void replaceExps(SgExpression* exp, SgVariableDeclaration* vardecl) {
	 if (isSgVarRefExp(exp)) {
                return;
        }
        else if (isSgUnaryOp(exp)) {
                if (isSgMinusMinusOp(exp) || isSgPlusPlusOp(exp)) {
                        SgExpression* operand = (isSgUnaryOp(exp))->get_operand();
			SgExpression* operand_cpy = SageInterface::copyExpression(operand);
			std::cout << "operand: " << operand->class_name() << std::endl;
			SageInterface::replaceExpression(exp,operand_cpy);
		}



                return;
        }
        else if (isSgBinaryOp(exp)) {
                replaceExps(isSgBinaryOp(exp)->get_lhs_operand(), vardecl);
                replaceExps(isSgBinaryOp(exp)->get_rhs_operand(), vardecl);
                return;
        }
        else {
                return;
        }
        return;
}
void simplifyExps(SgExpression* exp) {
         if (isSgVarRefExp(exp)) {
                return;
        }
        else if (isSgBinaryOp(exp)) {
		SageInterface::splitExpressionIntoBasicBlock(exp);
                simplifyExps(isSgBinaryOp(exp)->get_lhs_operand());
                simplifyExps(isSgBinaryOp(exp)->get_rhs_operand());
                return;
        }
        else {
                return;
        }
        return;
}
void
CompassAnalyses::NonAssociativeRelationalOperators::Traversal::
visit(SgNode* node)
   {
     SgBinaryOp *relOperator = isSgBinaryOp(node);

     if( relOperator != NULL && 
         isRelationalOperator(relOperator) )
     {
       SgExpression *lhs = relOperator->get_lhs_operand();
       SgExpression *rhs = relOperator->get_rhs_operand();

       if( lhs != NULL && rhs != NULL )
       {
         CompassAnalyses::NonAssociativeRelationalOperators::ExpressionTraversal expressionTraversal;

         if( expressionTraversal.run(lhs->get_parent()) > 1 ) 
         {
           output->addOutput( new CheckerOutput(relOperator) );
         } //if( expressionTraversal.run(lhs->get_parent()) > 1 ) 

       } //if( lhs != NULL && rhs != NULL )
     } //if( relOperator != NULL && isRelationalOperator(node) )

     return;
   } //End of the visit function.
void getExps(SgExpression* exp, SgInitializedName* prevPost, std::vector<SgExpression*>& result, int tabcount) {
	
	if (isSgVarRefExp(exp)) {
		return;
	}
	else if (isSgUnaryOp(exp)) {
		if (isSgMinusMinusOp(exp) || isSgPlusPlusOp(exp)) {
			SgExpression* operand = (isSgUnaryOp(exp))->get_operand();
			
			bool prefix = (isSgUnaryOp(exp)->get_mode() == SgUnaryOp::prefix);
				if (prefix) {
					SgExpression* exp_cpy = SageInterface::copyExpression(exp);
					prefixes.push_back(exp_cpy);
				}
				else {
					SgExpression* exp_cpy = SageInterface::copyExpression(exp);
					postfixes.push_back(exp_cpy);
				}
			
			
		}
		
		return;
	}
	else if (isSgBinaryOp(exp)) {
		result.push_back(exp);
		getExps(isSgBinaryOp(exp)->get_lhs_operand(), prevPost, result,tabcount+1);
		getExps(isSgBinaryOp(exp)->get_rhs_operand(), prevPost, result,tabcount+1);
		return;
	}
	else {
		result.push_back(exp);
		return;
	}
	return;
}
/**
 * Matches assignment statements (including pointer association)
 */
void FortranAnalysis::visit(SgExprStatement * expr_stmt)
{
   if (matchRegionAssignment(expr_stmt)) {
      SgBinaryOp * bin_op = isSgBinaryOp(expr_stmt->get_expression());
      SgVarRefExp * var = isSgVarRefExp(bin_op->get_lhs_operand());
      if (var == NULL) return;
      var->get_symbol()->setAttribute("halo_attr", new AstTextAttribute("HALO_VAR"));
      printf("FortranAnalysis:: adding halo attr to %s\n",
             var->get_symbol()->get_name().getString().c_str());
   }
   else if (HaloRefSearch::findHaloRef(expr_stmt)) {
      expr_stmt->setAttribute("halo_ref", new AstTextAttribute("HAS_HALO_REF"));
      printf("FortranAnalysis:: adding halo attr to statement\n");
   }
}
Example #6
0
ParseTree * ParseTree::extractParseTree(
  SgExpression * exp,
  const PolyhedricAnnotation::FunctionPolyhedralProgram & function_program,
  PolyGraph * polygraph,
  std::string isl_domain,
  unsigned stmt_id
) {
  SgBinaryOp * bin_op = isSgBinaryOp(exp);
  SgUnaryOp * una_op = isSgUnaryOp(exp);
  SgConditionalExp * cond_exp = isSgConditionalExp(exp);
  SgFunctionCallExp * func_call = isSgFunctionCallExp(exp);

