Example #1
0
void LazySlowPath::generate(CodeBlock* codeBlock)
{
    RELEASE_ASSERT(!m_stub);

    VM& vm = *codeBlock->vm();

    CCallHelpers jit(&vm, codeBlock);
    GenerationParams params;
    CCallHelpers::JumpList exceptionJumps;
    params.exceptionJumps = m_exceptionTarget ? &exceptionJumps : nullptr;
    params.lazySlowPath = this;

    unsigned bytesSaved = m_scratchRegisterAllocator.preserveReusedRegistersByPushing(jit, ScratchRegisterAllocator::ExtraStackSpace::NoExtraSpace);
    // This is needed because LLVM may create a stackmap location that is the register SP.
    // But on arm64, SP is also the same register number as ZR, so LLVM is telling us that it has
    // proven something is zero. Our MASM isn't universally compatible with arm64's context dependent
    // notion of SP meaning ZR. We just make things easier by ensuring we do the necessary move of zero
    // into a non-SP register.
    if (m_newZeroValueRegister != InvalidGPRReg)
        jit.move(CCallHelpers::TrustedImm32(0), m_newZeroValueRegister);

    m_generator->run(jit, params);

    CCallHelpers::Label doneLabel;
    CCallHelpers::Jump jumpToEndOfPatchpoint;
    if (bytesSaved) {
        doneLabel = jit.label();
        m_scratchRegisterAllocator.restoreReusedRegistersByPopping(jit, bytesSaved, ScratchRegisterAllocator::ExtraStackSpace::NoExtraSpace);
        jumpToEndOfPatchpoint = jit.jump();
    }

    LinkBuffer linkBuffer(vm, jit, codeBlock, JITCompilationMustSucceed);
    if (bytesSaved) {
        linkBuffer.link(params.doneJumps, linkBuffer.locationOf(doneLabel));
        linkBuffer.link(jumpToEndOfPatchpoint, m_patchpoint.labelAtOffset(MacroAssembler::maxJumpReplacementSize()));
    } else
        linkBuffer.link(params.doneJumps, m_patchpoint.labelAtOffset(MacroAssembler::maxJumpReplacementSize()));
    if (m_exceptionTarget)
        linkBuffer.link(exceptionJumps, m_exceptionTarget);
    m_stub = FINALIZE_CODE_FOR(codeBlock, linkBuffer, ("Lazy slow path call stub"));

    MacroAssembler::replaceWithJump(m_patchpoint, CodeLocationLabel(m_stub.code()));
}
Example #2
0
MacroAssemblerCodeRef osrEntryThunkGenerator(VM* vm)
{
    AssemblyHelpers jit(nullptr);

    // We get passed the address of a scratch buffer. The first 8-byte slot of the buffer
    // is the frame size. The second 8-byte slot is the pointer to where we are supposed to
    // jump. The remaining bytes are the new call frame header followed by the locals.

    ptrdiff_t offsetOfFrameSize = 0; // This is the DFG frame count.
    ptrdiff_t offsetOfTargetPC = offsetOfFrameSize + sizeof(EncodedJSValue);
    ptrdiff_t offsetOfPayload = offsetOfTargetPC + sizeof(EncodedJSValue);
    ptrdiff_t offsetOfLocals = offsetOfPayload + sizeof(Register) * CallFrame::headerSizeInRegisters;

    jit.move(GPRInfo::returnValueGPR2, GPRInfo::regT0);
    jit.loadPtr(MacroAssembler::Address(GPRInfo::regT0, offsetOfFrameSize), GPRInfo::regT1); // Load the frame size.
    jit.move(GPRInfo::regT1, GPRInfo::regT2);
    jit.lshiftPtr(MacroAssembler::Imm32(3), GPRInfo::regT2);
    jit.move(GPRInfo::callFrameRegister, MacroAssembler::stackPointerRegister);
    jit.subPtr(GPRInfo::regT2, MacroAssembler::stackPointerRegister);

    MacroAssembler::Label loop = jit.label();
    jit.subPtr(MacroAssembler::TrustedImm32(1), GPRInfo::regT1);
    jit.move(GPRInfo::regT1, GPRInfo::regT4);
    jit.negPtr(GPRInfo::regT4);
    jit.load32(MacroAssembler::BaseIndex(GPRInfo::regT0, GPRInfo::regT1, MacroAssembler::TimesEight, offsetOfLocals), GPRInfo::regT2);
    jit.load32(MacroAssembler::BaseIndex(GPRInfo::regT0, GPRInfo::regT1, MacroAssembler::TimesEight, offsetOfLocals + sizeof(int32_t)), GPRInfo::regT3);
    jit.store32(GPRInfo::regT2, MacroAssembler::BaseIndex(GPRInfo::callFrameRegister, GPRInfo::regT4, MacroAssembler::TimesEight, -static_cast<intptr_t>(sizeof(Register))));
    jit.store32(GPRInfo::regT3, MacroAssembler::BaseIndex(GPRInfo::callFrameRegister, GPRInfo::regT4, MacroAssembler::TimesEight, -static_cast<intptr_t>(sizeof(Register)) + static_cast<intptr_t>(sizeof(int32_t))));
    jit.branchPtr(MacroAssembler::NotEqual, GPRInfo::regT1, MacroAssembler::TrustedImmPtr(bitwise_cast<void*>(-static_cast<intptr_t>(CallFrame::headerSizeInRegisters)))).linkTo(loop, &jit);

