Example #1
0
  void rewriteFunctionType(TypeFunction *tf, IrFuncTy &fty) override {
    Type *retTy = fty.ret->type->toBasetype();
    if (!fty.ret->byref && retTy->ty == Tstruct) {
      // Rewrite HFAs only because union HFAs are turned into IR types that are
      // non-HFA and messes up register selection
      if (isHFA((TypeStruct *)retTy, &fty.ret->ltype)) {
        fty.ret->rewrite = &hfaToArray;
        fty.ret->ltype = hfaToArray.type(fty.ret->type);
      }
      else {
        fty.ret->rewrite = &integerRewrite;
        fty.ret->ltype = integerRewrite.type(fty.ret->type);
      }
    }

    for (auto arg : fty.args) {
      if (!arg->byref)
        rewriteArgument(fty, *arg);
    }

    // extern(D): reverse parameter order for non variadics, for DMD-compliance
    if (tf->linkage == LINKd && tf->varargs != 1 && fty.args.size() > 1) {
      fty.reverseParams = true;
    }
  }
Example #2
0
  void rewriteArgument(IrFuncTy &fty, IrFuncTyArg &arg) override {
    // structs and arrays need rewrite as i32 arrays.  This keeps data layout
    // unchanged when passed in registers r0-r3 and is necessary to match C ABI
    // for struct passing.  Without out this rewrite, each field or array
    // element is passed in own register.  For example: char[4] now all fits in
    // r0, where before it consumed r0-r3.
    Type *ty = arg.type->toBasetype();

    // TODO: want to also rewrite Tsarray as i32 arrays, but sometimes
    // llvm selects an aligned ldrd instruction even though the ptr is
    // unaligned (e.g. walking through members of array char[5][]).
    // if (ty->ty == Tstruct || ty->ty == Tsarray)
    if (ty->ty == Tstruct) {
      // Rewrite HFAs only because union HFAs are turned into IR types that are
      // non-HFA and messes up register selection
      if (isHFA((TypeStruct *)ty, &arg.ltype)) {
        arg.rewrite = &hfaToArray;
      } else if (DtoAlignment(ty) <= 4) {
        arg.rewrite = &compositeToArray32;
        arg.ltype = compositeToArray32.type(arg.type);
      } else {
        arg.rewrite = &compositeToArray64;
        arg.ltype = compositeToArray64.type(arg.type);
      }
    }
  }
Example #3
0
bool use_sret(jl_datatype_t *dt) override
{
    jl_datatype_t *ty0 = NULL;
    bool hva = false;
    if (jl_datatype_size(dt) > 16 && isHFA(dt, &ty0, &hva) > 8)
        return true;
    return false;
}
Example #4
0
bool needPassByRef(jl_datatype_t *dt, AttrBuilder &ab) override
{
    jl_datatype_t *ty0 = NULL;
    bool hva = false;
    if (jl_datatype_size(dt) > 64 && isHFA(dt, &ty0, &hva) > 8) {
        ab.addAttribute(Attribute::ByVal);
        return true;
    }
    return false;
}
Example #5
0
  void rewriteArgument(IrFuncTy &fty, IrFuncTyArg &arg) override {
    // FIXME
    Type *ty = arg.type->toBasetype();

    if (ty->ty == Tstruct || ty->ty == Tsarray) {
      // Rewrite HFAs only because union HFAs are turned into IR types that are
      // non-HFA and messes up register selection
      if (ty->ty == Tstruct && isHFA((TypeStruct *)ty, &arg.ltype)) {
        hfaToArray.applyTo(arg, arg.ltype);
      } else {
        compositeToArray64.applyTo(arg);
      }
    }
  }
Example #6
0
  bool returnInArg(TypeFunction *tf) override {
    if (tf->isref) {
      return false;
    }

    Type *rt = tf->next->toBasetype();

    // FIXME
    if (tf->linkage == LINKd)
      return rt->ty == Tsarray || rt->ty == Tstruct;

    return rt->ty == Tsarray ||
      (rt->ty == Tstruct && rt->size() > 16 && !isHFA((TypeStruct *)rt));
  }
Example #7
0
// count the homogeneous floating agregate size (saturating at max count of 8)
unsigned isHFA(jl_datatype_t *ty, jl_datatype_t **ty0, bool *hva) const
{
    size_t i, l = ty->layout->nfields;
    // handle homogeneous float aggregates
    if (l == 0) {
        if (ty != jl_float64_type && ty != jl_float32_type)
            return 9;
        *hva = false;
        if (*ty0 == NULL)
            *ty0 = ty;
        else if (*hva || ty->size != (*ty0)->size)
            return 9;
        return 1;
    }

    // handle homogeneous vector aggregates
    jl_datatype_t *fld0 = (jl_datatype_t*)jl_field_type(ty, 0);
    if (!jl_is_datatype(fld0) || ty->name == jl_vecelement_typename)
        return 9;
    if (fld0->name == jl_vecelement_typename) {
        if (!jl_is_primitivetype(jl_tparam0(fld0)) || jl_datatype_size(ty) > 16)
            return 9;
        if (l != 1 && l != 2 && l != 4 && l != 8 && l != 16)
            return 9;
        *hva = true;
        if (*ty0 == NULL)
            *ty0 = ty;
        else if (!*hva || ty->size != (*ty0)->size)
            return 9;
        for (i = 1; i < l; i++) {
            jl_datatype_t *fld = (jl_datatype_t*)jl_field_type(ty, i);
            if (fld != fld0)
                return 9;
        }
        return 1;
    }