  ParseTree * c1 = NULL;
  ParseTree * c2 = NULL;
  ParseTree * c3 = NULL;

  unsigned variant = exp->variantT();

  if (isSgPntrArrRefExp(exp)) bin_op = NULL;

  if (bin_op != NULL) {
    c1 = extractParseTree(bin_op->get_lhs_operand_i(), function_program, polygraph, isl_domain, stmt_id);
    c2 = extractParseTree(bin_op->get_rhs_operand_i(), function_program, polygraph, isl_domain, stmt_id);
  }
  else if (una_op != NULL) {
    c1 = extractParseTree(una_op->get_operand_i(), function_program, polygraph, isl_domain, stmt_id);
  }
  else if (cond_exp != NULL) {
    c1 = extractParseTree(cond_exp->get_conditional_exp(), function_program, polygraph, isl_domain, stmt_id);
    c2 = extractParseTree(cond_exp->get_true_exp(), function_program, polygraph, isl_domain, stmt_id);
    c3 = extractParseTree(cond_exp->get_false_exp(), function_program, polygraph, isl_domain, stmt_id);
  }
  else if (func_call != NULL) {
    std::vector<SgExpression *> args = func_call->get_args()->get_expressions();
    ROSE_ASSERT(args.size() == 1);
    c1 = extractParseTree(args[0], function_program, polygraph, isl_domain, stmt_id);
  }
  else {
    return new Data(polygraph, exp, function_program, isl_domain);
  }

  return new Operator(polygraph, variant, c1, c2, c3);
}
bool FortranAnalysis::matchRegionAssignment(SgExprStatement * expr_stmt)
{
   SgBinaryOp * bin_op = isSgBinaryOp(expr_stmt->get_expression());
   if (bin_op == NULL) return false;

   SgFunctionCallExp * fcall = isSgFunctionCallExp(bin_op->get_rhs_operand());
   if (fcall == NULL) return false;

   SgFunctionRefExp * fref = isSgFunctionRefExp(fcall->get_function());
   if (fref == NULL) return false;

   SgExpressionPtrList::iterator it = fcall->get_args()->get_expressions().begin();
   std::string name = fref->get_symbol()->get_name().getString();
   if (name == "interior" && it != fcall->get_args()->get_expressions().end()) {
      SgVarRefExp * var = isSgVarRefExp(*it);
      if (var == NULL) return false;
      AstTextAttribute * attr = (AstTextAttribute *) var->get_symbol()->getAttribute("dummy_attr");
      if (attr == NULL) return false;
      if (attr->toString() != "DUMMY_ARRAY_ARG") return false;
   }
   return true;
}
Example #8
0
void DataFlow<Annotation, Language, Runtime>::createContextFromLoopTree(
  const LoopTrees<Annotation> & loop_trees,
  context_t & context
) const {
  assert(context.datas.empty());
  assert(context.datas_in.empty());
  assert(context.datas_out.empty());
  assert(context.accesses_map.empty());

  typename std::set<Data<Annotation> *>::iterator it_data;

  const std::vector<Data<Annotation> *> & data_vect = loop_trees.getDatas();
  context.datas.insert(data_vect.begin(), data_vect.end());
  for (it_data = context.datas.begin(); it_data != context.datas.end(); it_data++) {
    assert(*it_data != NULL);
    if ((*it_data)->isFlowIn())
      context.datas_in.insert(*it_data);
    if ((*it_data)->isFlowOut())
      context.datas_out.insert(*it_data);
  }

  const std::vector<typename LoopTrees<Annotation>::node_t *> & nodes = loop_trees.getNodes();
  typename std::vector<typename LoopTrees<Annotation>::node_t *>::const_iterator it_node;
  for (it_node = nodes.begin(); it_node != nodes.end(); it_node++) {
    typename LoopTrees<Annotation>::cond_t * cond = dynamic_cast<typename LoopTrees<Annotation>::cond_t *>(*it_node);
    typename LoopTrees<Annotation>::stmt_t * stmt = dynamic_cast<typename LoopTrees<Annotation>::stmt_t *>(*it_node);

    if (cond == NULL && stmt == NULL) continue;

    typename std::map<typename LoopTrees<Annotation>::node_t *, accesses_list_t>::iterator it_access = 
          context.accesses_map.insert(std::pair<typename LoopTrees<Annotation>::node_t *, accesses_list_t>(*it_node, accesses_list_t())).first;

    std::vector<data_access_t> & read  = it_access->second.reads;
    std::vector<data_access_t> & write = it_access->second.writes;

    if (cond != NULL) {
      assert(false); /// \todo
    }
    else if (stmt != NULL) {
      SgExprStatement * expr_stmt = isSgExprStatement(stmt->statement);
      SgVariableDeclaration * var_decl = isSgVariableDeclaration(stmt->statement);
      if (expr_stmt != NULL) {
        SgExpression * exp = expr_stmt->get_expression();
        assert(exp != NULL);

        SgBinaryOp * bin_op = isSgBinaryOp(exp);
        if (bin_op != NULL) {
          SgExpression * lhs_exp = bin_op->get_lhs_operand_i();
          SgExpression * rhs_exp = bin_op->get_rhs_operand_i();

          assert(lhs_exp != NULL && rhs_exp != NULL);