    jit.loadPtr(MacroAssembler::Address(GPRInfo::regT0, offsetOfTargetPC), GPRInfo::regT1);
    MacroAssembler::Jump ok = jit.branchPtr(MacroAssembler::Above, GPRInfo::regT1, MacroAssembler::TrustedImmPtr(bitwise_cast<void*>(static_cast<intptr_t>(1000))));
    jit.abortWithReason(DFGUnreasonableOSREntryJumpDestination);

    ok.link(&jit);
    jit.restoreCalleeSavesFromVMEntryFrameCalleeSavesBuffer(*vm);
    jit.emitMaterializeTagCheckRegisters();

    jit.jump(GPRInfo::regT1);

    LinkBuffer patchBuffer(jit, GLOBAL_THUNK_ID);
    return FINALIZE_CODE(patchBuffer, ("DFG OSR entry thunk"));
}
Example #3
0
MacroAssemblerCodeRef absThunkGenerator(VM* vm)
{
    SpecializedThunkJIT jit(1);
    if (!jit.supportsFloatingPointAbs())
        return MacroAssemblerCodeRef::createSelfManagedCodeRef(vm->jitStubs->ctiNativeCall(vm));
    MacroAssembler::Jump nonIntJump;
    jit.loadInt32Argument(0, SpecializedThunkJIT::regT0, nonIntJump);
    jit.rshift32(SpecializedThunkJIT::regT0, MacroAssembler::TrustedImm32(31), SpecializedThunkJIT::regT1);
    jit.add32(SpecializedThunkJIT::regT1, SpecializedThunkJIT::regT0);
    jit.xor32(SpecializedThunkJIT::regT1, SpecializedThunkJIT::regT0);
    jit.appendFailure(jit.branch32(MacroAssembler::Equal, SpecializedThunkJIT::regT0, MacroAssembler::TrustedImm32(1 << 31)));
    jit.returnInt32(SpecializedThunkJIT::regT0);
    nonIntJump.link(&jit);
    // Shame about the double int conversion here.
    jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0);
    jit.absDouble(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1);
    jit.returnDouble(SpecializedThunkJIT::fpRegT1);
    return jit.finalize(*vm, vm->jitStubs->ctiNativeCall(vm), "abs");
}
Example #4
0
MacroAssemblerCodeRef absThunkGenerator(JSGlobalData* globalData)
{
    SpecializedThunkJIT jit(1, globalData);
    if (!jit.supportsDoubleBitops())
        return MacroAssemblerCodeRef::createSelfManagedCodeRef(globalData->jitStubs->ctiNativeCall());
    MacroAssembler::Jump nonIntJump;
    jit.loadInt32Argument(0, SpecializedThunkJIT::regT0, nonIntJump);
    jit.rshift32(SpecializedThunkJIT::regT0, MacroAssembler::TrustedImm32(31), SpecializedThunkJIT::regT1);
    jit.add32(SpecializedThunkJIT::regT1, SpecializedThunkJIT::regT0);
    jit.xor32(SpecializedThunkJIT::regT1, SpecializedThunkJIT::regT0);
    jit.appendFailure(jit.branch32(MacroAssembler::Equal, SpecializedThunkJIT::regT0, MacroAssembler::TrustedImm32(1 << 31)));
    jit.returnInt32(SpecializedThunkJIT::regT0);
    nonIntJump.link(&jit);
    // Shame about the double int conversion here.
    jit.loadDouble(&negativeZeroConstant, SpecializedThunkJIT::fpRegT1);
    jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0);
    jit.andnotDouble(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1);
    jit.returnDouble(SpecializedThunkJIT::fpRegT1);
    return jit.finalize(*globalData, globalData->jitStubs->ctiNativeCall());
}
Example #5
0
static MacroAssemblerCodeRef linkForThunkGenerator(
    JSGlobalData* globalData, CodeSpecializationKind kind)
{
    // The return address is on the stack or in the link register. We will hence
    // save the return address to the call frame while we make a C++ function call
    // to perform linking and lazy compilation if necessary. We expect the callee
    // to be in nonArgGPR0/nonArgGPR1 (payload/tag), the call frame to have already
    // been adjusted, nonPreservedNonReturnGPR holds the exception handler index,
    // and all other registers to be available for use. We use JITStackFrame::args
    // to save important information across calls.
    
