Example #1
0
static int
subgGetPerf( unsigned int kflags,
    const void *args )
{
    DUMMY_ARG_USAGE(args);

    if( !isMatrixAccessColMaj( CLBLAS_TRMM, kflags, MATRIX_A ) &&
        !isMatrixAccessColMaj( CLBLAS_TRMM, kflags, MATRIX_B ) ){

        return PPERF_GOOD;
    }

    return PPERF_NOT_SUPPORTED;
}
Example #2
0
static void
fixupArgs(void *args, SubproblemDim *subdims, void *extra)
{
    CLBlasKargs *kargs = (CLBlasKargs*)args;
    KernelExtraFlags kflags = ((CLBLASKernExtra*)extra)->flags;

    const size_t nChans = 8; // !!!DEVICE DEPENDED!!!
    const size_t wideChans = 64; // !!!DEVICE DEPENDED!!!
    const size_t sizeType[] = {1,2,2,4};

    size_t sizeBlock = wideChans * nChans / sizeType[kargs->dtype];
    size_t off = kargs->K % sizeBlock;
    extraData_t *extraData = (extraData_t*)&((CLBLASKernExtra*)extra)->solverPriv;
    if (off == 0 && !isMatrixAccessColMaj(CLBLAS_GEMV, kflags, MATRIX_A)) {
        /*
         * FIXME: staggered access is not enabled now since for some reason
         *        it leads to slowdown at small sizes
         */
        extraData->staggered = 0; // wideChans / sizeType[kargs->dtype];
    }
    else {
        extraData->staggered = 0;
    }

    (void)subdims;

    off = (kargs->offsetM) ? kargs->offsetM : kargs->offsetN;
    if (off) {
        if (isMatrixAccessColMaj(CLBLAS_GEMV, kflags, MATRIX_A)) {
            kargs->offA += off;
        }
        else {
            kargs->offA += off * kargs->lda.matrix;
        }
        if (kargs->ldc.vector < 0) {
            // K store the original height of the matrix A
            kargs->offCY += (kargs->K - off) * abs(kargs->ldc.vector);
        }
        else {
            kargs->offCY += off * kargs->ldc.vector;
        }
    }

    kargs->offsetM = kargs->offsetN = 0;

}
Example #3
0
static void
initKernelVarNames(KernelVarNames *kvars, KernelExtraFlags kflags)
{
    kvars->A = "imgA";
    kvars->B = "imgB";
    if (isMatrixAccessColMaj(CLBLAS_GEMM, kflags, MATRIX_A)) {
        kvars->coordA = "coordA.x";
    }
    else {
        kvars->coordA = "coordA.y";
    }
    if (isMatrixAccessColMaj(CLBLAS_GEMM, kflags, MATRIX_B)) {
        kvars->coordB = "coordB.x";
    }
    else {
        kvars->coordB = "coordB.y";
    }
    kvars->sizeM = "M";
    kvars->sizeN = "N";
    kvars->sizeK = "K";
}
Example #4
0
static bool
useSkewedFetchB(const BlasGenSettings *gset)
{
    KernelExtraFlags kflags = gset->kextra->flags;
    TrsmExtraParams *extraParams = (TrsmExtraParams*)gset->kextra->solverPriv;
    bool ret = false;

    if (extraParams->ldsUse & LDS_USE_LARGE) {
        ret = !isMatrixAccessColMaj(CLBLAS_TRSM, kflags, MATRIX_B);
    }

    return ret;
}
Example #5
0
static void
genPreloadedTileMul(
    struct KgenContext *ctx,
    BlasGenSettings *gset,
    TileMulOpts *mulOpts,
    const Tile *parTile,
    const char* copy2LDSFuncName)
{
    char tmp[1024];
    KernelExtraFlags kflags = gset->kextra->flags;
    unsigned int bwidthOld;
    const char *oldNameB;
    const char *ptrName;

    getVectorTypeName(gset->kextra->dtype, parTile->vecLen, NULL, &ptrName);
    kgenPrintf(ctx, "lB.%s = tmpB;\n", ptrName);
    kgenAddBarrier(ctx, CLK_LOCAL_MEM_FENCE);

    if (!isMatrixAccessColMaj(CLBLAS_TRSM, kflags, MATRIX_B)) {
        sprintf(tmp, "%s(lB, uB, gid * %lu, k0, ldb);\n",
            copy2LDSFuncName, gset->subdims[0].x);
    }
    else {
        sprintf(tmp, "%s(lB, uB, k0, gid * %lu, ldb);\n",
            copy2LDSFuncName, gset->subdims[0].x);
    }
    kgenAddStmt(ctx, tmp);

    kgenAddBarrier(ctx, CLK_LOCAL_MEM_FENCE);
    kgenAddBlankLine(ctx);

    kgenAddStmt(ctx, "lB = lBMain;\n\n");

    mulOpts->memB = CLMEM_LOCAL_MEMORY;
    oldNameB = gset->varNames.B;
    bwidthOld = (unsigned int)gset->subdims[0].bwidth;
    gset->varNames.B = "lB";
    gset->subdims[0].bwidth = (parTile->trans) ? parTile->nrRows :
                                                 parTile->nrCols;

    tileMulGen(ctx, gset, mulOpts);

    gset->varNames.B = oldNameB;
    gset->subdims[0].bwidth = bwidthOld;
    mulOpts->memB = CLMEM_GLOBAL_MEMORY;
}
Example #6
0
UpdateResultFlags
kextraToUpresFlags(BlasFunctionID funcID, KernelExtraFlags kflags)
{
    UpdateResultFlags uf = 0;

    if (funcHasBeta(funcID) && !(kflags & KEXTRA_BETA_ZERO)) {
        uf |= UPRES_WITH_BETA;
    }
    if (isMatrixAccessColMaj(funcID, kflags, MATRIX_C)) {
        uf |= UPRES_COLUMN_MAJOR;
    }
    if (kflags & KEXTRA_NO_COPY_VEC_C) {
        uf |= UPRES_NO_VECTORIZATION;
    }

    return uf;
}
Example #7
0
/*
*  Checks current dimensionality on a validity
*/
bool VISIBILITY_HIDDEN
isSubDimValid(SubDimInfo* sd)
{
    int j;
    size_t wgX = sd->pgran.wgSize[0];
    size_t wgY = sd->pgran.wgSize[1];
    SubproblemDim l0 = sd->sdim[0];
    SubproblemDim l1 = sd->sdim[1];
    size_t dataTypeSize = getDataTypeSize(sd->dtype);
    size_t dataFloatSize = getDataTypeSize(TYPE_FLOAT);
    int maxRegistr = 64;
    bool ret = true;
    bool inv;
    IgnoreItem* ii = sd->first;

    // if pattern-based validation is available
    if( NULL != sd->pattern->sops->checkCalcDecomp ){

        return sd->pattern->sops->checkCalcDecomp(
            &sd->pgran,
            sd->sdim,
            2,
            sd->dtype,
            PGRAN_CHECK );
    }

    ret = ret && (l1.y >= 4*dataFloatSize/dataTypeSize);

    if (sd->blasLevel == 3) {
        if (!isMatrixAccessColMaj(sd->func, sd->flag, MATRIX_A) ||
                !isMatrixAccessColMaj(sd->func, sd->flag, MATRIX_B)) {
            /* Avoid small bwidth and big x0, y0 for cases other than
             * column major access to both matrixes */
            ret = ret && (l1.bwidth >= 4*dataFloatSize/dataTypeSize);
            ret = ret && (l0.y < 128);
            ret = ret && (l0.x < 128);
        }
    }

    if ( 0 == l1.bwidth ){
        return false;
    }
    else{
        ret = ret && ((l0.bwidth % l1.bwidth) == 0);
        ret = ret && (wgX*wgY == 64);
    }
    //ret = ret && (wgX*wgY < sd->workGroupSizes);
    //ret = ret && (wgX*wgY > 16);
    if (sd->blasLevel == 2) {
        ret = ret && (l0.y > l1.y);
    }
    else {
        ret = ret && (l0.x > l1.x);
        ret = ret && (l0.y > l1.y);
        ret = ret && (l1.x >= 4*dataFloatSize/dataTypeSize);
    }
    if (sd->is2D) {
        bool r = ret;
        ret = ret && (wgY * l1.itemX == l0.x);
        ret = ret && (wgX * l1.itemY == l0.y);
        if (r != ret) {
            return ret;
        }
    }

    if (ret && sd->isSquareBlock) {
        ret = ret &&  (l0.x == l0.y && l0.x == l0.bwidth);
    }

    //if (!(isLdsUsed(sd->pattern) || (sd->isSquareBlock && sd->nrLevel == 2))) {
    //    ret = ret &&  l0.bwidth == l1.bwidth;
    //}

    if (ret) {
        int r ;
        r = (int)(l1.x*l1.bwidth + l1.y*l1.bwidth + l1.x*l1.y);

        r = r * (int)dataTypeSize / sizeof(cl_float4);

        if (r > maxRegistr) {
            return false;
        }
    }

    if  (ret &&  sd->pattern->sops->isFitToLDS != NULL) {
        bool isFitToLDS;
        CLBlasKargs args;

        convKExtraFlagToArg(sd->flag, &args);

        isFitToLDS = sd->pattern->sops->isFitToLDS(sd->sdim, sd->dtype,
                                               sd->ldsSize, &args);
        if (!isFitToLDS)
            return false;
    }

    // Skip ignored dimension
    for (;ii != NULL; ii = ii->next) {
        inv = true;
        for(j = 0; j < V_COUNT; ++j) {
            int v1 = ii->var[j];
            int v2 = get(&sd->var[j]);
            if (v1 == -1) {
                continue;
            }
            if (v1 == v2) {
                continue;
            }
            inv = false;
            break;
        }
        if (inv) {
            ret = false;
        }
    }

    return ret;
}
Example #8
0
void
initDefaultTiles(
    BlasGenSettings *gset,
    BlasFunctionID funcID,
    TileCreationFlags flags,
    PrivateStorageType storType)
{
    const SubproblemDim *dim = &gset->subdims[1];
    KernelExtraFlags kflags = gset->kextra->flags;
    DataType dtype = gset->kextra->dtype;
    Tile *tile;
    const char *name;
    int level;
    bool packed;

    level = funcBlasLevel(funcID);
    packed = ((flags & TILE_PACKED) != 0);

    tile = &gset->tileA;
    selectTileBaseName(tile, "a");
    initTile(tile, tile->baseName, (unsigned int)dim->y,
             (unsigned int)dim->bwidth, 1, dtype, storType, false, packed);

    tile->trans = isMatrixAccessColMaj(funcID, kflags, MATRIX_A);
    if (!(gset->flags & BGF_WHOLE_A)) {
        if (tile->trans) {
            tile->nrCols = 1;
        }
        else {
            tile->nrRows = 1;
        }
    }
    selectDefaultTileVecLen(tile, flags, gset, funcID, MATRIX_A);

    tile = &gset->tileBX;
    name = (level == 2) ? "x" : "b";
    selectTileBaseName(tile, name);
    initTile(tile, tile->baseName, (unsigned int)dim->bwidth,
             (unsigned int)dim->x, 1, dtype, storType, false, packed);

    /*
     * NOTE: Tiles for the level 2 functions are forced to be transposed
     *       in order to allow user to fetch elements belonging to different
     *       rows which is very useful in case of unit increment between
     *       elements because provides faster access to the global memory.
     */
    if (level == 2) {
        tile->trans = true;
    }
    else {
        tile->trans = !isMatrixAccessColMaj(funcID, kflags, MATRIX_B);
    }
    selectDefaultTileVecLen(tile, flags, gset, funcID, MATRIX_B);

    tile = &gset->tileCY;
    name = (level == 2) ? "y" : "c";
    selectTileBaseName(tile, name);

    initTile(tile, tile->baseName, (unsigned int)dim->y,
             (unsigned int)dim->x, 1, dtype, storType, false,
             packed);

    if (level == 2) {
        tile->trans = true;
    }
    else if (!(flags & TILE_C_FORCE_NOTRANS)) {
        tile->trans = isMatrixAccessColMaj(funcID, kflags, MATRIX_C);
    }
    selectDefaultTileVecLen(tile, flags, gset, funcID, MATRIX_C);