          SgAssignOp * assign_op = isSgAssignOp(exp);
          SgCompoundAssignOp * compound_assign_op = isSgCompoundAssignOp(exp);

          assert((assign_op != NULL) xor (compound_assign_op != NULL)); // FIXME expression statement are not always made of assignement

          if (assign_op != NULL || compound_assign_op != NULL) {
            append_access(lhs_exp, write, context); // add access in lhs to write set
            append_access(rhs_exp, read,  context); // add access in rhs to read set
          }
          if (compound_assign_op != NULL) {
            append_access(lhs_exp, read,  context); // add access in lhs to read set
          }
        }
        else assert(false); // FIXME expression statement are not always made of binary op
      }
      else if (var_decl != NULL) {
        assert(var_decl->get_variables().size() == 1);
        SgInitializedName * init_name = isSgInitializedName(var_decl->get_variables()[0]);
        assert(init_name != NULL);
        SgInitializer * init = isSgInitializer(init_name->get_initptr());
        if (init != NULL) {
          SgAssignInitializer * assign_init = isSgAssignInitializer(init);
          if (assign_init != NULL) {
            SgExpression * exp = assign_init->get_operand_i();
            assert(exp != NULL);
            append_access(exp, read, context);
          }
          else assert(false);
        }
      }
      else assert(false);
    }
  }
}
Example #9
0
void
CompassAnalyses::VariableNameEqualsDatabaseName::Traversal::
visit(SgNode* node)
   { 
     if( isSgAssignInitializer(node) != NULL )
          assignExp = node;
  
     if( isSgAssignOp(node) != NULL )
          assignExp = node; 

     SgFunctionCallExp* funcCall = isSgFunctionCallExp(node);

  // See if we have a dot expression or arrow expression which
  // accesses the desired member function in the class we are looking for.
     if ( funcCall != NULL  )
        {
          SgExpression* funcExp = funcCall->get_function();

          if ( ( isSgDotExp(funcExp) != NULL ) | ( isSgArrowExp(funcExp) != NULL ) )
             {
               SgBinaryOp*     binOp = isSgBinaryOp(funcExp);
               SgExpression*   rhsOp = binOp->get_rhs_operand();
            // SgExpression*   lhsOp = binOp->get_lhs_operand();
               if ( SgMemberFunctionRefExp* funcRef = isSgMemberFunctionRefExp(rhsOp)  )
                  {
                 // std::cout << "c1\n" ;

                    SgMemberFunctionSymbol*      funcSymbol = funcRef->get_symbol();
                    ROSE_ASSERT(funcSymbol->get_declaration() != NULL);

                 // DQ (1/16/2008): Note that the defining declaration need not exist (see test2001_11.C)
                 // ROSE_ASSERT(funcSymbol->get_declaration()->get_definingDeclaration() != NULL);
                    if (funcSymbol->get_declaration()->get_definingDeclaration() != NULL)
                       {
                         SgMemberFunctionDeclaration* funcDecl   = isSgMemberFunctionDeclaration(funcSymbol->get_declaration()->get_definingDeclaration());
                         ROSE_ASSERT( funcDecl != NULL );

                         SgClassDefinition* clDef = isSgClassDefinition(funcDecl->get_scope());
                         SgClassDeclaration*          clDecl     = isSgClassDeclaration(clDef->get_declaration());  

                      // SgClassDeclaration*          clDecl     = funcDecl->get_associatedClassDeclaration();

                         ROSE_ASSERT( clDecl != NULL );
                         std::string className    = clDecl->get_name().getString();

                         ROSE_ASSERT(funcDecl != NULL);
                         std::string functionName = funcDecl->get_name().getString();
 
                      // If the class is the class we are looking for see if the member function
                      // access is to the member function we are interested in.
                      // std::cout << "className = " << className << std::endl;
                      // std::cout << "functionName = " << functionName << std::endl;

                         if ( (className == classToLookFor) && ( functionName == memberFunctionToLookFor ) )
                            {
                              SgExprListExp*         actualArgs    = funcCall->get_args();
                              SgExpressionPtrList&   actualExpArgs = actualArgs->get_expressions ();

                              ROSE_ASSERT(actualExpArgs.size() == 1);
                              Rose_STL_Container<SgNode*> nodeLst = NodeQuery::querySubTree(*actualExpArgs.begin(), V_SgStringVal);

                              ROSE_ASSERT( nodeLst.size() > 0);
                              SgStringVal* actualArg = isSgStringVal(*nodeLst.begin());
                              ROSE_ASSERT(actualArg != NULL);

                              std::string  stringArg = actualArg->get_value();

                              std::cout << "arg:" << stringArg << std::endl;

                              std::string varName;

                           // SgInitializedName* initName = NULL; 
                              if ( SgAssignInitializer* assignInit =  isSgAssignInitializer(assignExp) )
                                 {
                                   SgInitializedName* initName = isSgInitializedName(assignInit->get_parent());
                                   ROSE_ASSERT(initName != NULL);
                                 
                                   varName = initName->get_name().getString();
                                 }
                                else
                                 {
                                   if ( SgAssignOp* assignOp = isSgAssignOp(assignExp) )
                                      {
                                        SgExpression*     lhsOp  = assignOp->get_lhs_operand();
                                        SgVarRefExp*      varRef = isSgVarRefExp(lhsOp);
                                        ROSE_ASSERT(varRef!=NULL);
                                        SgVariableSymbol* varSymbol = varRef->get_symbol();
                                        ROSE_ASSERT(varSymbol != NULL);
                                        SgInitializedName* initName = varSymbol->get_declaration();
                                        varName = initName->get_name().getString();
                                      }
                                 }
 
                              if (varName != "")
                                 {
                                // we are only interested in the part of the argument after the last ":"
                                // Database scopes in ALE3D are separated by ":"

                                   size_t posCol = stringArg.find_last_of(':');
                                 
                                   if (posCol != std::string::npos)
                                        stringArg = stringArg.substr(posCol+1);