    CCallHelpers jit(globalData);
    
    slowPathFor(jit, globalData, kind == CodeForCall ? operationLinkCall : operationLinkConstruct);
    
    LinkBuffer patchBuffer(*globalData, &jit, GLOBAL_THUNK_ID);
    return FINALIZE_CODE(
        patchBuffer,
        ("DFG link %s slow path thunk", kind == CodeForCall ? "call" : "construct"));
}
Example #6
0
MacroAssemblerCodeRef clz32ThunkGenerator(VM* vm)
{
    SpecializedThunkJIT jit(vm, 1);
    MacroAssembler::Jump nonIntArgJump;
    jit.loadInt32Argument(0, SpecializedThunkJIT::regT0, nonIntArgJump);

    SpecializedThunkJIT::Label convertedArgumentReentry(&jit);
    jit.countLeadingZeros32(SpecializedThunkJIT::regT0, SpecializedThunkJIT::regT1);
    jit.returnInt32(SpecializedThunkJIT::regT1);

    if (jit.supportsFloatingPointTruncate()) {
        nonIntArgJump.link(&jit);
        jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0);
        jit.branchTruncateDoubleToInt32(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0, SpecializedThunkJIT::BranchIfTruncateSuccessful).linkTo(convertedArgumentReentry, &jit);
        jit.appendFailure(jit.jump());
    } else
        jit.appendFailure(nonIntArgJump);

    return jit.finalize(vm->jitStubs->ctiNativeTailCall(vm), "clz32");
}
// We will jump here if the JIT code tries to make a call, but the
// linking helper (C++ code) decides to throw an exception instead.
MacroAssemblerCodeRef throwExceptionFromCallSlowPathGenerator(VM* vm)
{
    CCallHelpers jit(vm);
    
    // The call pushed a return address, so we need to pop it back off to re-align the stack,
    // even though we won't use it.
    jit.preserveReturnAddressAfterCall(GPRInfo::nonPreservedNonReturnGPR);

    // The CallFrame register points to the (failed) callee frame, so we need to pop back one frame.
    jit.emitGetCallerFrameFromCallFrameHeaderPtr(GPRInfo::callFrameRegister);

    jit.setupArgumentsExecState();
    jit.move(CCallHelpers::TrustedImmPtr(bitwise_cast<void*>(lookupExceptionHandler)), GPRInfo::nonArgGPR0);
    emitPointerValidation(jit, GPRInfo::nonArgGPR0);
    jit.call(GPRInfo::nonArgGPR0);
    jit.jumpToExceptionHandler();

    LinkBuffer patchBuffer(*vm, &jit, GLOBAL_THUNK_ID);
    return FINALIZE_CODE(patchBuffer, ("Throw exception from call slow path thunk"));
}
Example #8
0
MacroAssemblerCodeRef floorThunkGenerator(VM* vm)
{
    SpecializedThunkJIT jit(vm, 1);
    MacroAssembler::Jump nonIntJump;
    if (!UnaryDoubleOpWrapper(floor) || !jit.supportsFloatingPoint())
        return MacroAssemblerCodeRef::createSelfManagedCodeRef(vm->jitStubs->ctiNativeCall(vm));
    jit.loadInt32Argument(0, SpecializedThunkJIT::regT0, nonIntJump);
    jit.returnInt32(SpecializedThunkJIT::regT0);
    nonIntJump.link(&jit);
    jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0);
#if CPU(ARM64)
    SpecializedThunkJIT::JumpList doubleResult;
    jit.floorDouble(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT0);
    jit.branchConvertDoubleToInt32(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0, doubleResult, SpecializedThunkJIT::fpRegT1);
    jit.returnInt32(SpecializedThunkJIT::regT0);
    doubleResult.link(&jit);
    jit.returnDouble(SpecializedThunkJIT::fpRegT0);
#else
    SpecializedThunkJIT::Jump intResult;
    SpecializedThunkJIT::JumpList doubleResult;
    if (jit.supportsFloatingPointTruncate()) {
        jit.loadDouble(&zeroConstant, SpecializedThunkJIT::fpRegT1);
        doubleResult.append(jit.branchDouble(MacroAssembler::DoubleEqual, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1));
        SpecializedThunkJIT::JumpList slowPath;
        // Handle the negative doubles in the slow path for now.
        slowPath.append(jit.branchDouble(MacroAssembler::DoubleLessThanOrUnordered, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT1));
        slowPath.append(jit.branchTruncateDoubleToInt32(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0));
        intResult = jit.jump();
        slowPath.link(&jit);
    }
    jit.callDoubleToDoublePreservingReturn(UnaryDoubleOpWrapper(floor));
    jit.branchConvertDoubleToInt32(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0, doubleResult, SpecializedThunkJIT::fpRegT1);
    if (jit.supportsFloatingPointTruncate())
        intResult.link(&jit);
    jit.returnInt32(SpecializedThunkJIT::regT0);
    doubleResult.link(&jit);
    jit.returnDouble(SpecializedThunkJIT::fpRegT0);
#endif // CPU(ARM64)
    return jit.finalize(vm->jitStubs->ctiNativeTailCall(vm), "floor");
}
Example #9
0
MacroAssemblerCodeRef baselineGetterReturnThunkGenerator(VM* vm)
{
    JSInterfaceJIT jit(vm);
    