    // FIXME: remove the restriction
    /*if (isComplexType(tile->dtype)) {
        tile->vecLen = 1;
    }*/
}
Example #9
0
static void
initTiles(
    BlasGenSettings* gset,
    TileSet* tileSet,
    const struct SubproblemDim *subdims,
    KernelExtraFlags kflags,
    DataType dtype,
    PrivateStorageType storType)
{
    unsigned int rowsA;
    unsigned int rowsB;
    unsigned int rowsC;
    unsigned int colsA;
    unsigned int colsB;
    unsigned int colsC;
    bool transA;
    bool transB;
    unsigned int vecLenA;
    unsigned int vecLenB;
    unsigned int vecLenC;

    rowsA = (unsigned int)subdims[1].y;
    colsA = (unsigned int)szmax(subdims[1].y, subdims[1].bwidth);

    rowsB = (unsigned int)szmax(subdims[1].y, subdims[1].bwidth);
    colsB = (unsigned int)szmax(subdims[1].x, subdims[1].y);

    rowsC = (unsigned int)subdims[1].y;
    colsC = (unsigned int)subdims[1].x;

    transA = isMatrixAccessColMaj(CLBLAS_TRSM, kflags, MATRIX_A);
    transB = isMatrixAccessColMaj(CLBLAS_TRSM, kflags, MATRIX_B);

    vecLenA = (unsigned int)((transA) ? subdims[1].y : subdims[1].bwidth);
    vecLenA = umin(vecLenA, MAX_TILE_VECLEN);
    vecLenB = (unsigned int)((transB) ? subdims[1].x : subdims[1].bwidth);
    vecLenB = umin(vecLenB, MAX_TILE_VECLEN);
    vecLenC = (transB) ? vecLenB : vecLenA;

    initTile(&tileSet->rectA, "a", (unsigned int)subdims[1].y,
             (unsigned int)subdims[1].bwidth, vecLenA, dtype,
             storType, transA, false);

    initTile(&tileSet->squareA, "a", (unsigned int)subdims[1].y,
             (unsigned int)subdims[1].y, vecLenA, dtype, storType,
             transA, false);

    initTile(&tileSet->origB, "b", (unsigned int)subdims[1].bwidth,
             (unsigned int)subdims[1].x, vecLenB, dtype, storType,
             !transB, false);

    initTile(&tileSet->bStage2, "b", (unsigned int)subdims[1].y,
             (unsigned int)subdims[1].x, vecLenB, dtype, storType,
             !transB, false);

    initTile(&tileSet->bAsSqA, "b", (unsigned int)subdims[1].y,
             (unsigned int)subdims[1].y, vecLenB, dtype, storType,
             transA, false);

    initTile(&tileSet->bAsC, "b", (unsigned int)subdims[1].y,
             (unsigned int)subdims[1].x, vecLenB, dtype, storType,
             gset->tileCY.trans, false);

    initTile(&gset->tileA, "a", rowsA, colsA,
             vecLenA, dtype, storType, transA, false);

    initTile(&gset->tileBX, "b", rowsB, colsB,
             vecLenB, dtype, storType, !transB, false);

    initTile(&gset->tileCY, "c", rowsC, colsC,
             vecLenC, dtype, storType, !transB, false);

    tileSet->A = gset->tileA;
    tileSet->B = gset->tileBX;
}
Example #10
0
static void
declareLocalVariables(
    struct KgenContext *ctx,
    const BlasGenSettings *gset,
    Tile* parTile,
    TrsmExtraParams * extraParams)
{
    char tmp[1024];
    const SubproblemDim *dims = gset->subdims;
    const char* parTileTypeName = NULL;
    bool trb = isMatrixAccessColMaj(CLBLAS_TRSM, gset->kextra->flags,
                                   MATRIX_B);
    unsigned int locWidth;
    unsigned int tsize;
    unsigned int parTileSize;
    unsigned int l1Pans;
    unsigned int step;

    kgenAddStmt(ctx,
                 "const int lid = get_local_id(0);\n"
                 "const int gid = get_group_id(0);\n"
                 "GPtr uA, uB;\n"
                 "uint coordA, coordB;\n"
                 "uint m0 = 0, k0, m1;\n");

    if (isMatrixUpper(gset->kextra->flags)) {
        sprintf(tmp, "uint currM = (M - 1) / %lu * %lu;\n",
                dims[0].y, dims[0].y);
        kgenAddStmt(ctx, tmp);
    }

    /*
     * Declare private blocks.
     * The region 'b' stores in different time tiles of both
     * the input matrices and the result
     */

    declareTileStorages(ctx, gset);

    *parTile = gset->tileBX;

    if (extraParams->ldsUse) {
        tsize = dtypeSize(gset->kextra->dtype);
        l1Pans = (unsigned int)(dims[0].x / dims[1].x);

        parTile->vecLen = (trb) ? (unsigned int)dims[1].x
                                : (unsigned int)dims[1].bwidth;
        parTile->vecLen = umin(parTile->vecLen, sizeof(cl_float4) / tsize);
        parTile->trans = trb;

       /*
        * Allocate enough space in the local area to fit several tiles
        * at the stage1 (according to the unrolled factor) and one tile
        * at the stage2
        */

        locWidth = (unsigned int)dims[1].bwidth * extraParams->unrollingFactor;
        if (extraParams->ldsUse & LDS_USE_DIAGONAL) {
            locWidth = umax(locWidth, (unsigned int)dims[1].y);
        }
        if (trb) {
            parTile->nrRows = locWidth;
            parTile->nrCols = (unsigned int)dims[0].x;
            step = (unsigned int)dims[1].x / parTile->vecLen;
        }
        else {
            parTile->nrRows = (unsigned int)dims[0].x;
            parTile->nrCols = locWidth;
            step = (unsigned int)dims[1].x * locWidth / parTile->vecLen;
        }

        parTileSize = tileVectorsNum(parTile);

        getVectorTypeName(gset->kextra->dtype, parTile->vecLen,
                          &parTileTypeName, NULL);

        sprintf(tmp, "__local %s tmpB[%i];\n"
                     "LPtr lB;\n"
                     "LPtr lBMain = {(__local float*)(tmpB + lid %% %u * %u)};\n",
                parTileTypeName, parTileSize, l1Pans, step);
        kgenAddStmt(ctx, tmp);

        if (useSkewedFetchB(gset)) {
            kgenPrintf(ctx, "const uint skewX = lid %% %u %% %lu;\n",
                       l1Pans, gset->subdims[1].x);
        }
    }

    kgenAddBlankLine(ctx);
}
Example #11
0
static ssize_t
generator(
   char *buf,
   size_t buflen,
   const struct SubproblemDim *subdims,
   const struct PGranularity *pgran,
   void *extra)
{
    char tmp[4096];
    struct KgenContext *ctx;
    CLBLASKernExtra *kextra = (CLBLASKernExtra*)extra;
    KernelExtraFlags kflags = kextra->flags;
    DataType dtype = kextra->dtype;
    bool doubleBased = isDoubleBasedType(dtype);
    size_t staggered = ((extraData_t*)&kextra->solverPriv)->staggered;
    int ret;
    BlasGenSettings gset;
    TileMulOpts mulOpts;
    int tra = isMatrixAccessColMaj(CLBLAS_TRMM, kflags, MATRIX_A);
    int trb = isMatrixAccessColMaj(CLBLAS_TRMM, kflags, MATRIX_B);
    unsigned int l1Pans;
    TilePostFetchPrivate pfPriv[2];
    UpdateResultFlags upResFlags;
    TailStatus tailStatus;
    bool subgMode = false;
    SubgVarNames subgVNames;

    ctx = createKgenContext(buf, buflen, true);
    if (ctx == NULL) {
        return -ENOMEM;
    }

    // mismatching subdims define case with subgroup decomposition
    subgMode = ( subdims[0].bwidth != subdims[1].bwidth );

    memset(&gset, 0, sizeof(gset));
    memcpy(gset.subdims, subdims, sizeof(gset.subdims));
    gset.flags = BGF_DISTINCT_VECLEN;

    gset.flags |= BGF_WHOLE_A;

    /*FIXME: This used to be a workaround for compilation issues with dtrmm on
     * cpu. Normally BGF_WHOLE_A should be enabled always. But for now,
     * there are wrong results for non-aligned cases on CPU and there is
     * no workaround yet.
    if (kflags & (KEXTRA_TAILS_M | KEXTRA_TAILS_N | KEXTRA_TAILS_K)) {
        gset.flags &= ~BGF_WHOLE_A;
    }*/
    gset.kextra = kextra;
    gset.pgran = pgran;
    //avoid [0].bw loop
    //gset.subdims[0].bwidth = gset.subdims[1].bwidth;

    memset(pfPriv, 0, sizeof(pfPriv));
    pfPriv[0].funcID = CLBLAS_TRMM;
    pfPriv[0].gset = &gset;
    if ((gset.flags & BGF_WHOLE_A) != 0) {
        pfPriv[0].wholeA = 1;
    }

    // at first, generate needed declarations
    kgenDeclareUptrs(ctx, doubleBased);

    // For inner callback, because both callbacks use own fetchNumA
    memcpy(&pfPriv[1], &pfPriv[0], sizeof(pfPriv[0]));

    // if both matrices are accessed row-major - using subgroup pattern
    if ( subgMode ) {

        declareTrxmKernel(ctx,
            dtype,
            pgran,
            kflags,
            CLBLAS_TRMM,
            "Subgroup",
            true,
            true);
        gset.flags |= BGF_UPTRS;
    }
    else {

        declareTrxmKernel(ctx,
            dtype,
            pgran,
            kflags,
            CLBLAS_TRMM,
            "Block",
            true,
            true);

    }
    kgenBeginFuncBody(ctx);

    initDefaultTiles(&gset, CLBLAS_TRMM, 0, PRIV_STORAGE_VARIABLE_SET);
    declareTileStorages(ctx, &gset);

    kgenAddStmt(ctx,
                "uint currM, currN;\n"
                "uint4 coord = 0; /* contains coordB, coordA, k */\n");

    kgenDeclareLocalID(ctx, "lid", pgran);
    kgenDeclareGroupID(ctx, "gid", pgran);

    if ( subgMode ) {

        gset.varNames.LDS = "scratch";

        // declaring variables used by subgroup mode
        subgVNames.itemId = "itemId";
        subgVNames.subgCoord = "subgCoord";

        kgenAddBlankLine( ctx );
        kgenAddBlankLine(ctx);

        kgenPrintf(ctx, "int2 %s;\n", subgVNames.itemId );
        kgenPrintf(ctx, "int2 %s;\n", subgVNames.subgCoord);

        // item ID
        kgenPrintf( ctx,
            "%s.x = get_local_id(0)%%%d;\n",
            subgVNames.itemId,
            subdims[0].bwidth/subdims[1].bwidth);

        // subgroup ID
        kgenPrintf( ctx,
            "%s.y = get_local_id(0)/%d;\n",
            subgVNames.itemId,
            subdims[0].bwidth/subdims[1].bwidth);

        // subgroup coordX
        kgenPrintf( ctx,
            "%s.x = %s.y/%d;\n",
            subgVNames.subgCoord,
            subgVNames.itemId,
            subdims[0].y/subdims[1].y );