                                 //Find violations to the rule
                                   if ( stringArg != varName)
                                      {
                                        output->addOutput(new CheckerOutput(assignExp));
                                        std::cout << "violation" << varName << std::endl;
                                      }
                                     else 
                                      {
                                        std::cout << "non=violation" << varName << std::endl;
                                      }
                                 }
                            }
                       }
                  }
             } 
        }
   } // End of the visit function.
Example #10
0
void
MarkLhsValues::visit(SgNode* node)
   {
  // DQ (1/19/2008): Fixup the get_lvalue() member function which is common on expressions.
  // printf ("In TestLValueExpressions::visit(): node = %s \n",node->class_name().c_str());

     ROSE_ASSERT(node != NULL);
#if 0
     Sg_File_Info* fileInfo = node->get_file_info();

     printf ("In MarkLhsValues::visit(): node = %s fileInfo = %p \n",node->class_name().c_str(),fileInfo);
     if (fileInfo != NULL)
        {
          bool isCompilerGenerated = fileInfo->isCompilerGenerated();
          std::string filename = fileInfo->get_filenameString();
          int line_number = fileInfo->get_line();
          int column_number = fileInfo->get_line();

          printf ("--- isCompilerGenerated = %s position = %d:%d filename = %s \n",isCompilerGenerated ? "true" : "false",line_number,column_number,filename.c_str());
        }
#endif

  // This function most often sets the SgVarRefExp which appears as an lhs operand in a limited set of binary operators.

     SgExpression* expression = isSgExpression(node);
     if (expression != NULL)
        {
#if 0
          printf ("MarkLhsValues::visit(): calling expression->get_lvalue() on expression = %p = %s \n",expression,expression->class_name().c_str());
#endif
          SgBinaryOp* binaryOperator = isSgBinaryOp(expression);

          if (binaryOperator != NULL)
             {
               switch (expression->variantT())
                  {
                 // IR nodes that have an l-value (required by C/C++/Fortran standard)
                    case V_SgAssignOp:
                    case V_SgAndAssignOp:
                    case V_SgDivAssignOp:
                    case V_SgIorAssignOp:
                    case V_SgLshiftAssignOp:
                    case V_SgMinusAssignOp:
                    case V_SgModAssignOp:
                    case V_SgMultAssignOp:
                    case V_SgPlusAssignOp:
                    case V_SgRshiftAssignOp:
                    case V_SgXorAssignOp:
                       {
                         SgExpression* lhs = binaryOperator->get_lhs_operand();
                         ROSE_ASSERT(lhs != NULL);
                         SgExpression* rhs = binaryOperator->get_rhs_operand();
                         ROSE_ASSERT(rhs != NULL);

                      // This is violated by the ROSE/tests/nonsmoke/functional/roseTests/astInliningTests/pass16.C test code!
                      // ROSE_ASSERT(lhs->get_lvalue() == true);

                      // This is a value that I know has to be set, the AST generation in EDG/Sage and OFP/Sage
                      // sets this properly, but some transformations of the AST do not, so we fix it up here.
                         lhs->set_lvalue(true);
                         rhs->set_lvalue(false);
                         break;
                       }

                 // These cases are less clear so don't explicitly mark it as an l-value!
                    case V_SgDotExp:
                    case V_SgArrowExp:
                       {
                         SgExpression* lhs = binaryOperator->get_lhs_operand();
                         ROSE_ASSERT(lhs != NULL);
#if WARN_ABOUT_ATYPICAL_LVALUES
                         printf ("L-value test for SgBinaryOp = %s: not clear how to assert value -- lhs->get_lvalue() = %s \n",binaryOperator->class_name().c_str(),lhs->get_lvalue() ? "true" : "false");
#endif
                      // ROSE_ASSERT(lhs->get_lvalue() == true);
                         break;
                       }

                 // DQ (10/9/2008): For the Fortran user defined operator, the lhs is not an L-value.
                 // This represents my understanding, because assignment is explicitly handled separately.
                    case V_SgUserDefinedBinaryOp:
                       {
                         SgExpression* lhs = binaryOperator->get_lhs_operand();
                         ROSE_ASSERT(lhs != NULL);
                         SgExpression* rhs = binaryOperator->get_rhs_operand();
                         ROSE_ASSERT(rhs != NULL);

                      // This is a value that I know has to be set, the AST generation in EDG/Sage and OFP/Sage
                      // sets this properly, but some transformations of the AST do not, so we fix it up here.
                         lhs->set_lvalue(false);
                         rhs->set_lvalue(false);
                         break;
                       }

                    default:
                       {
                      // Make sure that the lhs is not an L-value
                         SgExpression* lhs = binaryOperator->get_lhs_operand();
                         ROSE_ASSERT(lhs != NULL);

#if WARN_ABOUT_ATYPICAL_LVALUES
                         if (lhs->get_lvalue() == true)
                            {
                              printf ("Error for lhs = %p = %s = %s in binary expression = %s \n",
                                   lhs,lhs->class_name().c_str(),SageInterface::get_name(lhs).c_str(),expression->class_name().c_str());
                              binaryOperator->get_startOfConstruct()->display("Error for lhs: lhs->get_lvalue() == true: debug");
                            }
#endif

                      // ROSE_ASSERT(lhs->get_lvalue() == false);
                       }
                  }

               //SgExpression* rhs = binaryOperator->get_rhs_operand();
               // Liao 3/14/2011. This function is called by builders for binary expressions. 
               // These builders can accept empty right hand operands.
               // ROSE_ASSERT(rhs != NULL);