#if USE(JSVALUE64)
    jit.move(GPRInfo::returnValueGPR, GPRInfo::regT0);
#else
    jit.setupResults(GPRInfo::regT0, GPRInfo::regT1);
#endif
    
    unsigned numberOfParameters = 0;
    numberOfParameters++; // The 'this' argument.
    numberOfParameters++; // The true return PC.
    
    unsigned numberOfRegsForCall =
        JSStack::CallFrameHeaderSize + numberOfParameters;
    
    unsigned numberOfBytesForCall =
        numberOfRegsForCall * sizeof(Register) - sizeof(CallerFrameAndPC);
    
    unsigned alignedNumberOfBytesForCall =
        WTF::roundUpToMultipleOf(stackAlignmentBytes(), numberOfBytesForCall);
            
    // The real return address is stored above the arguments. We passed one argument, which is
    // 'this'. So argument at index 1 is the return address.
    jit.loadPtr(
        AssemblyHelpers::Address(
            AssemblyHelpers::stackPointerRegister,
            (virtualRegisterForArgument(1).offset() - JSStack::CallerFrameAndPCSize) * sizeof(Register)),
        GPRInfo::regT2);
    
    jit.addPtr(
        AssemblyHelpers::TrustedImm32(alignedNumberOfBytesForCall),
        AssemblyHelpers::stackPointerRegister);
    
    jit.jump(GPRInfo::regT2);

    LinkBuffer patchBuffer(*vm, jit, GLOBAL_THUNK_ID);
    return FINALIZE_CODE(patchBuffer, ("baseline getter return thunk"));
}
Example #10
0
MacroAssemblerCodeRef ceilThunkGenerator(VM* vm)
{
    SpecializedThunkJIT jit(vm, 1);
    if (!UnaryDoubleOpWrapper(ceil) || !jit.supportsFloatingPoint())
        return MacroAssemblerCodeRef::createSelfManagedCodeRef(vm->jitStubs->ctiNativeCall(vm));
    MacroAssembler::Jump nonIntJump;
    jit.loadInt32Argument(0, SpecializedThunkJIT::regT0, nonIntJump);
    jit.returnInt32(SpecializedThunkJIT::regT0);
    nonIntJump.link(&jit);
    jit.loadDoubleArgument(0, SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0);
#if CPU(ARM64)
    jit.ceilDouble(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::fpRegT0);
#else
    jit.callDoubleToDoublePreservingReturn(UnaryDoubleOpWrapper(ceil));
#endif // CPU(ARM64)
    SpecializedThunkJIT::JumpList doubleResult;
    jit.branchConvertDoubleToInt32(SpecializedThunkJIT::fpRegT0, SpecializedThunkJIT::regT0, doubleResult, SpecializedThunkJIT::fpRegT1);
    jit.returnInt32(SpecializedThunkJIT::regT0);
    doubleResult.link(&jit);
    jit.returnDouble(SpecializedThunkJIT::fpRegT0);
    return jit.finalize(vm->jitStubs->ctiNativeTailCall(vm), "ceil");
}
Example #11
0
MacroAssemblerCodeRef arityFixupGenerator(VM* vm)
{
    JSInterfaceJIT jit(vm);

    // We enter with fixup count in argumentGPR0
    // We have the guarantee that a0, a1, a2, t3, t4 and t5 (or t0 for Windows) are all distinct :-)
#if USE(JSVALUE64)
#if OS(WINDOWS)
    const GPRReg extraTemp = JSInterfaceJIT::regT0;
#else
    const GPRReg extraTemp = JSInterfaceJIT::regT5;
#endif
#  if CPU(X86_64)
    jit.pop(JSInterfaceJIT::regT4);
#  endif
    jit.move(JSInterfaceJIT::callFrameRegister, JSInterfaceJIT::regT3);
    jit.load32(JSInterfaceJIT::Address(JSInterfaceJIT::callFrameRegister, JSStack::ArgumentCount * sizeof(Register)), JSInterfaceJIT::argumentGPR2);
    jit.add32(JSInterfaceJIT::TrustedImm32(JSStack::CallFrameHeaderSize), JSInterfaceJIT::argumentGPR2);