        // subgroup coordY
        kgenPrintf( ctx,
            "%s.y = %s.y%%%d;\n",
            subgVNames.subgCoord,
            subgVNames.itemId,
            subdims[0].y/subdims[1].y );
    }

    kgenAddBlankLine(ctx);

    sprintf(tmp, "currN = gid * %lu;\n", subdims->x);
    kgenAddStmt(ctx, tmp);
    genInitCurrM(ctx, subdims, kflags);

    if (kflags & KEXTRA_A_OFF_NOT_ZERO) {
        kgenAddStmt(ctx, "A += offA;\n");
    }
    genTrxmBMatrShift(ctx, kflags, true);

    if ( subgMode ) {
        kgenAddStmt(ctx,
            "GPtr Ag = {A};\n"
            "GPtr Bg = {B};\n");
    }

    l1Pans = (unsigned int)subdims[0].x / (unsigned int)subdims[1].x;

    memset(&mulOpts, 0, sizeof(mulOpts));
    mulOpts.core = ((kflags & KEXTRA_ENABLE_MAD) != 0)
            ? TILEMUL_MAD
            : TILEMUL_MULADD;
    mulOpts.memA = CLMEM_GLOBAL_MEMORY;
    mulOpts.memB = CLMEM_GLOBAL_MEMORY;
    mulOpts.postFetch = NULL;
    mulOpts.postFetchPriv = &pfPriv;
    mulOpts.flags = TILEMUL_NO_FLAGS;
    mulOpts.flags |= TILEMUL_EXTERN_RDECL;

    if ( subgMode ) {

        mulOpts.flags |= TILEMUL_NOT_INC_K;
        mulOpts.flags |= TILEMUL_BW_STRIDE;
    }

    if (kflags & KEXTRA_TAILS_M_LOWER) {
        mulOpts.flags |= TILEMUL_GLOBAL_CYCLIC_A;
    }
    if (kflags & KEXTRA_TAILS_N_LOWER) {
        mulOpts.flags |= TILEMUL_GLOBAL_CYCLIC_B;
    }
    if (kflags & KEXTRA_TAILS_K_LOWER) {
        mulOpts.flags |= TILEMUL_GLOBAL_CYCLIC_K;
        mulOpts.flags |= TILEMUL_WRAP_AROUND_TAIL;
    }

    if (tra) {
        mulOpts.flags |= TILEMUL_TRA;
    }
    if (!trb) {
        mulOpts.flags |= TILEMUL_TRB;
    }
    if (isMatrixConj(kflags, MATRIX_A)) {
        mulOpts.flags |= TILEMUL_CONJA;
    }
    if (isMatrixConj(kflags, MATRIX_B)) {
        mulOpts.flags |= TILEMUL_CONJB;
    }

    initKernelVarNames(&gset.varNames);

    if ( subgMode ) {

        kgenPrintf( ctx,
            "coord.x = currN + %s.x*%d;\n",
            subgVNames.subgCoord,
            subdims[1].x );
    }
    else {

        sprintf(tmp, "coord.x = currN + lid %% %u * %lu;\n", l1Pans, subdims[1].x);
        kgenAddStmt(ctx, tmp);
    }

    // loop over M
    sprintf(tmp, "for (uint m0 = 0; m0 < M; m0 += %lu)", subdims[0].y);
    kgenBeginBranch(ctx, tmp);

    genStartPosK( ctx, subdims, kflags, subgMode );

    sprintf(tmp, "coord.z = kBegin;\n");
    kgenAddStmt(ctx, tmp);

    if ( subgMode ) {

        kgenPrintf(ctx,
            "coord.y = currM + %s.y*%d;\n",
            subgVNames.subgCoord,
            subdims[1].y);
    }
    else {

        sprintf( tmp,
            "coord.y = currM + lid / %u * %lu;\n",
            l1Pans,
            subdims[1].y );
        kgenAddStmt(ctx, tmp);
    }

    genZeroTile(ctx, &gset.tileCY);

    checkGenBeginHitMatrixBlock(ctx, kflags);
    tailStatus = checkGenAdjustTailCoords(ctx, CLBLAS_TRMM, &gset, NULL);

    // loops along 'K'
    if ( subgMode ) {
        ret = genSubgLoopsK( ctx, &gset, &mulOpts, &subgVNames, staggered);
    }
    else {
        ret = genLoopsK( ctx, &gset, &mulOpts, tmp );
    }

    if (ret != 0) {
        printf("%s", buf);
        return ret;
    }

    checkGenEndHitMatrixBlock(ctx, kflags);
    kgenAddBarrier(ctx, CLK_GLOBAL_MEM_FENCE);

    // store results
    // for result update - x coordinate is in elements, not in vectors

    checkGenRestoreTailCoords(ctx, &gset, tailStatus);
    upResFlags = kextraToUpresFlags(CLBLAS_TRMM, kflags);
    upResFlags |= tailStatusToUpresFlags(tailStatus);
    upResFlags |= UPRES_INDEXING_WITH_CONSTANTS;
    upResFlags |= UPRES_TRIANG_WRITE_C;
    upResFlags |= UPRES_EXCEED_PROBLEM_CONDITION;

    if ( subgMode ) {

        mergeUpdateResult( ctx,
            CLBLAS_TRMM,
            &gset,
            &subgVNames,
            upResFlags,
            genResultUpdateWithFlags );
    }
    else {

        //checkGenBeginHitMatrixBlock(ctx, kflags);
        genResultUpdateWithFlags( ctx,
            CLBLAS_TRMM,
            &gset,
            upResFlags,
            NULL,
            NULL,
            NULL );
        //checkGenEndHitMatrixBlock(ctx, kflags);
    }

    if (isMatrixUpper(kflags)) {
        sprintf(tmp, "currM += %lu;\n", subdims[0].y);
    }
    else {
        sprintf(tmp, "currM -= %lu;\n", subdims[0].y);
    }
    kgenAddStmt(ctx, tmp);

    kgenEndBranch(ctx, NULL);

    kgenEndFuncBody(ctx);
    ret = kgenAddBlankLine(ctx);

    if (!ret) {
        ret = (ssize_t)kgenSourceSize(ctx) + 1;
    }

    destroyKgenContext(ctx);

    return (ret < 0) ? -EOVERFLOW : ret;
}
Example #12
0
// global memory based kernel generator
static ssize_t
generator(
   char *buf,
   size_t buflen,
   const struct SubproblemDim *subdims,
   const struct PGranularity *pgran,
   void *extra)
{
    struct KgenContext *ctx;
    CLBLASKernExtra *kextra = (CLBLASKernExtra*)extra;
    char tmp[4096], tmp1[4096];
    char *p;
    // is the iteration over N, N at the top level
    const char *typeName;
    char fpref;
    DataType dtype = kextra->dtype;
    ssize_t ret;
    BlasGenSettings gset;
    BlkMulOpts mulOpts;
    unsigned int tsize;
    unsigned int vecLen, outVecLen;
    bool b;
    const char *outTypeName;
    unsigned int i;
    unsigned int nrRegs, regPitch;
    int tra, trb;
    char vect[2] = {'y', 'x'};

    const char *coordConstants =
        "const uint workItemM = get_global_id(0) * %lu;\n"
        "const uint workItemN = get_global_id(1) * %lu;\n"
        "const int2 skewRow = (int2)(0, get_local_id(0) %% %lu);\n"
        "uint vectK = (K + %u) / %u;\n";

    /*
     *  template for image based gemm preparation part
     *  for two dimensional work space
     */
    const char *localVariables =
        "uint k0;\n"
        "int2 coordA = (int2)(0, workItemM);\n"
        "int2 coordB = (int2)(0, workItemN);\n"
        "%s c[%u];\n\n";

    tsize = dtypeSize(dtype);
    vecLen = sizeof(cl_float4) / dtypeSize(dtype);
    if (isComplexType(dtype)) {
        regPitch = (unsigned int)subdims[1].x;
    }
    else {
        regPitch = (unsigned int) fl4RowWidth(subdims[1].x, tsize) *
                    sizeof(cl_float4) / tsize;
    }

    memset(&gset, 0, sizeof(gset));
    memcpy(gset.subdims, subdims, sizeof(gset.subdims));
    gset.kextra = kextra;
    gset.pgran = pgran;
    initKernelVarNames(&gset.varNames, kextra->flags);

    ctx = createKgenContext(buf, buflen, true);
    if (ctx == NULL) {
        return -ENOMEM;
    }

    // at first, generate needed declarations and auxiliary functions
    b = isDoubleBasedType(dtype);
    kgenDeclareUptrs(ctx, b);

    typeName = dtypeBuiltinType(dtype);
    fpref = dtypeToBlasPrefix(dtype);

    // now, generate the kernel

    sprintf(tmp, imgGemmDecl, pgran->wgSize[0], pgran->wgSize[1], fpref,
            typeName, typeName, typeName);
    kgenDeclareFunction(ctx, tmp);
    ret = kgenBeginFuncBody(ctx);

    // constants
    sprintf(tmp, coordConstants,
            subdims[1].y, subdims[1].x, subdims[1].y,
            vecLen - 1, vecLen);
    kgenAddStmt(ctx, tmp);

    /*
     * Calculate local buffer pitches, and then declare local
     * variables
     */
    getResultGPRsInfo(dtype, &subdims[1], vecLen, &nrRegs, &outTypeName);

    sprintf(tmp, localVariables, outTypeName, nrRegs);
    kgenAddStmt(ctx, tmp);

    // check if offset exceeds matrix
    kgenAddStmt(ctx, "if ((workItemM >= M) ||"
                         "(workItemN >= N)) {\n"
                     "    return;\n"
                     "}\n");

    kgenAddStmt(ctx, "C += offsetC;\n");

    // zero C block
    sprintf(tmp, "for (k0 = 0; k0 < %u; k0++) {\n"
                 "    c[k0] = 0;\n"
                 "}\n\n",
            nrRegs);
    kgenAddStmt(ctx, tmp);

    // block multiplication inlined function
    sprintf(tmp, "for (k0 = 0; k0 < vectK; k0 += %lu)",
            subdims[1].bwidth / vecLen);
    kgenBeginBranch(ctx, tmp);

    mulOpts.aMobj = CLMEM_IMAGE;
    mulOpts.bMobj = CLMEM_IMAGE;
    mulOpts.flags = BLKMUL_OUTPUT_PRIVATE | BLKMUL_SKEW_ROW | BLKMUL_INLINE;
    if (isComplexType(dtype)) {
        mulOpts.core = BLKMUL_SEPARATE_MULADD;
    }
    else {
        mulOpts.core = BLKMUL_MAD;
    }
    mulOpts.argNames.coordA = "coordA";
    mulOpts.argNames.coordB = "coordB";
    mulOpts.argNames.skewCol = "skewCol";
    mulOpts.argNames.skewRow = "skewRow";
    mulOpts.argNames.k = "k0";
    mulOpts.argNames.vectBoundK = "vectK";
    ret = blkMulGen(ctx, subdims, dtype, &mulOpts);
    if (ret) {
        destroyKgenContext(ctx);
        return -EOVERFLOW;
    }

    // update image coordinates
    sprintf(tmp, "\ncoordA.x += %lu;\n"
                 "coordB.x += %lu;\n",
            subdims[1].bwidth / vecLen, subdims[1].bwidth / vecLen);
    kgenAddStmt(ctx, tmp);

    kgenEndBranch(ctx, NULL);