#if WARN_ABOUT_ATYPICAL_LVALUES
               if (rhs != NULL)
                 if (rhs->get_lvalue() == true)
                  {
                    printf ("Error for rhs = %p = %s = %s in binary expression = %s \n",
                         rhs,rhs->class_name().c_str(),SageInterface::get_name(rhs).c_str(),expression->class_name().c_str());
                    binaryOperator->get_startOfConstruct()->display("Error for rhs: rhs->get_lvalue() == true: debug");
                  }
#endif

            // ROSE_ASSERT(rhs->get_lvalue() == false);
             }
          
          SgUnaryOp* unaryOperator = isSgUnaryOp(expression);
          if (unaryOperator != NULL)
             {
               switch (expression->variantT())
                  {
                 // IR nodes that should have a valid lvalue
                 // What about SgAddressOfOp?
              
                    case V_SgAddressOfOp: break; // JJW 1/31/2008

                    case V_SgMinusMinusOp:
                    case V_SgPlusPlusOp:
                       {
                         SgExpression* operand = unaryOperator->get_operand();
                         ROSE_ASSERT(operand != NULL);

#if WARN_ABOUT_ATYPICAL_LVALUES
                      // if (operand->get_lvalue() == true)
                         if (operand->get_lvalue() == false)
                            {
                              printf ("Error for operand = %p = %s = %s in unary expression (SgMinusMinusOp or SgPlusPlusOp) = %s \n",
                                   operand,operand->class_name().c_str(),SageInterface::get_name(operand).c_str(),expression->class_name().c_str());
                              unaryOperator->get_startOfConstruct()->display("Error for operand: operand->get_lvalue() == true: debug");
                            }
#endif

                      // ROSE_ASSERT(operand->get_lvalue() == false);
                         operand->set_lvalue(true);
                      // ROSE_ASSERT(operand->get_lvalue() == true);
                         break;
                       }

                    case V_SgThrowOp:
                       {
#if WARN_ABOUT_ATYPICAL_LVALUES
                      // Note that the gnu " __throw_exception_again;" can cause a SgThrowOp to now have an operand!
                         SgExpression* operand = unaryOperator->get_operand();
                         if (operand == NULL)
                            {
                              printf ("Warning: operand == NULL in SgUnaryOp = %s (likely caused by __throw_exception_again) \n",expression->class_name().c_str());
                           // unaryOperator->get_startOfConstruct()->display("Error: operand == NULL in SgUnaryOp: debug");
                            }
#endif
                      // ROSE_ASSERT(operand != NULL);
                         break;
                       }

                 // DQ (10/9/2008): For the Fortran user defined operator, the operand is not an L-value.
                 // This represents my understanding, because assignment is explicitly handled separately.
                    case V_SgUserDefinedUnaryOp:
                       {
                         SgExpression* operand = unaryOperator->get_operand();
                         ROSE_ASSERT(operand != NULL);

                         operand->set_lvalue(false);
                       }

                 // Added to address problem on Qing's machine using g++ 4.0.2
                    case V_SgNotOp:

                 // These are where some error occur.  I want to isolate then so that I know the current status of where lvalues are not marked correctly!
                    case V_SgPointerDerefExp:
                    case V_SgCastExp:
                    case V_SgMinusOp:
                    case V_SgBitComplementOp:
                 // case V_SgPlusOp:
                       {
                         SgExpression* operand = unaryOperator->get_operand();
                         ROSE_ASSERT(operand != NULL);

#if WARN_ABOUT_ATYPICAL_LVALUES
                      // Most of the time this is false, we only want to know when it is true
                         if (operand->get_lvalue() == true)
                            {
                              printf ("L-value test for SgUnaryOp = %s: not clear how to assert value -- operand->get_lvalue() = %s \n",unaryOperator->class_name().c_str(),operand->get_lvalue() ? "true" : "false");
                           // unaryOperator->get_startOfConstruct()->display("L-value test for SgUnaryOp: operand->get_lvalue() == true: debug");
                            }
#endif
                      // ROSE_ASSERT(operand->get_lvalue() == false);
                         break;
                       }

                    default:
                       {
                         SgExpression* operand = unaryOperator->get_operand();
                         ROSE_ASSERT(operand != NULL);

#if WARN_ABOUT_ATYPICAL_LVALUES
                         if (operand->get_lvalue() == true)
                            {
                              printf ("Error for operand = %p = %s = %s in unary expression = %s \n",
                                   operand,operand->class_name().c_str(),SageInterface::get_name(operand).c_str(),expression->class_name().c_str());
                              unaryOperator->get_startOfConstruct()->display("Error for operand: operand->get_lvalue() == true: debug");
                            }
#endif

                      // DQ (10/9/2008): What is the date and author for this comment?  Is it fixed now? Was it made into a test code?
                      // Note that this fails for line 206 of file: include/g++_HEADERS/hdrs1/ext/mt_allocator.h
                         ROSE_ASSERT(operand->get_lvalue() == false);
                       }          
                  }
             }
        }
   }
Example #11
0
  //! Count floating point operations seen in a subtree
  void CountFPOperations(SgLocatedNode* input)
  {
    Rose_STL_Container<SgNode*> nodeList = NodeQuery::querySubTree(input, V_SgBinaryOp);
    for (Rose_STL_Container<SgNode *>::iterator i = nodeList.begin(); i != nodeList.end(); i++)
    {
      fp_operation_kind_enum op_kind = e_unknown; 
//      bool isFPType = false;
      // check operation type
      SgBinaryOp* bop= isSgBinaryOp(*i);
      switch (bop->variantT())
      {
	case V_SgAddOp:
	case V_SgPlusAssignOp:
	  op_kind = e_plus; 
	  break;
	case V_SgSubtractOp:
	case V_SgMinusAssignOp:  
	  op_kind = e_minus;
	  break;	
	case V_SgMultiplyOp:
	case V_SgMultAssignOp:  
	  op_kind = e_multiply;
	  break;	
	case V_SgDivideOp:
	case V_SgDivAssignOp:  
	  op_kind = e_divide;
	  break;	
	default:
	  break;  
      } //end switch