    // Check to see if we have extra slots we can use
    jit.move(JSInterfaceJIT::argumentGPR0, JSInterfaceJIT::argumentGPR1);
    jit.and32(JSInterfaceJIT::TrustedImm32(stackAlignmentRegisters() - 1), JSInterfaceJIT::argumentGPR1);
    JSInterfaceJIT::Jump noExtraSlot = jit.branchTest32(MacroAssembler::Zero, JSInterfaceJIT::argumentGPR1);
    jit.move(JSInterfaceJIT::TrustedImm64(ValueUndefined), extraTemp);
    JSInterfaceJIT::Label fillExtraSlots(jit.label());
    jit.store64(extraTemp, MacroAssembler::BaseIndex(JSInterfaceJIT::callFrameRegister, JSInterfaceJIT::argumentGPR2, JSInterfaceJIT::TimesEight));
    jit.add32(JSInterfaceJIT::TrustedImm32(1), JSInterfaceJIT::argumentGPR2);
    jit.branchSub32(JSInterfaceJIT::NonZero, JSInterfaceJIT::TrustedImm32(1), JSInterfaceJIT::argumentGPR1).linkTo(fillExtraSlots, &jit);
    jit.and32(JSInterfaceJIT::TrustedImm32(-stackAlignmentRegisters()), JSInterfaceJIT::argumentGPR0);
    JSInterfaceJIT::Jump done = jit.branchTest32(MacroAssembler::Zero, JSInterfaceJIT::argumentGPR0);
    noExtraSlot.link(&jit);

    jit.neg64(JSInterfaceJIT::argumentGPR0);

    // Move current frame down argumentGPR0 number of slots
    JSInterfaceJIT::Label copyLoop(jit.label());
    jit.load64(JSInterfaceJIT::regT3, extraTemp);
    jit.store64(extraTemp, MacroAssembler::BaseIndex(JSInterfaceJIT::regT3, JSInterfaceJIT::argumentGPR0, JSInterfaceJIT::TimesEight));
    jit.addPtr(JSInterfaceJIT::TrustedImm32(8), JSInterfaceJIT::regT3);
    jit.branchSub32(MacroAssembler::NonZero, JSInterfaceJIT::TrustedImm32(1), JSInterfaceJIT::argumentGPR2).linkTo(copyLoop, &jit);

    // Fill in argumentGPR0 missing arg slots with undefined
    jit.move(JSInterfaceJIT::argumentGPR0, JSInterfaceJIT::argumentGPR2);
    jit.move(JSInterfaceJIT::TrustedImm64(ValueUndefined), extraTemp);
    JSInterfaceJIT::Label fillUndefinedLoop(jit.label());
    jit.store64(extraTemp, MacroAssembler::BaseIndex(JSInterfaceJIT::regT3, JSInterfaceJIT::argumentGPR0, JSInterfaceJIT::TimesEight));
    jit.addPtr(JSInterfaceJIT::TrustedImm32(8), JSInterfaceJIT::regT3);
    jit.branchAdd32(MacroAssembler::NonZero, JSInterfaceJIT::TrustedImm32(1), JSInterfaceJIT::argumentGPR2).linkTo(fillUndefinedLoop, &jit);
    
    // Adjust call frame register and stack pointer to account for missing args
    jit.move(JSInterfaceJIT::argumentGPR0, extraTemp);
    jit.lshift64(JSInterfaceJIT::TrustedImm32(3), extraTemp);
    jit.addPtr(extraTemp, JSInterfaceJIT::callFrameRegister);
    jit.addPtr(extraTemp, JSInterfaceJIT::stackPointerRegister);

    done.link(&jit);

#  if CPU(X86_64)
    jit.push(JSInterfaceJIT::regT4);
#  endif
    jit.ret();
#else
#  if CPU(X86)
    jit.pop(JSInterfaceJIT::regT4);
#  endif
    jit.move(JSInterfaceJIT::callFrameRegister, JSInterfaceJIT::regT3);
    jit.load32(JSInterfaceJIT::Address(JSInterfaceJIT::callFrameRegister, JSStack::ArgumentCount * sizeof(Register)), JSInterfaceJIT::argumentGPR2);
    jit.add32(JSInterfaceJIT::TrustedImm32(JSStack::CallFrameHeaderSize), JSInterfaceJIT::argumentGPR2);