    // reorder the given solution
    outVecLen = isComplexType(dtype) ? 1 : vecLen;
    p = tmp1;
    for (i = 0; i < regPitch / outVecLen; i++) {
        unsigned int k = (unsigned int)(subdims[1].y - 1) *
                         regPitch / outVecLen + i;

        sprintf(p,  "\n"
                    "    tmp = c[%u];\n"
                    "    for (j = %lu; j >= 0; j--) {\n"
                    "        c[(j+1) * %u + %u] = c[j * %u + %u];\n"
                    "    }\n"
                    "    c[%u] = tmp;\n",
                k, subdims[1].y - 2, regPitch / outVecLen,
                i, regPitch / outVecLen, i, i);
        p += strlen(p);
    }
    sprintf(tmp, "\n"
                 "for (k0 = 0; k0 < skewRow.y; k0++) {\n"
                 "    int j;\n"
                 "    %s tmp;\n"
                 "%s"
                 "}\n"
                 "\n",
                 outTypeName, tmp1);
    kgenAddStmt(ctx, tmp);

    tra = isMatrixAccessColMaj(CLBLAS_GEMM, kextra->flags, MATRIX_A);
    trb = isMatrixAccessColMaj(CLBLAS_GEMM, kextra->flags, MATRIX_B);
    sprintf(tmp, "coordA.%c = workItemM;\n"
                 "coordB.%c = workItemN;\n\n",
            vect[tra], vect[trb]);
    kgenAddStmt(ctx, tmp);

    // write back the tile evaluated
    generateResultUpdateOld(ctx, CLBLAS_GEMM, &gset, NULL, NULL);

    kgenEndFuncBody(ctx);
    ret = kgenAddBlankLine(ctx);

    if (!ret) {
        ret = (ssize_t)kgenSourceSize(ctx) + 1;
    }

    destroyKgenContext(ctx);

    return (ret < 0) ? -EOVERFLOW : ret;
}
Example #13
0
// global memory based kernel generator
static ssize_t
generator(
   char *buf,
   size_t buflen,
   const struct SubproblemDim *subdims,
   const struct PGranularity *pgran,
   void *extra)
{
    struct KgenContext *ctx;
    CLBLASKernExtra *kextra = (CLBLASKernExtra*)extra;
    KernelExtraFlags kflags = kextra->flags;
    bool upper = ((kflags & KEXTRA_UPPER_TRIANG) != 0) ^
                  ((kflags & KEXTRA_COLUMN_MAJOR) != 0);
    char tmp[2048];
    const char *typeName;
    DataType dtype = kextra->dtype;
    BlasGenSettings gset, tgset, lset, gset1;
    CLBLASKernExtra kextraTmp;
    TileMulOpts mulOpts, tmulOpts;
    KernelVarNames *vnames = &gset.varNames;
    ssize_t ret;
    size_t vecLen = kextra->vecLen;
    const char *outTypeName;
    bool b;
    TilePostFetchPrivate pfPriv;
    struct symvPrivate priv;
    size_t wgSize;
    bool tailM = (kflags & KEXTRA_TAILS_M) != 0;
    bool tailK = (kflags & KEXTRA_TAILS_K) != 0;
    bool tra = (kflags & KEXTRA_COLUMN_MAJOR) != 0;
    bool rowMaj = !isMatrixAccessColMaj(CLBLAS_SYMV, kflags, MATRIX_A);
    bool isComplex = isComplexType(dtype);
    Tile tileb;
    const char *gid = "get_group_id(0)";
    const char *lid = "get_local_id(0)";
    bool isHoriz = subdims[1].bwidth >= subdims[1].y;
    unsigned int bStep = subdims[0].bwidth / subdims[1].bwidth;
    unsigned int cLocal;
    unsigned int nPlans;

    wgSize = (subdims[0].y / subdims[1].y) *
            (subdims[0].bwidth / subdims[1].bwidth);
    assert(pgran->wgSize[0] == wgSize);
    assert(subdims[0].x == 1);
    assert(subdims[1].x == 1);

    memset(&gset, 0, sizeof(gset));
    memset(&mulOpts, 0, sizeof(mulOpts));
    memset(&pfPriv, 0, sizeof(pfPriv));
    memset(&priv, 0, sizeof(priv));
    ctx = createKgenContext(buf, buflen, true);
    if (ctx == NULL) {
        return -ENOMEM;
    }

    // at first, generate needed declarations
    b = isDoubleBasedType(dtype);
    kgenDeclareUptrs(ctx, b);

    typeName = dtypeBuiltinType(dtype);

    declareSymvKernel(ctx, dtype, pgran, kflags);

    ret = kgenBeginFuncBody(ctx);
    /* 1D work space. Matrix is divided among wi, each calculates it's own
     * part of vector y */

    kgenAddStmt(ctx, "#define M actualN\n");
    memcpy(gset.subdims, subdims, sizeof(gset.subdims));
    gset.subdims[0].itemX = gset.subdims[0].x = 1;
    gset.subdims[1].itemX = gset.subdims[1].x = 1;
    gset.subdims[0].bwidth = gset.subdims[1].bwidth;
    gset.flags |= BGF_WHOLE_A | BGF_UPTRS;

    gset.kextra = kextra;
    gset.pgran = pgran;

    initDefaultTiles(&gset, CLBLAS_SYMV, 0, PRIV_STORAGE_VARIABLE_SET);
    gset.tileA.vecLen = umin(8u, tra ? gset.tileA.nrCols : gset.tileA.nrRows);

    if (isComplex) {
         gset.tileCY.vecLen = 1;
    }
    declareTileStorages(ctx, &gset);
    genZeroTile(ctx, &gset.tileCY);
    getVectorTypeName(dtype, gset.tileCY.vecLen, &outTypeName, NULL);
    cLocal = wgSize / bStep;
    nPlans = gset.tileCY.nrRows / gset.tileCY.vecLen;

    sprintf(tmp, "__local %s localRes[%u][%u];\n",
                outTypeName, pgran->wgSize[0], nPlans);
    kgenAddStmt(ctx, tmp);
    sprintf(tmp, "uint coordA = (%s * %u + %s / %u) * %lu + startN;\n",
                 gid, cLocal, lid, bStep, subdims[1].y);
    kgenAddStmt(ctx, tmp);
    sprintf(tmp, "uint n = coordA;\n");
    kgenAddStmt(ctx, tmp);
    sprintf(tmp, "uint k0 = (%s %% %u) * %lu;\n",
                 lid,  bStep, subdims[1].bwidth);
    kgenAddStmt(ctx, tmp);
    kgenAddStmt(ctx, "actualN += startN;\n");

    kgenAddBlankLine(ctx);

    kgenBeginBranch(ctx,"if (coordA < actualN && k0 < N)");

    genIncPointers(ctx, kflags);
    sprintf(tmp,
            "const GPtr Ag = {(__global %s*)A};\n"
            "const GPtr Xg = {(__global %s*)X};\n",
            typeName, typeName);
    kgenAddStmt(ctx, tmp);

    kgenAddBlankLine(ctx);

    kgenAddStmt(ctx, "uint k = k0;\n");

    if (tailK) {
        sprintf(tmp, "uint Ntail = N %% %lu;\n", subdims[1].bwidth);
        kgenAddStmt(ctx, tmp);
        sprintf(tmp, "uint Ktail = N %% %lu;\n\n", subdims[1].y);
        kgenAddStmt(ctx, tmp);
        kgenBeginBranch(ctx, "if (n + Ktail < N)");
        kgenAddStmt(ctx, "N -= Ntail;\n");
        kgenAddBlankLine(ctx);
    }

    mulOpts.flags |= TILEMUL_OPTIMIZE_COORD_CALC;
    if (tailM) {
        vnames->sizeM = "N";
    }

    vnames->A = "Ag";
    vnames->B = "Xg";
    vnames->coordA = "coordA";
    vnames->coordB = ""; //should not be used for vector
    vnames->k = "k";
    vnames->lda = "lda";
    vnames->sizeK = "N";
    vnames->sizeM = "N";

    mulOpts.flags |= TILEMUL_NOT_FETCH_B | TILEMUL_TRB | TILEMUL_NOT_INC_K;
    if ((kflags & KEXTRA_CONJUGATE_A) != 0) {
        mulOpts.flags |= TILEMUL_CONJA;
    }
    if ((kflags & KEXTRA_ENABLE_MAD) != 0) {
        mulOpts.core = TILEMUL_MAD;
    }
    else {
        mulOpts.core = TILEMUL_MULADD;
    }
    mulOpts.memA = CLMEM_GLOBAL_MEMORY;
    mulOpts.memB = CLMEM_GLOBAL_MEMORY;

    if (rowMaj) {
        mulOpts.flags |= TILEMUL_BW_STRIDE;
    }

    if (upper) {
        kgenAddStmt(ctx, "// k loop over column from the beginning of the column till the diagonal\n");
    }
    else {
        kgenAddStmt(ctx, "// k loop over row from the beginning of the row till the diagonal\n");
    }
    sprintf(tmp, "for (; k < n/%lu*%lu; k += %lu)",
        subdims[1].bwidth, subdims[1].bwidth, bStep*subdims[1].bwidth);
    kgenBeginBranch(ctx, tmp);

    genFetchX(ctx, &gset.tileBX, gset.kextra->vecLen, dtype, vnames,
            mulOpts.flags, kflags);

    upper ^= rowMaj;
    tra ^= rowMaj;
    if (upper ^ rowMaj && tra) {
        mulOpts.flags |= TILEMUL_TRA;
    }
    gset.tileA.trans ^= !upper;
    tgset = gset;
    tmulOpts = mulOpts;

    ret = tileMulGen(ctx, &gset, &mulOpts);
    if (ret != 0) {
        return ret;
    }
    kgenEndBranch(ctx, NULL); /* k loop */

    if (tailK)
    {
            kextraTmp = *kextra;
            gset1 = gset;

            kextraTmp.vecLen = 1;
            gset1.kextra = &kextraTmp;

            gset1.subdims[0].bwidth = gset1.subdims[1].bwidth = 1;

            gset1.tileBX.nrRows = 1;
            gset1.tileA.nrCols = 1;
            kextraTmp.vecLenA = 1;
    }


    if (isHoriz)
    {
        lset = gset;
        lset.subdims[0].bwidth = lset.subdims[1].bwidth =
            lset.subdims[1].y = umin(subdims[1].bwidth, subdims[1].y);
        lset.tileA.nrCols = lset.tileA.nrRows =
            lset.tileBX.nrRows = lset.subdims[1].y;

        kgenAddStmt(ctx, "// the diagonal\n");
        kgenBeginBranch(ctx, "if (k <= n)");
        kgenAddStmt(ctx, "uint k1 = k;\n");

        if (subdims[1].bwidth != subdims[1].y) {
            kgenAddStmt(ctx, "// the pred diagonal\n");
            sprintf(tmp, "for (; k < n; k += %lu)", lset.subdims[1].bwidth);
            kgenBeginBranch(ctx, tmp);

            genFetchX(ctx, &lset.tileBX, lset.subdims[1].bwidth, dtype, vnames,
                    mulOpts.flags, kflags);

            ret = tileMulGen(ctx, &lset, &mulOpts);
            if (ret != 0) {
                return ret;
            }
            kgenEndBranch(ctx, NULL); /* k loop */
        }

        initTile(&tileb, "b", lset.subdims[1].bwidth, lset.subdims[1].bwidth,
            lset.subdims[1].bwidth, lset.tileA.dtype, PRIV_STORAGE_VARIABLE_SET,
            lset.tileA.trans, lset.tileA.packed);
        declareOneTileStorage(ctx, &tileb);

        genFetchX(ctx, &lset.tileBX, lset.subdims[1].bwidth, dtype, vnames,
                mulOpts.flags, kflags);

        priv.mulOpts = &mulOpts;
        priv.pfPriv = &pfPriv;
        priv.tilea = lset.tileA;
        priv.diag = false;