      // skip this expression if unknown operation kind 
      if (op_kind == e_unknown) continue; 

      // Check if the operation is on float point data type
      if (bop->get_type()->isFloatType())
      {
        // we assume the traverse is inside out, the inner loop will be processed first!
        // An operation is counted once when its innermost enclosing loop is processed. 
        // Using a map to avoid double counting an operation when it is enclosed in multiple loops
        if (!FPVisitMAP[bop]) 
        {
	  addFPCount (input, op_kind);
          FPVisitMAP[bop] = true;
        }
      }	
    }  // end for
    //Must update the total counter here
    FPCounters* fp_counters = getFPCounters (input); 
    fp_counters->updateTotal ();
    // write results to a report file
    if (running_mode == e_static_counting)
    {
      ofstream reportFile(report_filename.c_str(), ios::app);
      cout<<"Writing counter results to "<< report_filename <<endl;
      reportFile<< fp_counters->toString();
    }
    // debugging info
    if (debug)
      printFPCount (input);
  }
Example #12
0
 // on other nodes
 lrRecord (lrRecord &parent, SgNode* n)
 {
         SgBinaryOp* binOp;
         SgUnaryOp* unOp;
         SgFunctionCallExp* funcCall;
         //SgPntrArrRefExp* arrRef;
         char typeStr[100];
         
         // if this node is on the read, write or read-write side of an assignment operation, set its access appropriately
         if(parent.readSubtree == n)
                 access = readAccess;
         else if(n == parent.writeSubtree)
                 access = writeAccess;
         else if(n == parent.rwSubtree)
                 access = rwAccess;
         else
                 access = parent.access;
         
         if((binOp = isSgBinaryOp(n)))
         {                       
                 // writeSubtree = readSubtree
                 if(isSgAssignOp(binOp))
                 {
                         writeSubtree = binOp->get_lhs_operand();
                         readSubtree = binOp->get_rhs_operand();
                         rwSubtree = (void*)NULL;
                         strcpy(typeStr, "SgAssignOp");
                 }
                 // rwSubtree op= readSubtree
                 else if(isSgCompoundAssignOp(binOp))
                 {
                         rwSubtree = binOp->get_lhs_operand();
                         readSubtree = binOp->get_rhs_operand();
                         writeSubtree = (void*)NULL;
                         strcpy(typeStr, "Sg*AssignOp");
                 }
                 else if(isSgPntrArrRefExp(binOp))
                 {
                         // all the references involved in an array reference, whether they are used to compute the array name
                         // or used in the argument, are read-only
                         writeSubtree = (void*)NULL;
                         readSubtree = (void*)NULL;
                         readSubtree.wildMatch();
                         rwSubtree = (void*)NULL;
                         strcpy(typeStr, "SgPntrArrRefExp");
                 }
                 else 
                 {
                         readSubtree = (void*)NULL;
                         writeSubtree = (void*)NULL;
                         rwSubtree = (void*)NULL;
                         strcpy(typeStr, "???");
                 }
                 
                 //printf("SgBinaryNode 0x%x type %s access=%d: %s\n", binOp, typeStr, access, binOp->unparseToString().c_str());        
         }
         else if((unOp = isSgUnaryOp(n)))
         {
                 // unary update operations have only one operand, which is read-write
                 // writeSubtree
                 if(isSgMinusMinusOp(unOp) ||
                         isSgPlusPlusOp(unOp))
                 {
                         writeSubtree = (void*)NULL;
                         readSubtree = (void*)NULL;
                         rwSubtree = unOp->get_operand();
                         strcpy(typeStr, "Sg**Op");
                 }
                 // dereference operations have a read-only operand
                 else if(isSgPointerDerefExp(unOp))
                 {
                         writeSubtree = (void*)NULL;
                         readSubtree = unOp->get_operand();
                         rwSubtree = (void*)NULL;
                         strcpy(typeStr, "isSgPointerDerefExp");
                 }
                 else 
                 {
                         readSubtree = (void*)NULL;
                         writeSubtree = (void*)NULL;
                         rwSubtree = (void*)NULL;
                         strcpy(typeStr, "???");
                 }
                 //printf("SgUnaryNode 0x%x %s access=%d: %s\n", unOp, typeStr, access, unOp->unparseToString().c_str());
         }
         else if((funcCall = isSgFunctionCallExp(n)))
         {
                 // all the references involved in a function call, whether they are used to compute the function pointer
                 // or used in the argument, are read-only
                 writeSubtree = (void*)NULL;
                 readSubtree = (void*)NULL;
                 readSubtree.wildMatch();
                 rwSubtree = (void*)NULL;
                 //printf("SgFunctionCall 0x%x access=%d: %s\n", funcCall, access, funcCall->unparseToString().c_str());
         }
         // else, if this is neither a binary, nor unary operation node
         else
         {
                 // leave subtree fields of this record as NULL
                 readSubtree = (void*)NULL;
                 writeSubtree = (void*)NULL;
                 rwSubtree = (void*)NULL;
                 