    // Check to see if we have extra slots we can use
    jit.move(JSInterfaceJIT::argumentGPR0, JSInterfaceJIT::argumentGPR1);
    jit.and32(JSInterfaceJIT::TrustedImm32(stackAlignmentRegisters() - 1), JSInterfaceJIT::argumentGPR1);
    JSInterfaceJIT::Jump noExtraSlot = jit.branchTest32(MacroAssembler::Zero, JSInterfaceJIT::argumentGPR1);
    JSInterfaceJIT::Label fillExtraSlots(jit.label());
    jit.move(JSInterfaceJIT::TrustedImm32(0), JSInterfaceJIT::regT5);
    jit.store32(JSInterfaceJIT::regT5, MacroAssembler::BaseIndex(JSInterfaceJIT::callFrameRegister, JSInterfaceJIT::argumentGPR2, JSInterfaceJIT::TimesEight, PayloadOffset));
    jit.move(JSInterfaceJIT::TrustedImm32(JSValue::UndefinedTag), JSInterfaceJIT::regT5);
    jit.store32(JSInterfaceJIT::regT5, MacroAssembler::BaseIndex(JSInterfaceJIT::callFrameRegister, JSInterfaceJIT::argumentGPR2, JSInterfaceJIT::TimesEight, TagOffset));
    jit.add32(JSInterfaceJIT::TrustedImm32(1), JSInterfaceJIT::argumentGPR2);
    jit.branchSub32(JSInterfaceJIT::NonZero, JSInterfaceJIT::TrustedImm32(1), JSInterfaceJIT::argumentGPR1).linkTo(fillExtraSlots, &jit);
    jit.and32(JSInterfaceJIT::TrustedImm32(-stackAlignmentRegisters()), JSInterfaceJIT::argumentGPR0);
    JSInterfaceJIT::Jump done = jit.branchTest32(MacroAssembler::Zero, JSInterfaceJIT::argumentGPR0);
    noExtraSlot.link(&jit);

    jit.neg32(JSInterfaceJIT::argumentGPR0);

    // Move current frame down argumentGPR0 number of slots
    JSInterfaceJIT::Label copyLoop(jit.label());
    jit.load32(MacroAssembler::Address(JSInterfaceJIT::regT3, PayloadOffset), JSInterfaceJIT::regT5);
    jit.store32(JSInterfaceJIT::regT5, MacroAssembler::BaseIndex(JSInterfaceJIT::regT3, JSInterfaceJIT::argumentGPR0, JSInterfaceJIT::TimesEight, PayloadOffset));
    jit.load32(MacroAssembler::Address(JSInterfaceJIT::regT3, TagOffset), JSInterfaceJIT::regT5);
    jit.store32(JSInterfaceJIT::regT5, MacroAssembler::BaseIndex(JSInterfaceJIT::regT3, JSInterfaceJIT::argumentGPR0, JSInterfaceJIT::TimesEight, TagOffset));
    jit.addPtr(JSInterfaceJIT::TrustedImm32(8), JSInterfaceJIT::regT3);
    jit.branchSub32(MacroAssembler::NonZero, JSInterfaceJIT::TrustedImm32(1), JSInterfaceJIT::argumentGPR2).linkTo(copyLoop, &jit);

    // Fill in argumentGPR0 missing arg slots with undefined
    jit.move(JSInterfaceJIT::argumentGPR0, JSInterfaceJIT::argumentGPR2);
    JSInterfaceJIT::Label fillUndefinedLoop(jit.label());
    jit.move(JSInterfaceJIT::TrustedImm32(0), JSInterfaceJIT::regT5);
    jit.store32(JSInterfaceJIT::regT5, MacroAssembler::BaseIndex(JSInterfaceJIT::regT3, JSInterfaceJIT::argumentGPR0, JSInterfaceJIT::TimesEight, PayloadOffset));
    jit.move(JSInterfaceJIT::TrustedImm32(JSValue::UndefinedTag), JSInterfaceJIT::regT5);
    jit.store32(JSInterfaceJIT::regT5, MacroAssembler::BaseIndex(JSInterfaceJIT::regT3, JSInterfaceJIT::argumentGPR0, JSInterfaceJIT::TimesEight, TagOffset));

    jit.addPtr(JSInterfaceJIT::TrustedImm32(8), JSInterfaceJIT::regT3);
    jit.branchAdd32(MacroAssembler::NonZero, JSInterfaceJIT::TrustedImm32(1), JSInterfaceJIT::argumentGPR2).linkTo(fillUndefinedLoop, &jit);

    // Adjust call frame register and stack pointer to account for missing args
    jit.move(JSInterfaceJIT::argumentGPR0, JSInterfaceJIT::regT5);
    jit.lshift32(JSInterfaceJIT::TrustedImm32(3), JSInterfaceJIT::regT5);
    jit.addPtr(JSInterfaceJIT::regT5, JSInterfaceJIT::callFrameRegister);
    jit.addPtr(JSInterfaceJIT::regT5, JSInterfaceJIT::stackPointerRegister);

    done.link(&jit);

#  if CPU(X86)
    jit.push(JSInterfaceJIT::regT4);
#  endif
    jit.ret();
#endif

    LinkBuffer patchBuffer(*vm, jit, GLOBAL_THUNK_ID);
    return FINALIZE_CODE(patchBuffer, ("fixup arity"));
}
CodeLocationLabel* ArityCheckFailReturnThunks::returnPCsFor(
    VM& vm, unsigned numExpectedArgumentsIncludingThis)
{
    ASSERT(numExpectedArgumentsIncludingThis >= 1);
    
    numExpectedArgumentsIncludingThis = WTF::roundUpToMultipleOf(
        stackAlignmentRegisters(), numExpectedArgumentsIncludingThis);
    