        pfPriv.funcID = CLBLAS_SYMV;
        pfPriv.gset = &lset;
        lset.tileA = tileb;
        mulOpts.postFetch = genPostFetchMirror;
        mulOpts.postFetchPriv = &priv;

        ret = tileMulGen(ctx, &lset, &mulOpts);
        if (ret != 0) {
            return ret;
        }

        if (upper ^ rowMaj && tra) {
            mulOpts.flags &= ~TILEMUL_TRA;
        }
        else {
            mulOpts.flags |= TILEMUL_TRA;
        }
        gset.tileA.trans = lset.tileA.trans ^= true;
        mulOpts.postFetch = NULL;
        mulOpts.postFetchPriv = NULL;

        if (subdims[1].bwidth != subdims[1].y) {
            size_t width = umax(subdims[1].bwidth, subdims[1].y);
            kgenAddStmt(ctx, "// the post diagonal\n");
            if (tailK) {
                kgenBeginBranch(ctx, "if(k < N)");
            }
            sprintf(tmp, "for (k += %lu; k < n/%lu*%lu+%lu; k += %lu)",
                    lset.subdims[1].bwidth,
                    width, width, width,
                    lset.subdims[1].bwidth);
            kgenBeginBranch(ctx, tmp);

            genFetchX(ctx, &lset.tileBX, lset.subdims[1].bwidth, dtype, vnames,
                    mulOpts.flags, kflags);

            ret = tileMulGen(ctx, &lset, &mulOpts);
            if (ret != 0) {
                return ret;
            }
            kgenEndBranch(ctx, NULL); /* k loop */

            if (tailK) {
                kgenEndBranch(ctx, NULL);
                kgenBeginBranch(ctx, "else");
                /* Handle tail along vector X */

                kgenAddStmt(ctx, "N += Ntail;\n");

                mulOpts.flags |= TILEMUL_GLOBAL_CYCLIC_A;
#if 1
                sprintf(tmp, "for (k += %lu; k < actualN; k++)",
                    lset.subdims[1].bwidth);
                kgenBeginBranch(ctx, tmp);

                gset1.tileA.trans = gset.tileA.trans;

                genFetchX(ctx, &gset1.tileBX, gset1.kextra->vecLen, dtype, vnames,
                          mulOpts.flags, kflags);
                ret = tileMulGen(ctx, &gset1, &mulOpts);
                if (ret != 0) {
                    return ret;
                }
                kgenEndBranch(ctx, NULL); /* k loop for tails along vector X */
#else
                mulOpts.flags |= TILEMUL_SKEW_B | TILEMUL_NOT_INC_K;
                genFetchX(ctx, &gset.tileBX, gset.kextra->vecLen, dtype, vnames,
                          mulOpts.flags, kflags);
                ret = tileMulGen(ctx, &gset, &mulOpts);
                if (ret != 0) {
                    return ret;
                }
#endif

                mulOpts.flags &= ~TILEMUL_GLOBAL_CYCLIC_A;
                kgenEndBranch(ctx, NULL);
            }
        }

        sprintf(tmp, "k = k1 + %lu;\n", bStep*subdims[1].bwidth);
        kgenAddStmt(ctx, tmp);
        kgenEndBranch(ctx, NULL);
    }
    else
    {

        kgenAddStmt(ctx, "// the diagonal\n");
        sprintf(tmp, "if (k <= (n  + (get_local_id(0)%%%lu)*%lu))",
            subdims[1].y/subdims[1].bwidth, subdims[1].bwidth);
        kgenBeginBranch(ctx, tmp);

        genFetchX(ctx, &gset.tileBX, gset.subdims[1].bwidth, dtype, vnames,
                    mulOpts.flags, kflags);

        kgenBeginBranch(ctx, NULL);

        priv.mulOpts = &mulOpts;
        priv.pfPriv = &pfPriv;
        priv.diag = true;

        pfPriv.funcID = CLBLAS_SYMV;
        pfPriv.gset = &gset;
        mulOpts.postFetch = genPostFetchVertDiag;
        mulOpts.postFetchPriv = &priv;

        ret = tileMulGen(ctx, &gset, &mulOpts);
        if (ret != 0) {
            return ret;
        }
        kgenEndBranch(ctx, NULL);

        if (upper ^ rowMaj && tra) {
            mulOpts.flags &= ~TILEMUL_TRA;
        }
        else {
            mulOpts.flags |= TILEMUL_TRA;
        }
        gset.tileA.trans ^= true;
        lset = gset;

        sprintf(tmp, "n += (get_local_id(0)%%%lu)*%lu;\n",
            subdims[1].y/subdims[1].bwidth, subdims[1].bwidth);
        kgenAddStmt(ctx, tmp);
        kgenBeginBranch(ctx, NULL);

        priv.diag = false;
        ret = tileMulGen(ctx, &gset, &mulOpts);
        if (ret != 0) {
            return ret;
        }
        kgenEndBranch(ctx, NULL);

        mulOpts.postFetch = NULL;
        mulOpts.postFetchPriv = NULL;

        sprintf(tmp, "k += %lu;\n", bStep*subdims[1].bwidth);
        kgenAddStmt(ctx, tmp);
        kgenEndBranch(ctx, NULL); /* if */
    }

    if (upper) {
        kgenAddStmt(ctx, "// k loop over row from the diagonal till the right\n");
    }
    else {
        kgenAddStmt(ctx, "// k loop over column from the diagonal till the bottom\n");
    }
    sprintf(tmp, "for (; k < N; k += %lu)", bStep*subdims[1].bwidth);
    kgenBeginBranch(ctx, tmp);

    genFetchX(ctx, &gset.tileBX, gset.kextra->vecLen, dtype, vnames,
            mulOpts.flags, kflags);

    ret = tileMulGen(ctx, &gset, &mulOpts);
    if (ret != 0) {
        return ret;
    }
    kgenEndBranch(ctx, NULL); /* k loop */

    if (tailK) {
        /* Handle tail along vector X */
        kgenAddStmt(ctx, "N += Ntail;\n");

        mulOpts.flags |= TILEMUL_GLOBAL_CYCLIC_A;
#if 1
        sprintf(tmp, "for (; k < N; k++)");
        kgenBeginBranch(ctx, tmp);

        gset1.tileA.trans = gset.tileA.trans;

        genFetchX(ctx, &gset1.tileBX, gset1.kextra->vecLen, dtype, vnames,
                  mulOpts.flags, kflags);
        ret = tileMulGen(ctx, &gset1, &mulOpts);
        if (ret != 0) {
            return ret;
        }
        kgenEndBranch(ctx, NULL); /* k loop for tails along vector X */
#else
        mulOpts.flags |= TILEMUL_SKEW_B | TILEMUL_NOT_INC_K;
        genFetchX(ctx, &gset.tileBX, gset.kextra->vecLen, dtype, vnames,
                  mulOpts.flags, kflags);
        ret = tileMulGen(ctx, &gset, &mulOpts);
        if (ret != 0) {
            return ret;
        }
#endif

        kgenEndBranch(ctx, NULL);

        kgenBeginBranch(ctx, "else");

        sprintf(tmp, "for (; k < N; k += %lu)", bStep*subdims[1].bwidth);
        kgenBeginBranch(ctx, tmp);

        tmulOpts.flags |= TILEMUL_SKEW_B | TILEMUL_GLOBAL_CYCLIC_A;
        genFetchX(ctx, &tgset.tileBX, tgset.kextra->vecLen, dtype, vnames,
                tmulOpts.flags, kflags);

        priv.mulOpts = &tmulOpts;
        priv.pfPriv = &pfPriv;
        pfPriv.gset = &tgset;
        priv.diag = false;

        pfPriv.funcID = CLBLAS_SYMV;
        tmulOpts.postFetch = genPostFetchDiag;
        tmulOpts.postFetchPriv = &priv;

        ret = tileMulGen(ctx, &tgset, &tmulOpts);
        if (ret != 0) {
            return ret;
        }

        if (isHoriz) {
            sprintf(tmp, "if (k + %lu > N) break;\n", subdims[1].bwidth);
        }
        else {
            sprintf(tmp, "if (k + %lu > N + (get_local_id(0)%%%lu)*%lu) break;\n",
                subdims[1].y, subdims[1].y/subdims[1].bwidth, subdims[1].bwidth);
        }
        kgenAddStmt(ctx, tmp);

        kgenEndBranch(ctx, NULL); /* k loop */

        kgenBeginBranch(ctx, "if (k < N)");
        if (isHoriz) {
            kgenAddStmt(ctx, "k = n;\n");
        }
        else {
            sprintf(tmp, "n += (get_local_id(0)%%%lu)*%lu;\n",
                subdims[1].y/subdims[1].bwidth, subdims[1].bwidth);
            kgenAddStmt(ctx, tmp);
        }

        genFetchX(ctx, &lset.tileBX, lset.kextra->vecLen, dtype, vnames,
                tmulOpts.flags, kflags);

        priv.mulOpts = &tmulOpts;
        priv.pfPriv = &pfPriv;
        priv.diag = true;

        pfPriv.funcID = CLBLAS_SYMV;
        pfPriv.gset = &lset;
        tmulOpts.postFetch = genPostFetchDiag;
        tmulOpts.postFetchPriv = &priv;

        if (!isHoriz) {
            if (upper ^ rowMaj && tra) {
                tmulOpts.flags &= ~TILEMUL_TRA;
            }
            else {
                tmulOpts.flags |= TILEMUL_TRA;
            }
            kgenAddStmt(ctx, "Ktail = N - n;\n");
            priv.coord = true;
        }
        else {
            priv.coord = false;
        }
        tmulOpts.flags |= TILEMUL_SKEW_B | TILEMUL_GLOBAL_CYCLIC_A | TILEMUL_GLOBAL_CYCLIC_K;


        ret = tileMulGen(ctx, &lset, &tmulOpts);
        if (ret != 0) {
            return ret;
        }

        kgenEndBranch(ctx, NULL);

        kgenEndBranch(ctx, NULL);
    }


    if (!isMatrixAccessColMaj(CLBLAS_GEMV, kflags, MATRIX_A)) {
        mulOpts.flags &= ~TILEMUL_BW_STRIDE;
    }

    kgenEndBranch(ctx,NULL);

    genStoreLocalResult(ctx, &gset.tileCY, lid);

    kgenAddBarrier(ctx, CLK_LOCAL_MEM_FENCE);
    kgenAddBlankLine(ctx);

    sprintf(tmp, "if ((%s %% %u) == 0 && coordA < actualN && k0 < N)", lid, bStep);
    kgenBeginBranch(ctx, tmp);

    genAddLocalResult(ctx, &gset.tileCY, lid, bStep, 1);