                 //printf("SgNode 0x%x access=%d: %s\n", n, access, n->unparseToString().c_str());
         }
 }
Example #13
0
bool
TaintAnalysis::transfer(const Function& func, const DataflowNode& node_, NodeState& state, const std::vector<Lattice*>& dfInfo) {
    static size_t ncalls = 0;
    if (debug) {
        *debug <<"TaintAnalysis::transfer-" <<++ncalls <<"(func=" <<func.get_name() <<",\n"
               <<"                        node={" <<StringUtility::makeOneLine(node_.toString()) <<"},\n"
               <<"                        state={" <<state.str(this, "                            ") <<",\n"
               <<"                        dfInfo[" <<dfInfo.size() <<"]={...})\n";
    }

    SgNode *node = node_.getNode();
    assert(!dfInfo.empty());
    FiniteVarsExprsProductLattice *prodLat = dynamic_cast<FiniteVarsExprsProductLattice*>(dfInfo.front());
    bool modified = magic_tainted(node, prodLat); // some values are automatically tainted based on their name

    // Process AST nodes that transfer taintedness.  Most of these operations have one or more inputs from which a result
    // is always calculated the same way.  So we just gather up the inputs and do the calculation at the very end of this
    // function.  The other operations are handled individually within their "if" bodies.
    TaintLattice *result = NULL;                    // result pointer into the taint lattice
    std::vector<TaintLattice*> inputs;              // input pointers into the taint lattice
    if (isSgAssignInitializer(node)) {
        // as in "int a = b"
        SgAssignInitializer *xop = isSgAssignInitializer(node);
        TaintLattice *in1 = dynamic_cast<TaintLattice*>(prodLat->getVarLattice(SgExpr2Var(xop->get_operand())));
        inputs.push_back(in1);

    } else if (isSgAggregateInitializer(node)) {
        // as in "int a[1] = {b}"
        SgAggregateInitializer *xop = isSgAggregateInitializer(node);
        const SgExpressionPtrList &exprs = xop->get_initializers()->get_expressions();
        for (size_t i=0; i<exprs.size(); ++i) {
            varID in_id = SgExpr2Var(exprs[i]);
            TaintLattice *in = dynamic_cast<TaintLattice*>(prodLat->getVarLattice(in_id));
            inputs.push_back(in);
        }

    } else if (isSgInitializedName(node)) {
        SgInitializedName *xop = isSgInitializedName(node);
        if (xop->get_initializer()) {
            varID in1_id = SgExpr2Var(xop->get_initializer());
            TaintLattice *in1 = dynamic_cast<TaintLattice*>(prodLat->getVarLattice(in1_id));
            inputs.push_back(in1);
        }

    } else if (isSgValueExp(node)) {
        // numeric and character constants
        SgValueExp *xop = isSgValueExp(node);
        result = dynamic_cast<TaintLattice*>(prodLat->getVarLattice(SgExpr2Var(xop)));
        if (result)
            modified = result->set_vertex(TaintLattice::VERTEX_UNTAINTED);
        
    } else if (isSgAddressOfOp(node)) {
        // as in "&x".  The result taintedness has nothing to do with the value in x.
        /*void*/

    } else if (isSgBinaryOp(node)) {
        // as in "a + b"
        SgBinaryOp *xop = isSgBinaryOp(node);
        varID in1_id = SgExpr2Var(isSgExpression(xop->get_lhs_operand()));
        TaintLattice *in1 = dynamic_cast<TaintLattice*>(prodLat->getVarLattice(in1_id));
        inputs.push_back(in1);
        varID in2_id = SgExpr2Var(isSgExpression(xop->get_rhs_operand()));
        TaintLattice *in2 = dynamic_cast<TaintLattice*>(prodLat->getVarLattice(in2_id));
        inputs.push_back(in2);

        if (isSgAssignOp(node)) { // copy the rhs lattice to the lhs lattice (as well as the entire '=' expression result)
            assert(in1 && in2);
            modified = in1->meetUpdate(in2);
        }

    } else if (isSgUnaryOp(node)) {
        // as in "-a"
        SgUnaryOp *xop = isSgUnaryOp(node);
        varID in1_id = SgExpr2Var(xop->get_operand());
        TaintLattice *in1 = dynamic_cast<TaintLattice*>(prodLat->getVarLattice(in1_id));
        inputs.push_back(in1);

    } else if (isSgReturnStmt(node)) {
        // as in "return a".  The result will always be dead, so we're just doing this to get some debugging output.  Most
        // of our test inputs are functions, and the test examines the function's returned taintedness.
        SgReturnStmt *xop = isSgReturnStmt(node);
        varID in1_id = SgExpr2Var(xop->get_expression());
        TaintLattice *in1 = dynamic_cast<TaintLattice*>(prodLat->getVarLattice(in1_id));
        inputs.push_back(in1);

