime);
              read_reqs[i]->org_req->time = simtime + read_reqs[i]->schtime;
              read_reqs[i]->org_req->ssd_elem_num = elem_num;
              read_reqs[i]->org_req->type = DEVICE_ACCESS_COMPLETE;

              //printf("R: blk %d elem %d acctime %f simtime %f\n", read_reqs[i]->blk,
                //  elem_num, read_reqs[i]->acctime, read_reqs[i]->org_req->time);

              addtointq ((event *)read_reqs[i]->org_req);
              free(read_reqs[i]);
            }
        }

        free(read_reqs);

        max_time_taken = schtime;

        if (write_total > 0) {
            // next issue the write requests
            ssd_compute_access_time(currdisk, elem_num, write_reqs, write_total);

            // add an event for each request completion.
            // note that we can issue the writes only after all the reads above are
            // over. so, include the maximum read time when creating the event.
            for (i = 0; i < write_total; i ++) {
              elem->media_busy = TRUE;

              stat_update (&currdisk->stat.acctimestats, write_reqs[i]->acctime);
              write_reqs[i]->org_req->time = simtime + schtime + write_reqs[i]->schtime;
              //printf("blk %d elem %d acc time %f\n", write_reqs[i]->blk, elem_num, write_reqs[i]->acctime);

              if (max_time_taken < (schtime+write_reqs[i]->schtime)) {
                  max_time_taken = (schtime+write_reqs[i]->schtime);
              }

              write_reqs[i]->org_req->ssd_elem_num = elem_num;
              write_reqs[i]->org_req->type = DEVICE_ACCESS_COMPLETE;
              //printf("W: blk %d elem %d acctime %f simtime %f\n", write_reqs[i]->blk,
                //  elem_num, write_reqs[i]->acctime, write_reqs[i]->org_req->time);

              addtointq ((event *)write_reqs[i]->org_req);
              free(write_reqs[i]);
            }
        }

        free(write_reqs);

        // statistics
        tot_reqs_issued = read_total + write_total;
        ASSERT(tot_reqs_issued > 0);
        currdisk->elements[elem_num].stat.tot_reqs_issued += tot_reqs_issued;
        currdisk->elements[elem_num].stat.tot_time_taken += max_time_taken;
    }
}