    /* write back the results */
    /* y := alpha*A*x + beta*y */
    sprintf(tmp,"(%s - startN)", vnames->coordA);
    setResultPos(ctx, kflags, tmp);

    updateResultVectorTiled(ctx, kflags, vecLen, &gset.tileCY);

    kgenEndBranch(ctx, NULL);

    kgenEndFuncBody(ctx);
    ret = kgenAddBlankLine(ctx);
    if (!ret) {
        ret = (ssize_t)kgenSourceSize(ctx) + 1;
    }

    destroyKgenContext(ctx);
    return (ret < 0) ? -EOVERFLOW : ret;
}
Example #14
0
int
generateImageCopyFuncs(
    CopyImgFuncs *copyFuncs,
    struct KgenContext *ctx,
    BlasFunctionID funcID,
    const BlasGenSettings *gset)
{
    const SubproblemDim *dims = gset->subdims;
    KernelExtraFlags kflags = gset->kextra->flags;
    DataType dtype = gset->kextra->dtype;
    const PGranularity *pgran = gset->pgran;
    CopyPattern pattern;
    // mandatory flags for global to local copying
    DBlockCopyFlags glcpFlags[2] = {0, 0};
    struct KgenGuard *guard;
    unsigned int tsize;
    int ret = 0;
    bool isTra, areTails, isConjA;
    bool customize;

    if (kflags & KEXTRA_NO_COPY_VEC_A) {
        glcpFlags[0] = DBLOCK_COPY_NOT_VECTORIZE;
    }
    if (kflags & KEXTRA_NO_COPY_VEC_B) {
        glcpFlags[1] = DBLOCK_COPY_NOT_VECTORIZE;
    }

    tsize = dtypeSize(dtype);
    isTra = isMatrixAccessColMaj(funcID, kflags, MATRIX_A);
    isConjA = isMatrixConj(kflags, MATRIX_A);
    areTails = (kflags & (KEXTRA_TAILS_M | KEXTRA_TAILS_N));
    customize = (funcID == CLBLAS_TRMM);

    guard = createKgenGuard(ctx, cpyImgGenCallback, sizeof(CopyPattern));
    if (guard == NULL) {
        return -ENOMEM;
    }

    memset(&pattern, 0, sizeof(pattern));

    pattern.zeroing = false;
    pattern.dim = dims[0];
    pattern.dir = DBLOCK_GLOBAL_TO_IMAGE;
    pattern.dtype = dtype;
    pattern.flags = 0;
    pattern.generic = false;
    pattern.pgran = pgran;

    if (!(customize && (isTra || isConjA))) {
        pattern.dim.x = dims[0].bwidth;
        pattern.dim.y = dims[0].y;
        findGenerateFunction(guard, &pattern, copyFuncs->globalToImage[MATRIX_A],
                             FUNC_NAME_MAXLEN);
        kgenAddBlankLine(ctx);
    }

    pattern.dim.x = dims[0].bwidth;
    pattern.dim.y = dims[0].x;
    findGenerateFunction(guard, &pattern, copyFuncs->globalToImage[MATRIX_B],
                         FUNC_NAME_MAXLEN);
    kgenAddBlankLine(ctx);

    pattern.dim.x = dims[0].bwidth;
    pattern.dim.y = dims[1].y;
    pattern.dir = DBLOCK_LOCAL_TO_IMAGE;
    findGenerateFunction(guard, &pattern, copyFuncs->localToImage[MATRIX_A],
                         FUNC_NAME_MAXLEN);
    kgenAddBlankLine(ctx);

    pattern.dim.x = dims[0].bwidth;
    pattern.dim.y = dims[1].x;
    pattern.dir = DBLOCK_LOCAL_TO_IMAGE;
    findGenerateFunction(guard, &pattern, copyFuncs->localToImage[MATRIX_B],
                         FUNC_NAME_MAXLEN);
    kgenAddBlankLine(ctx);

    // Global to local optimized
    pattern.dir = DBLOCK_GLOBAL_TO_LOCAL;
    if (customize || isComplexType(dtype)) {
        pattern.flags = (!customize || isConjA) ? DBLOCK_COPY_CONJUGATE : 0;
        pattern.flags |= glcpFlags[0];
        pattern.dim.x = dims[0].bwidth;
        pattern.dim.y = dims[1].y;
        findGenerateFunction(guard, &pattern, copyFuncs->globalToLocal[MATRIX_A],
                             FUNC_NAME_MAXLEN);
        kgenAddBlankLine(ctx);
    }

    if ((funcID == CLBLAS_GEMM) && isComplexType(dtype)) {
        pattern.flags = DBLOCK_COPY_CONJUGATE | glcpFlags[1];
        pattern.dim.x = dims[0].bwidth;
        pattern.dim.y = dims[1].x;
        findGenerateFunction(guard, &pattern, copyFuncs->globalToLocal[MATRIX_B],
                             FUNC_NAME_MAXLEN);
        kgenAddBlankLine(ctx);
    }

    // Global to local generic
    pattern.dim = dims[0];
    pattern.dir = DBLOCK_GLOBAL_TO_LOCAL;
    pattern.generic = true;
    if (!customize || areTails) {
        pattern.flags = (isConjA) ? DBLOCK_COPY_CONJUGATE : 0;
        pattern.flags |= glcpFlags[0];
        findGenerateFunction(guard, &pattern,
                             copyFuncs->globalToLocalGeneric[MATRIX_A],
                             FUNC_NAME_MAXLEN);
        kgenAddBlankLine(ctx);
    }

    pattern.flags = (kflags & KEXTRA_CONJUGATE_B) ? DBLOCK_COPY_CONJUGATE : 0;
    pattern.flags |= glcpFlags[1];
    findGenerateFunction(guard, &pattern,
                         copyFuncs->globalToLocalGeneric[MATRIX_B],
                         FUNC_NAME_MAXLEN);
    kgenAddBlankLine(ctx);

    // Global to local transposed functions
    pattern.dir = DBLOCK_GLOBAL_TO_LOCAL;
    pattern.flags = (kflags & KEXTRA_NO_COPY_VEC_A) ?
                    DBLOCK_COPY_NOT_VECTORIZE : 0;
    pattern.flags |= glcpFlags[0];
    if (!customize || isTra) {
        pattern.generic = false;
        if (isConjA) {
            pattern.flags |= DBLOCK_COPY_TRANSPOSE | DBLOCK_COPY_CONJUGATE;
        }
        else {
            pattern.flags |= DBLOCK_COPY_TRANSPOSE;
        }
        pattern.dim.x = dims[1].y;
        pattern.dim.y = dims[0].bwidth;

        findGenerateFunction(guard, &pattern,
                             copyFuncs->globalToLocalTransposed[MATRIX_A],
                             FUNC_NAME_MAXLEN);
        kgenAddBlankLine(ctx);
    }

    if (!customize || (isTra && areTails)) {
        pattern.generic = true;
        pattern.dim.x = 0;
        pattern.dim.y = 0;
        findGenerateFunction(guard, &pattern,
                         copyFuncs->globalToLocalTransposedGeneric[MATRIX_A],
                         FUNC_NAME_MAXLEN);
        kgenAddBlankLine(ctx);
    }

    pattern.generic = false;
    pattern.dim.x = dims[1].x;
    pattern.dim.y = dims[0].bwidth;
    if (kflags & KEXTRA_CONJUGATE_B) {
        pattern.flags = DBLOCK_COPY_TRANSPOSE | DBLOCK_COPY_CONJUGATE;
    }
    else {
        pattern.flags = DBLOCK_COPY_TRANSPOSE;
    }
    pattern.flags |= glcpFlags[1];
    findGenerateFunction(guard, &pattern,
                         copyFuncs->globalToLocalTransposed[MATRIX_B],
                         FUNC_NAME_MAXLEN);
    kgenAddBlankLine(ctx);

    pattern.generic = true;
    pattern.dim.x = 0;
    pattern.dim.y = 0;
    findGenerateFunction(guard, &pattern,
                         copyFuncs->globalToLocalTransposedGeneric[MATRIX_B],
                         FUNC_NAME_MAXLEN);
    kgenAddBlankLine(ctx);

    // generate two local zeroing functions for matrix A and matrix B blocks
    pattern.zeroing = true;
    pattern.dim = dims[0];
    pattern.generic = false;
    pattern.flags = 0;
    pattern.dim.y = 1;
    pattern.dim.x = fl4RowWidth(dims[0].bwidth, tsize) * dims[1].y;

    findGenerateFunction(guard, &pattern,
                         copyFuncs->zeroBlock[MATRIX_A],
                         FUNC_NAME_MAXLEN);
    kgenAddBlankLine(ctx);

    pattern.dim.x = fl4RowWidth(dims[0].bwidth, tsize) * dims[1].x;
    findGenerateFunction(guard, &pattern,
                         copyFuncs->zeroBlock[MATRIX_B],
                         FUNC_NAME_MAXLEN);
    ret = kgenAddBlankLine(ctx);

    destroyKgenGuard(guard);
    return ret;
}
Example #15
0
// global memory based kernel generator
static ssize_t
generator(
   char *buf,
   size_t buflen,
   const struct SubproblemDim *subdims,
   const struct PGranularity *pgran,
   void *extra)
{
    struct KgenContext *ctx;
    CLBLASKernExtra *kextra = (CLBLASKernExtra*)extra;
    KernelExtraFlags kflags = kextra->flags;
    size_t staggered = ((extraData_t*)&kextra->solverPriv)->staggered;
    //yes, KEXTRA_TAILS_K because it is set if N % bw != 0
    bool tailN = ((kflags & KEXTRA_TAILS_K) != 0);
    bool tailM = ((kflags & KEXTRA_TAILS_M) != 0);
    char tmp[4096];
    DataType dtype = kextra->dtype;
    bool doubleBased = isDoubleBasedType(dtype);
    BlasGenSettings gset;
    TileMulOpts mulOpts;
    KernelVarNames *vnames = &gset.varNames;
    ssize_t ret;
    TilePostFetchPrivate pfPriv;
    unsigned int vecLen = kextra->vecLen;
    const char *outTypeName;
    const char *gid = "get_group_id(0)";
    const char *lid = "get_local_id(0)";
    const char *typeName;
    size_t wgSize;
    //unsigned int nStep = 32;
    unsigned int bStep = subdims[0].bwidth / subdims[1].bwidth; //8;
    unsigned int cLocal;
    bool isComplex = isComplexType(dtype);
    unsigned int nPlans;

    typeName = dtypeBuiltinType(dtype);
    memset(&gset, 0, sizeof(gset));
    memset(&mulOpts, 0, sizeof(mulOpts));
    ctx = createKgenContext(buf, buflen, true);
    if (ctx == NULL) {
        return -ENOMEM;
    }

    // at first, generate needed declarations
    kgenDeclareUptrs(ctx, doubleBased);

    // now, generate the kernel
    declareGemvKernel(ctx, dtype, pgran, kflags);
    ret = kgenBeginFuncBody(ctx);
    kgenAddStmt(ctx, "// M always denotes length of Y "
                     "and N denotes length of X in the kernel\n");
    /* 1D work space. Matrix is divided among wi, each calculates it's own
     * part of vector y */

    wgSize = (subdims[0].y / subdims[1].y) *
            (subdims[0].bwidth / subdims[1].bwidth);
    assert(pgran->wgSize[0] == wgSize);
    assert(subdims[0].x == 1);
    assert(subdims[1].x == 1);
    cLocal = wgSize/bStep;

    memcpy(gset.subdims, subdims, sizeof(gset.subdims));
    gset.subdims[0].itemX = gset.subdims[0].x = 1;
    gset.subdims[1].itemX = gset.subdims[1].x = 1;
    gset.subdims[0].bwidth = gset.subdims[1].bwidth;

    gset.pgran = pgran;
    gset.kextra = kextra;
    gset.flags = BGF_UPTRS;

    initDefaultTiles(&gset, CLBLAS_GEMV, 0, PRIV_STORAGE_VARIABLE_SET);
    if (isComplex) {
         gset.tileCY.vecLen = 1;
    }
    declareTileStorages(ctx, &gset);
    genZeroTile(ctx, &gset.tileCY);
    getVectorTypeName(dtype, gset.tileCY.vecLen, &outTypeName, NULL);
    nPlans = gset.tileCY.nrRows / gset.tileCY.vecLen;

    sprintf(tmp, "__local %s localRes[%u][%u];\n",
                outTypeName, pgran->wgSize[0], nPlans);
    kgenAddStmt(ctx, tmp);
    sprintf(tmp, "uint coordA = (%s * %u + %s %% %u) * %lu;\n",
                 gid, bStep, lid, bStep, subdims[1].y);
    kgenAddStmt(ctx, tmp);
    sprintf(tmp, "uint k0 = (%s / %u) * %lu;\n",
                 lid,  bStep, subdims[1].bwidth);
    kgenAddStmt(ctx, tmp);