    // recurse through other struct types
    int n = 0;
    for (i = 0; i < l; i++) {
        jl_datatype_t *fld = (jl_datatype_t*)jl_field_type(ty, i);
        if (!jl_is_datatype(fld) || ((jl_datatype_t*)fld)->layout == NULL)
            return 9;
        n += isHFA((jl_datatype_t*)fld, ty0, hva);
        if (n > 8)
            return 9;
    }
    return n;
}
Example #8
0
  bool returnInArg(TypeFunction *tf) override {
    // AAPCS 5.4 wants composites > 4-bytes returned by arg except for
    // Homogeneous Aggregates of up-to 4 float types (6.1.2.1) - an HFA.
    // TODO: see if Tsarray should be candidate for HFA.
    if (tf->isref)
      return false;
    Type *rt = tf->next->toBasetype();

    if (!isPOD(rt))
      return true;

    return rt->ty == Tsarray ||
           (rt->ty == Tstruct && rt->size() > 4 &&
             (gTargetMachine->Options.FloatABIType == llvm::FloatABI::Soft ||
             !isHFA((TypeStruct *)rt)));
  }
Example #9
0
  void rewriteFunctionType(IrFuncTy &fty) override {
    Type *retTy = fty.ret->type->toBasetype();
    if (!fty.ret->byref && retTy->ty == Tstruct) {
      // Rewrite HFAs only because union HFAs are turned into IR types that are
      // non-HFA and messes up register selection
      if (isHFA((TypeStruct *)retTy, &fty.ret->ltype)) {
        hfaToArray.applyTo(*fty.ret, fty.ret->ltype);
      } else {
        integerRewrite.applyTo(*fty.ret);
      }
    }

    for (auto arg : fty.args) {
      if (!arg->byref)
        rewriteArgument(fty, *arg);
    }
  }
Example #10
0
 void rewriteArgument(IrFuncTy &fty, IrFuncTyArg &arg) override {
   Type *ty = arg.type->toBasetype();
   if (ty->ty == Tstruct || ty->ty == Tsarray) {
     if (ty->ty == Tstruct && isHFA((TypeStruct *)ty, &arg.ltype, 8)) {
       arg.rewrite = &hfaToArray;
       arg.ltype = hfaToArray.type(arg.type);
     } else if (canRewriteAsInt(ty, true)) {
       arg.rewrite = &integerRewrite;
       arg.ltype = integerRewrite.type(arg.type);
     } else {
       arg.rewrite = &compositeToArray64;
       arg.ltype = compositeToArray64.type(arg.type);
     }
   } else if (ty->isintegral()) {
     arg.attrs.add(ty->isunsigned() ? LLAttribute::ZExt : LLAttribute::SExt);
   }
 }
Example #11
0
Type *preferred_llvm_type(jl_datatype_t *dt, bool isret) const override
{
    // Arguments are either scalar or passed by value
    size_t size = jl_datatype_size(dt);
    // don't need to change bitstypes
    if (!jl_datatype_nfields(dt))
        return NULL;
    // legalize this into [n x f32/f64]
    jl_datatype_t *ty0 = NULL;
    bool hva = false;
    int hfa = isHFA(dt, &ty0, &hva);
    if (hfa <= 8) {
        if (ty0 == jl_float32_type) {
            return ArrayType::get(T_float32, hfa);
        }
        else if (ty0 == jl_float64_type) {
            return ArrayType::get(T_float64, hfa);
        }
        else {
            jl_datatype_t *vecty = (jl_datatype_t*)jl_field_type(ty0, 0);
            assert(jl_is_datatype(vecty) && vecty->name == jl_vecelement_typename);
            jl_value_t *elemty = jl_tparam0(vecty);
            assert(jl_is_primitivetype(elemty));

            Type *ety = julia_type_to_llvm(elemty);
            Type *vty = VectorType::get(ety, jl_datatype_nfields(ty0));
            return ArrayType::get(vty, hfa);
        }
    }
    // rewrite integer-sized (non-HFA) struct to an array
    // the bitsize of the integer gives the desired alignment
    if (size > 8) {
        if (jl_datatype_align(dt) <= 8) {
            return ArrayType::get(T_int64, (size + 7) / 8);
        }
        else {
            Type *T_int128 = Type::getIntNTy(jl_LLVMContext, 128);
            return ArrayType::get(T_int128, (size + 15) / 16);
        }
    }
    return Type::getIntNTy(jl_LLVMContext, size * 8);
}
Example #12
0
  void rewriteFunctionType(TypeFunction *tf, IrFuncTy &fty) override {
    Type *retTy = fty.ret->type->toBasetype();
    if (!fty.ret->byref && retTy->ty == Tstruct) {
      // Rewrite HFAs only because union HFAs are turned into IR types that are
      // non-HFA and messes up register selection
      if (isHFA((TypeStruct *)retTy, &fty.ret->ltype)) {
        fty.ret->rewrite = &hfaToArray;
        fty.ret->ltype = hfaToArray.type(fty.ret->type);
      }
      else {
        fty.ret->rewrite = &integerRewrite;
        fty.ret->ltype = integerRewrite.type(fty.ret->type);
      }
    }

    for (auto arg : fty.args) {
      if (!arg->byref)
        rewriteArgument(fty, *arg);
      else if (passByVal(arg->type))
        arg->attrs.remove(LLAttribute::ByVal);
    }
  }
Example #13
0
 bool passByVal(TypeFunction *, Type *t) override {
   t = t->toBasetype();
   return t->ty == Tsarray ||
          (t->ty == Tstruct && t->size() > 16 && !isHFA((TypeStruct *)t));
 }