    }


    // Update the result lattice (unless dead) with the inputs (unless dead) by using the meedUpdate() method.  All this
    // means is that the new result will be the maximum of the old result and all inputs, where "maximum" is defined such
    // that "tainted" is greater than "untainted" (and both of them are greater than bottom/unknown).
    for (size_t i=0; i<inputs.size(); ++i)
        if (debug)
            *debug <<"TaintAnalysis::transfer: input " <<(i+1) <<" is " <<lattice_info(inputs[i]) <<"\n";
    if (!result && varID::isValidVarExp(node)) {
        varID result_id(node); // NOTE: constructor doesn't handle all SgExpression nodes, thus the next "if"
        result = dynamic_cast<TaintLattice*>(prodLat->getVarLattice(result_id));
    }
    if (!result && isSgExpression(node)) {
        varID result_id = SgExpr2Var(isSgExpression(node));
        result = dynamic_cast<TaintLattice*>(prodLat->getVarLattice(result_id));
    }
    if (result) {
        for (size_t i=0; i<inputs.size(); ++i) {
            if (inputs[i])
                modified = result->meetUpdate(inputs[i]) || modified;
        }
    }
    if (debug)
        *debug <<"TaintAnalysis::transfer: result is " <<lattice_info(result) <<(modified?" (modified)":" (not modified)") <<"\n";

    return modified;
}
Example #14
0
std::string getSgExpressionString(SgExpression* expNode) {
	//bool returnString = false;
	std::string expString;
	bool set_to_expression_val = false;
	VariantT var = expNode->variantT();
	if (isSgBinaryOp(expNode)) {
		SgBinaryOp* binOp = isSgBinaryOp(expNode);
		SgExpression* lhs_exp = binOp->get_lhs_operand();
		SgExpression* rhs_exp = binOp->get_rhs_operand();
		expString = writeSgBinaryOpZ3(binOp, lhs_exp, rhs_exp);
		if (isSgAssignOp(binOp) || isSgCompoundAssignOp(binOp)) {
			declarations.push_back(expString);
			expString = "";
		}
		else if (isSgEqualityOp(binOp) || isSgGreaterThanOp(binOp) || isSgGreaterOrEqualOp(binOp) || isSgLessThanOp(binOp) || isSgLessOrEqualOp(binOp) || isSgNotEqualOp(binOp) || isSgAndOp(binOp) || isSgOrOp(binOp)) {
		
		//set_to_expression_val = true;
		
		}
	}
	else if (isSgUnaryOp(expNode)) {
		expString = getSgUnaryOp(isSgUnaryOp(expNode));
	}
	else if (isSgValueExp(expNode)) {
		expString = getSgValueExp(isSgValueExp(expNode));
	}
	else {
	switch (var) {
		case V_SgCallExpression:
			std::cout << "SgCallExpression not yet implemented" << std::endl;
			expString = "";
			ROSE_ASSERT(false);
			break;
		case V_SgClassNameRefExp:
			std::cout << "SgClassNameRefExp not yet implemented" << std::endl;
			expString = "";
			ROSE_ASSERT(false);
			break;
		case V_SgConditionalExp:
			std::cout << "SgConditionalExp (trinary A ? B : C) not yet implemented" << std::endl;
			expString = "";
			ROSE_ASSERT(false);
			break;		
		case V_SgExprListExp:
			std::cout << "SgExprListExp is not yet implemented" << std::endl;
			expString = "";
			ROSE_ASSERT(false);
			break;
		case V_SgFunctionRefExp:
			std::cout << "SgFunctionRefExp is not yet implemented" << std::endl;
			expString = "";
			ROSE_ASSERT(false);
			break;
		case V_SgDeleteExp:
			std::cout << "SgDeleteExp is not yet implemented" << std::endl;
			expString = "";
			ROSE_ASSERT(false);
			break;
		case V_SgInitializer:
			std::cout << "SgInitializer is not yet implemented" << std::endl;
			expString = "";
			ROSE_ASSERT(false);
			break;
		case V_SgNaryOp:
			std::cout << "SgNaryOp is not yet implemented" << std::endl;
			expString = "";
			ROSE_ASSERT(false);
			break;
		case V_SgNewExp:
			std::cout << "SgNewExp is not yet implemented" << std::endl;
			expString = "";
			ROSE_ASSERT(false);
			break;
		case V_SgNullExpression:
		
			expString = "; null expression";
			break;
		case V_SgRefExp:
			std::cout << "SgRefExp is not yet implemented" << std::endl;
			expString = "";
			ROSE_ASSERT(false);
			break;
		case V_SgSizeOfOp:
			std::cout << "SgSizeOfOp is not yet implemented" << std::endl;
			expString = "";
			ROSE_ASSERT(false);
			break;
		case V_SgStatementExpression:
			std::cout << "SgStatementExpression is not yet implemented" << std::endl;
			expString = "";
			ROSE_ASSERT(false);
			break;
		case V_SgValueExp:
			std::cout << "V_SgValueExp should never be encountered" << std::endl;
			ROSE_ASSERT(false);
			expString = "";
			break;
			
		case V_SgVarRefExp:
			expString = getSgVarRefExp(isSgVarRefExp(expNode));
			break;
		default:
			std::cout << expNode->class_name() << " is not being considered for implementation";
			expString = "";
			#ifndef VERBOSE_COMPLETE
			ROSE_ASSERT(false);
			#endif
		}
		}
			
		/*if (set_to_expression_val) {
		std::stringstream exp_var;
		exp_var << "e_" << expression_count;
		expression_count++;
		
		std::string exp_var_decl = "(declare-const " + exp_var.str() + " Bool)";
		variables.push_back(exp_var_decl);
		std::string exp_var_val = "(assert (= " + exp_var.str() + " " + expString + "))";	
		expressions.push_back(exp_var_val);	
return exp_var.str();
		}
		else {
			return expString;
		}*/
		return expString;
	}