    {
        ConcurrentJITLocker locker(m_lock);
        if (numExpectedArgumentsIncludingThis < m_nextSize)
            return m_returnPCArrays.last().get();
    }
    
    ASSERT(!isCompilationThread());
    
    numExpectedArgumentsIncludingThis = std::max(numExpectedArgumentsIncludingThis, m_nextSize * 2);
    
    AssemblyHelpers jit(&vm, 0);
    
    Vector<AssemblyHelpers::Label> labels;
    
    for (unsigned size = m_nextSize; size <= numExpectedArgumentsIncludingThis; size += stackAlignmentRegisters()) {
        labels.append(jit.label());
        
        jit.load32(
            AssemblyHelpers::Address(
                AssemblyHelpers::stackPointerRegister,
                (JSStack::ArgumentCount - JSStack::CallerFrameAndPCSize) * sizeof(Register) +
                PayloadOffset),
            GPRInfo::regT4);
        jit.add32(
            AssemblyHelpers::TrustedImm32(
                JSStack::CallFrameHeaderSize - JSStack::CallerFrameAndPCSize + size - 1),
            GPRInfo::regT4, GPRInfo::regT2);
        jit.lshift32(AssemblyHelpers::TrustedImm32(3), GPRInfo::regT2);
        jit.addPtr(AssemblyHelpers::stackPointerRegister, GPRInfo::regT2);
        jit.loadPtr(GPRInfo::regT2, GPRInfo::regT2);
        
        jit.addPtr(
            AssemblyHelpers::TrustedImm32(size * sizeof(Register)),
            AssemblyHelpers::stackPointerRegister);
        
        // Thunks like ours want to use the return PC to figure out where things
        // were saved. So, we pay it forward.
        jit.store32(
            GPRInfo::regT4,
            AssemblyHelpers::Address(
                AssemblyHelpers::stackPointerRegister,
                (JSStack::ArgumentCount - JSStack::CallerFrameAndPCSize) * sizeof(Register) +
                PayloadOffset));
        
        jit.jump(GPRInfo::regT2);
    }
    
    LinkBuffer linkBuffer(vm, &jit, GLOBAL_THUNK_ID);
    
    unsigned returnPCsSize = numExpectedArgumentsIncludingThis / stackAlignmentRegisters() + 1;
    std::unique_ptr<CodeLocationLabel[]> returnPCs =
        std::make_unique<CodeLocationLabel[]>(returnPCsSize);
    for (unsigned size = 0; size <= numExpectedArgumentsIncludingThis; size += stackAlignmentRegisters()) {
        unsigned index = size / stackAlignmentRegisters();
        RELEASE_ASSERT(index < returnPCsSize);
        if (size < m_nextSize)
            returnPCs[index] = m_returnPCArrays.last()[index];
        else
            returnPCs[index] = linkBuffer.locationOf(labels[(size - m_nextSize) / stackAlignmentRegisters()]);
    }

    CodeLocationLabel* result = returnPCs.get();

    {
        ConcurrentJITLocker locker(m_lock);
        m_returnPCArrays.append(std::move(returnPCs));
        m_refs.append(FINALIZE_CODE(linkBuffer, ("Arity check fail return thunks for up to numArgs = %u", numExpectedArgumentsIncludingThis)));
        m_nextSize = numExpectedArgumentsIncludingThis + stackAlignmentRegisters();
    }
    
    return result;
}
Example #13
0
static MacroAssemblerCodeRef nativeForGenerator(VM* vm, CodeSpecializationKind kind, ThunkEntryType entryType = EnterViaCall)
{
    int executableOffsetToFunction = NativeExecutable::offsetOfNativeFunctionFor(kind);
    
    JSInterfaceJIT jit(vm);

    if (entryType == EnterViaCall)
        jit.emitFunctionPrologue();

    jit.emitPutImmediateToCallFrameHeader(0, JSStack::CodeBlock);
    jit.storePtr(JSInterfaceJIT::callFrameRegister, &vm->topCallFrame);

#if CPU(X86)
    // Load caller frame's scope chain into this callframe so that whatever we call can
    // get to its global data.
    jit.emitGetCallerFrameFromCallFrameHeaderPtr(JSInterfaceJIT::regT0);
    jit.emitGetFromCallFrameHeaderPtr(JSStack::ScopeChain, JSInterfaceJIT::regT1, JSInterfaceJIT::regT0);
    jit.emitPutCellToCallFrameHeader(JSInterfaceJIT::regT1, JSStack::ScopeChain);

    // Calling convention:      f(ecx, edx, ...);
    // Host function signature: f(ExecState*);
    jit.move(JSInterfaceJIT::callFrameRegister, X86Registers::ecx);

    jit.subPtr(JSInterfaceJIT::TrustedImm32(8), JSInterfaceJIT::stackPointerRegister); // Align stack after prologue.