    kgenAddBlankLine(ctx);

    kgenBeginBranch(ctx,"if (coordA < M && k0 < N)");

    genIncPointers(ctx, kflags);
    sprintf(tmp,
            "const GPtr Ag = {(__global %s*)A};\n"
            "const GPtr Xg = {(__global %s*)X};\n",
            typeName, typeName);
    kgenAddStmt(ctx, tmp);

    kgenAddBlankLine(ctx);

    if (tailN) {
        sprintf(tmp, "uint Ntail = N %% %lu;\n", subdims[1].bwidth);
        kgenAddStmt(ctx, tmp);
        kgenAddStmt(ctx, "N -= Ntail;\n");
        kgenAddBlankLine(ctx);
    }

    mulOpts.flags |= TILEMUL_OPTIMIZE_COORD_CALC;
    if (tailM) {
        mulOpts.flags |= TILEMUL_GLOBAL_CYCLIC_A;
    }

    vnames->A = "Ag";
    vnames->B = "Xg";
    vnames->coordA = "coordA";
    vnames->coordB = ""; //should not be used for vector
    vnames->k = "k";
    vnames->lda = "lda";
    vnames->sizeK = "N";
    vnames->sizeM = "M";

    mulOpts.flags |= TILEMUL_NOT_FETCH_B | TILEMUL_TRB | TILEMUL_C_COLUMN_MAJOR | TILEMUL_NOT_INC_K;
    if ((kflags & KEXTRA_CONJUGATE_A) != 0) {
        mulOpts.flags |= TILEMUL_CONJA;
    }
    if (isMatrixAccessColMaj(CLBLAS_GEMV, kflags, MATRIX_A)) {
        mulOpts.flags |= TILEMUL_TRA;
    }
    if ((kflags & KEXTRA_ENABLE_MAD) != 0) {
        mulOpts.core = TILEMUL_MAD;
    }
    else {
        mulOpts.core = TILEMUL_MULADD;
    }
    mulOpts.memA = CLMEM_GLOBAL_MEMORY;
    mulOpts.memB = CLMEM_GLOBAL_MEMORY;

    if (!isMatrixAccessColMaj(CLBLAS_GEMV, kflags, MATRIX_A)) {
        gset.subdims[0].bwidth = pgran->wgSize[0] * subdims[1].bwidth;
        mulOpts.flags |= TILEMUL_BW_STRIDE;
    }

    sprintf(tmp, "uint k = k0;\nfor (; k < N; k += %lu)", cLocal*subdims[1].bwidth);
    kgenBeginBranch(ctx, tmp);

    if (staggered) {
        vnames->k = "k1";
        sprintf(tmp, "const uint k1 = (k + get_group_id(0)*%lu)%%N;\n",staggered);
        kgenAddStmt(ctx, tmp);
    }

    genFetchX(ctx, &gset.tileBX, gset.kextra->vecLen, dtype, vnames,
            mulOpts.flags, kflags);

    ret = tileMulGen(ctx, &gset, &mulOpts);
    if (ret != 0) {
        return ret;
    }
    vnames->k = "k";
    kgenEndBranch(ctx, NULL); /* k loop */

    if (tailN) {
        /* Handle tail along vector X */
        kgenAddStmt(ctx, "N += Ntail;\n");
        kgenBeginBranch(ctx, "if (k < N)");

        mulOpts.flags |= TILEMUL_SKEW_B;
        genFetchX(ctx, &gset.tileBX, gset.kextra->vecLen, dtype, vnames,
                  mulOpts.flags, kflags);
        mulOpts.flags |= TILEMUL_GLOBAL_CYCLIC_K|TILEMUL_WRAP_AROUND_TAIL;
        setFetchHandler(&mulOpts, &gset, defaultTilePostFetch, &pfPriv);
        ret = tileMulGen(ctx, &gset, &mulOpts);
        if (ret != 0) {
            return ret;
        }
        kgenEndBranch(ctx, NULL);
    }

    if (!isMatrixAccessColMaj(CLBLAS_GEMV, kflags, MATRIX_A)) {
        gset.subdims[0].bwidth = subdims[1].bwidth;
        mulOpts.flags &= ~TILEMUL_BW_STRIDE;
    }

    kgenEndBranch(ctx,NULL);

    genStoreLocalResult(ctx, &gset.tileCY, lid);

    kgenAddBarrier(ctx, CLK_LOCAL_MEM_FENCE);
    kgenAddBlankLine(ctx);

    sprintf(tmp, "if (%s < %u && coordA < M && k0 < N)", lid, bStep);
    kgenBeginBranch(ctx, tmp);

    genAddLocalResult(ctx, &gset.tileCY, lid, cLocal, bStep);

    /* write back the results */
    /* y := alpha*A*x + beta*y */
    setResultPos(ctx, kflags, vnames->coordA);

    updateResultVectorTiled(ctx, kflags, vecLen, &gset.tileCY);

    kgenEndBranch(ctx, NULL);

    kgenEndFuncBody(ctx);
    ret = kgenAddBlankLine(ctx);

    if (!ret) {
        ret = (ssize_t)kgenSourceSize(ctx) + 1;
    }

    destroyKgenContext(ctx);
    return (ret < 0) ? -EOVERFLOW : ret;
}
Example #16
0
static void
initCopyPattern(
    CopyPattern *pattern,
    const SubproblemDim *blasDim,
    KernelExtraFlags flags,
    MatrixRole mrole,
    BlasFunctionID funcID)
{
    SubproblemDim *dim = &pattern->dim;
    unsigned int vecFlag = 0;

    pattern->flags = 0;

    if (blasDim == NULL) {
        pattern->generic = true;
        dim->x = 0;
        dim->y = 0;
    }
    else {
        pattern->generic = false;

        switch (mrole) {
        case MATRIX_A:
            dim->x = blasDim->bwidth;
            dim->y = blasDim->y;
            break;
        case MATRIX_B:
            dim->x = blasDim->bwidth;
            dim->y = blasDim->x;
            break;
        case MATRIX_C:
            dim->x = blasDim->x;
            dim->y = blasDim->y;
            break;
        default:
            break;
        }
    }

    switch (mrole) {
    case MATRIX_A:
        vecFlag = KEXTRA_NO_COPY_VEC_A;
        break;
    case MATRIX_B:
        vecFlag = KEXTRA_NO_COPY_VEC_B;
        break;
    case MATRIX_C:
        if ((funcID == CLBLAS_TRMM) || (funcID == CLBLAS_TRSM)) {
            vecFlag = KEXTRA_NO_COPY_VEC_B;
        } else {
            vecFlag = KEXTRA_NO_COPY_VEC_C;
        }
        break;
    default:
        break;
    }

    if (flags & vecFlag) {
        pattern->flags |= DBLOCK_COPY_NOT_VECTORIZE;
    }

    if (isMatrixAccessColMaj(funcID, flags, mrole)) {
        if ((pattern->dir == DBLOCK_GLOBAL_TO_LOCAL) &&
            !pattern->generic) {
            dimSwapXY(dim);
        }
        pattern->flags |= DBLOCK_COPY_TRANSPOSE;
    }
    if (isMatrixConj(flags, mrole)) {
        pattern->flags |= DBLOCK_COPY_CONJUGATE;
    }
}
Example #17
0
static ssize_t
generator(
   char *buf,
   size_t buflen,
   const struct SubproblemDim *subdims,
   const struct PGranularity *pgran,
   void *extra)
{
    char tmp[1024];
    struct KgenContext *ctx;
    ssize_t ret;
    CLBLASKernExtra *kextra = (CLBLASKernExtra*)extra;
    DataType dtype = kextra->dtype;
    KernelExtraFlags kflags = kextra->flags;
    CLBLASKernExtra extraNew;
    BlasGenSettings gset;
    TileMulOpts mulOpts;
    const char *ptrName;
    UpdateResultFlags upFlags = 0;
    TilePostFetchPrivate pfPriv;
    unsigned int l1Pans;
    bool b;
    Tile parTile;
    TrsmExtraParams *extraParams = (TrsmExtraParams *)kextra->solverPriv;
    int ldsLarge, lds_diagonal;
    bool isInline;
    TileSet tileSet;
    char copy2LDSFuncName[FUNC_NAME_MAXLEN];
    TailStatus tailStatus = 0;
    FetchAddrMode addrMode = 0;
    bool tailM = ((kflags & KEXTRA_TAILS_M) != 0);
    bool tailN = ((kflags & KEXTRA_TAILS_N) != 0);
    size_t alignK;

    if (pgran->wgDim != 1) {
        return -EINVAL;
    }

    l1Pans = (unsigned int)(subdims[0].x / subdims[1].x);

    memset(&gset, 0, sizeof(gset));
    gset.flags = BGF_WHOLE_A | BGF_EXPLICIT_INLINE | BGF_UPTRS;
    memcpy(gset.subdims, subdims, sizeof(SubproblemDim) * 2);
    // there is not need in block structure along K
    gset.subdims[0].bwidth = gset.subdims[1].bwidth;
    subdims = gset.subdims;

    /*
     * Since tiles are changed dynamically, e. g. in the main tilemul
     * loop they are rectangular, but at the second stage both A and B
     * tile storages are used for square tiles. One must adjust physical
     * vectorization accordindly, so as vector length might not be
     * greater than linear size of any tile
     */
    memcpy(&extraNew, kextra, sizeof(extraNew));
    extraNew.vecLenA = umin(kextra->vecLenA, (unsigned int)subdims[1].y);
    extraNew.vecLenB = umin(kextra->vecLenB, (unsigned int)subdims[1].y);

    gset.pgran = pgran;
    gset.kextra = &extraNew;
    initKernelVarNames(&gset.varNames);

    // multiplication options
    mulOpts.memA = CLMEM_GLOBAL_MEMORY;
    mulOpts.memB = CLMEM_GLOBAL_MEMORY;
    mulOpts.core = (kextra->flags & KEXTRA_ENABLE_MAD) ? TILEMUL_MAD :
                                                         TILEMUL_MULADD;
    mulOpts.postFetch = NULL;
    mulOpts.flags = kextraToTilemulFlags(CLBLAS_TRSM, kflags);
    mulOpts.flags |= TILEMUL_EXTERN_RDECL | TILEMUL_NOT_INC_K;
    mulOpts.fctx = createFetchContext();
    if (mulOpts.fctx == NULL) {
        return -ENOMEM;
    }

    disableFetchOptLevels(mulOpts.fctx, FOPTLEV_TMP_COORD_PRECOMPUTING);

    isInline = (gset.flags & BGF_EXPLICIT_INLINE);

    initTiles(&gset, &tileSet, subdims, kflags, dtype,
              PRIV_STORAGE_VARIABLE_SET);

    ctx = createKgenContext(buf, buflen, true);
    if (ctx == NULL) {
        destroyFetchContext(mulOpts.fctx);
        return -ENOMEM;
    }

    kgenAddStmt(ctx, "#pragma OPENCL EXTENSION cl_amd_printf : enable\n\n");

    b = isDoubleBasedType(dtype);
    kgenDeclareUptrs(ctx, b);
    if (isComplexType(dtype)) {
        genComplexMathOperators(ctx, dtype);
    }
    if(!isInline) {
        genTileInverting(ctx, &gset, &tileSet);
    }

    if ( extraParams->ldsUse != LDS_NO_USE ) {
        SubproblemDim sdims;
        DBlockCopyFlags flags;
        unsigned int vecLen;

        if (!isMatrixAccessColMaj(CLBLAS_TRSM, kflags, MATRIX_B)) {
            sdims.x = gset.subdims[1].bwidth * extraParams->unrollingFactor;
            sdims.y = gset.subdims[0].x;
        }
        else {
            sdims.x = gset.subdims[0].x;
            sdims.y = gset.subdims[1].bwidth * extraParams->unrollingFactor;
        }

        vecLen = getVecLen(&gset, CLBLAS_TRSM, MATRIX_B);
        flags = (vecLen < 4) ? DBLOCK_COPY_NOT_VECTORIZE : 0;
        copyDataBlockGen(ctx, &sdims, gset.pgran, dtype,
                         DBLOCK_GLOBAL_TO_LOCAL, flags);
        kgenAddBlankLine(ctx);
        kgenGetLastFuncName(copy2LDSFuncName, FUNC_NAME_MAXLEN, ctx);
    }

    declareTrxmKernel(ctx, dtype, pgran, kflags, CLBLAS_TRSM, "Cached", false,
                      true);
    kgenBeginFuncBody(ctx);

    declareLocalVariables(ctx, &gset, &parTile, extraParams);
    if (kflags & KEXTRA_A_OFF_NOT_ZERO) {
        kgenAddStmt(ctx, "A += offA;\n");
    }
    genTrxmBMatrShift(ctx, kflags, false);

    ptrName = dtypeUPtrField(dtype);

    sprintf(tmp, "uB.%s = B;\n\n", ptrName);
    kgenAddStmt(ctx, tmp);

    // external loop
    sprintf(tmp, "for (m0 = 0; m0 < M; m0 += %lu)", subdims[0].y);
    kgenBeginBranch(ctx, tmp);
    genZeroTile(ctx, &gset.tileCY);
    genSetupCoords(ctx, &gset, BLOCK_UPDATE);

    kgenAddStmt(ctx, "// Stage 1. Multiply and update with large blocks\n");

    gset.tileA = tileSet.rectA;
    gset.tileBX = tileSet.origB;

    if (!isMatrixUpper(kflags) && tailM) {
        addrMode |= FETCH_ADDR_A_CYCLICAL;
        setFetchAddrMode(mulOpts.fctx, addrMode);
    }

    ldsLarge = ((extraParams->ldsUse & LDS_USE_LARGE) != 0);
    alignK = subdims[1].bwidth;
    if (ldsLarge) {
        alignK *= extraParams->unrollingFactor;
    }

    if (ldsLarge) {
        const char *oldCoordB;
        FetchAddrMode bamode = addrMode | FETCH_ADDR_K_RELATIVE;
        bool withSkew;

        withSkew = useSkewedFetchB(&gset);
        if (!withSkew) {
            bamode |= FETCH_ADDR_B_RELATIVE;
        }
        else {
            bamode |= FETCH_ADDR_B_CYCLICAL;
        }

        setFetchAddrMode(mulOpts.fctx, bamode);

        if (tailN) {
            /*
             * Conditional branch for those items which hit into
             * matrix B with their matrix coordinates
             */
            sprintf(tmp, "if ((gid + 1) * %lu < N)", subdims[0].x);
            kgenBeginBranch(ctx, tmp);
        }

        if (isMatrixAccessColMaj(CLBLAS_TRSM, kflags, MATRIX_A)) {
            kgenPrintf(ctx, "uA.%s = A + k0 * lda;\n", ptrName);
        }
        else {
            kgenPrintf(ctx, "uA.%s = A + k0;\n", ptrName);
        }

        if (withSkew) {
            unsigned int bwidthOld;

            oldCoordB = gset.varNames.coordB;
            gset.varNames.coordB = "skewX";
            bwidthOld = gset.subdims[0].bwidth;
            gset.subdims[0].bwidth = (parTile.trans) ? parTile.nrRows :
                                                       parTile.nrCols;
            gset.subdims[0].bwidth = bwidthOld;
        }

        genInternalLoopCtl(ctx, subdims, kflags, alignK, alignK);
        genPreloadedTileMul(ctx, &gset, &mulOpts, &parTile, copy2LDSFuncName);
        genInternalLoopEnd(ctx);                             // loop over K

        if (withSkew) {
            gset.varNames.coordB = oldCoordB;
            setFetchAddrMode(mulOpts.fctx, bamode & ~FETCH_ADDR_B_CYCLICAL);
            // deliver from skew in the result before proceed to the next stage
            genTileCyclicalShift(ctx, &gset);
        }

        if (tailN) {
            kgenEndBranch(ctx, NULL);
            kgenBeginBranch(ctx, "else");
        }

        setFetchAddrMode(mulOpts.fctx, addrMode);
    }

    if (!ldsLarge || tailN) {
        genCheckShiftTailB(ctx, &gset, 0, &tailStatus);
        if ((kflags & KEXTRA_TAILS_N_LOWER) && !tailStatus) {
            addrMode |= FETCH_ADDR_B_CYCLICAL;
            setFetchAddrMode(mulOpts.fctx, addrMode);
        }

        if (tailN) {
            sprintfHitMatrixCond(tmp, MATRIX_B, "if (", ")");
            kgenBeginBranch(ctx, tmp);
        }

        genInternalLoopCtl(ctx, subdims, kflags, subdims[1].bwidth, alignK);
        tileMulGen(ctx, &gset, &mulOpts);
        genInternalLoopEnd(ctx);                             // loop over K

        if (tailN) {
            kgenEndBranch(ctx, NULL);
        }

        if (extraParams->ldsUse & LDS_USE_LARGE) {
            kgenEndBranch(ctx, NULL);
        }
    }

    sprintf(tmp, "uA.%s = A;\n\n", ptrName);
    kgenAddStmt(ctx, tmp);

    // processing tails along update dimension
    if (isMatrixUpper(kflags) &&
        ((kflags & KEXTRA_TAILS_K_LOWER) ||
          (ldsLarge && extraParams->unrolledTail))) {

        unsigned int tailChunks;

        tailChunks = (extraParams->ldsUse & LDS_USE_LARGE) ?
            extraParams->unrolledTail : 1;

        if (tailN) {
            char hitCond[1024];

            sprintfHitMatrixCond(hitCond, MATRIX_B, "(", ")");
            sprintf(tmp, "if ((currM + %lu < M) && %s)",
                    subdims[0].y, hitCond);
        }
        else {
            sprintf(tmp, "if (currM + %lu < M)", subdims[0].y);
        }
        kgenBeginBranch(ctx, tmp);

        if (kflags & KEXTRA_TAILS_K_LOWER) {
            setFetchAddrMode(mulOpts.fctx, addrMode | FETCH_ADDR_K_CYCLICAL);
            setFetchHandler(&mulOpts, &gset, defaultTilePostFetch, &pfPriv);
        }
        if (tailChunks > 1) {
            mulOpts.flags &= ~TILEMUL_NOT_INC_K;
            sprintf(tmp, "for (uint k1 = 0; k1 < %u; k1++)", tailChunks);
            kgenBeginBranch(ctx, tmp);
        }

		addrMode |= FETCH_ADDR_B_CYCLICAL;
        setFetchAddrMode(mulOpts.fctx, addrMode);
        tileMulGen(ctx, &gset, &mulOpts);
        if (tailChunks > 1) {
            kgenEndBranch(ctx, NULL);
            mulOpts.flags |= TILEMUL_NOT_INC_K;
        }

        kgenEndBranch(ctx, NULL);
    }

    gset.tileA = tileSet.squareA;

    kgenAddStmt(ctx, "\n/*\n"
                     " * Stage 2. A part of work items multiply got result on "
                     "a respective\n"
                     " * inverted diagonal block, and the remaining ones wait. "
                     "Then they perform\n"
                     " * one step of further intermediate result evaluation as "
                     "multiplying tile by tile.\n"
                     " * It continues until the whole panel of the "
                     "matrix A is processed\n"
                     " */\n");

    // one must deal further with square blocks strictly
    gset.subdims[0].bwidth = gset.subdims[1].bwidth = gset.subdims[1].y;

    sprintf(tmp, "for (m1 = 0; m1 < %lu; m1++)", subdims[0].y / subdims[1].y);
    kgenBeginBranch(ctx, tmp);

    if (extraParams->ldsUse & LDS_USE_DIAGONAL) {
        sprintf(tmp, "const int bid = lid %% %u;\n\n",
                l1Pans);
        kgenAddStmt(ctx, tmp);
    }

    /*
     * Update the intermediate result multiply on the inverted diagonal tile,
     * and write back
     */
    genSetupCoords(ctx, &gset, TILE_UPDATE);

    sprintfStage2Condition(tmp, &gset, 0);
    ret = kgenBeginBranch(ctx, tmp);

    upFlags = kextraToUpresFlags(CLBLAS_TRSM, kflags);
    upFlags |= tailStatusToUpresFlags(tailStatus);
    upFlags |= UPRES_PRIV_DEST | UPRES_WITH_BETA;
    genUpdateIntermResult(ctx, &gset, false, upFlags);

    kgenAddBlankLine(ctx);

    lds_diagonal = ((extraParams->ldsUse & LDS_USE_DIAGONAL) &&
                    (kflags & (KEXTRA_COLUMN_MAJOR)) == 0 &&
                    !(tailM || tailN) &&
                    !(upFlags & UPRES_NO_VECTORIZATION) &&
                    !isComplexType(kextra->dtype));

    /*
     * it's needed now to adjust addressing mode of A so as to don't
     * exceed the bound of A
     */
    if (tailM) {
        setFetchAddrMode(mulOpts.fctx,
                         addrMode | FETCH_ADDR_A_CYCLICAL |
                         FETCH_ADDR_K_CYCLICAL);
        extraNew.flags |= KEXTRA_TAILS_K_LOWER;
    }

    genMulOnDiagonalTile(ctx, &gset, &tileSet, &mulOpts);
    gset.tileBX = tileSet.bStage2;
    if (tailM) {
        setFetchHandler(&mulOpts, &gset, defaultTilePostFetch, &pfPriv);
    }

    kgenAddStmt(ctx, "// Write back the given result\n");

    upFlags = kextraToUpresFlags(CLBLAS_TRSM, kflags);
    upFlags |= tailStatusToUpresFlags(tailStatus);

    if (lds_diagonal) {
       sprintf(tmp, "tmpB[%%u * %u + bid]", l1Pans);
    }

    genResultUpdateWithFlags(ctx, CLBLAS_TRSM, &gset, upFlags,
                                 NULL, NULL, lds_diagonal ? tmp : NULL);

    kgenEndBranch(ctx, NULL);   // multiply on the inverted tile path
    kgenAddBarrier(ctx, CLK_GLOBAL_MEM_FENCE);

    // continue the tile update
    kgenAddBlankLine(ctx);
    sprintfStage2Condition(tmp, &gset, 1);
    kgenBeginBranch(ctx, tmp);
    genCheckShiftTailB(ctx, &gset, 0, &tailStatus);
    if (lds_diagonal) {
        // TODO: add here storing to LDS as well
    }
    else {
		addrMode |= FETCH_ADDR_B_CYCLICAL;
        setFetchAddrMode(mulOpts.fctx, addrMode);
        tileMulGen(ctx, &gset, &mulOpts);
    }
    kgenEndBranch(ctx, NULL);           // tile update path
    kgenAddBarrier(ctx, CLK_GLOBAL_MEM_FENCE);

    kgenEndBranch(ctx, NULL);           // second stage loop

    if (isMatrixUpper(kflags)) {
        sprintf(tmp, "currM -= %lu;\n", subdims[0].y);
        kgenAddStmt(ctx, tmp);
    }

    kgenEndBranch(ctx, NULL);           // loop over M

    ret = kgenEndFuncBody(ctx);

    if (!ret) {
        ret = (ssize_t)kgenSourceSize(ctx) + 1;
    }

    destroyFetchContext(mulOpts.fctx);
    destroyKgenContext(ctx);

    return (ret < 0) ? -EOVERFLOW : ret;
}