    // call the function
    jit.emitGetFromCallFrameHeaderPtr(JSStack::Callee, JSInterfaceJIT::regT1);
    jit.loadPtr(JSInterfaceJIT::Address(JSInterfaceJIT::regT1, JSFunction::offsetOfExecutable()), JSInterfaceJIT::regT1);
    jit.call(JSInterfaceJIT::Address(JSInterfaceJIT::regT1, executableOffsetToFunction));

    jit.addPtr(JSInterfaceJIT::TrustedImm32(8), JSInterfaceJIT::stackPointerRegister);

#elif CPU(X86_64)
    // Load caller frame's scope chain into this callframe so that whatever we call can
    // get to its global data.
    jit.emitGetCallerFrameFromCallFrameHeaderPtr(JSInterfaceJIT::regT0);
    jit.emitGetFromCallFrameHeaderPtr(JSStack::ScopeChain, JSInterfaceJIT::regT1, JSInterfaceJIT::regT0);
    jit.emitPutCellToCallFrameHeader(JSInterfaceJIT::regT1, JSStack::ScopeChain);
#if !OS(WINDOWS)
    // Calling convention:      f(edi, esi, edx, ecx, ...);
    // Host function signature: f(ExecState*);
    jit.move(JSInterfaceJIT::callFrameRegister, X86Registers::edi);

    jit.emitGetFromCallFrameHeaderPtr(JSStack::Callee, X86Registers::esi);
    jit.loadPtr(JSInterfaceJIT::Address(X86Registers::esi, JSFunction::offsetOfExecutable()), X86Registers::r9);
    jit.call(JSInterfaceJIT::Address(X86Registers::r9, executableOffsetToFunction));

#else
    // Calling convention:      f(ecx, edx, r8, r9, ...);
    // Host function signature: f(ExecState*);
    jit.move(JSInterfaceJIT::callFrameRegister, X86Registers::ecx);

    // Leave space for the callee parameter home addresses and align the stack.
    jit.subPtr(JSInterfaceJIT::TrustedImm32(4 * sizeof(int64_t) + 16 - sizeof(int64_t)), JSInterfaceJIT::stackPointerRegister);

    jit.emitGetFromCallFrameHeaderPtr(JSStack::Callee, X86Registers::edx);
    jit.loadPtr(JSInterfaceJIT::Address(X86Registers::edx, JSFunction::offsetOfExecutable()), X86Registers::r9);
    jit.call(JSInterfaceJIT::Address(X86Registers::r9, executableOffsetToFunction));

    jit.addPtr(JSInterfaceJIT::TrustedImm32(4 * sizeof(int64_t) + 16 - sizeof(int64_t)), JSInterfaceJIT::stackPointerRegister);
#endif

#elif CPU(ARM64)
    COMPILE_ASSERT(ARM64Registers::x3 != JSInterfaceJIT::regT1, prev_callframe_not_trampled_by_T1);
    COMPILE_ASSERT(ARM64Registers::x3 != JSInterfaceJIT::regT3, prev_callframe_not_trampled_by_T3);
    COMPILE_ASSERT(ARM64Registers::x0 != JSInterfaceJIT::regT3, T3_not_trampled_by_arg_0);
    COMPILE_ASSERT(ARM64Registers::x1 != JSInterfaceJIT::regT3, T3_not_trampled_by_arg_1);
    COMPILE_ASSERT(ARM64Registers::x2 != JSInterfaceJIT::regT3, T3_not_trampled_by_arg_2);

    // Load caller frame's scope chain into this callframe so that whatever we call can
    // get to its global data.
    jit.emitGetCallerFrameFromCallFrameHeaderPtr(ARM64Registers::x3);
    jit.emitGetFromCallFrameHeaderPtr(JSStack::ScopeChain, JSInterfaceJIT::regT1, ARM64Registers::x3);
    jit.emitPutCellToCallFrameHeader(JSInterfaceJIT::regT1, JSStack::ScopeChain);

    // Host function signature: f(ExecState*);
    jit.move(JSInterfaceJIT::callFrameRegister, ARM64Registers::x0);

    jit.emitGetFromCallFrameHeaderPtr(JSStack::Callee, ARM64Registers::x1);
    jit.loadPtr(JSInterfaceJIT::Address(ARM64Registers::x1, JSFunction::offsetOfExecutable()), ARM64Registers::x2);
    jit.call(JSInterfaceJIT::Address(ARM64Registers::x2, executableOffsetToFunction));
#elif CPU(ARM) || CPU(SH4) || CPU(MIPS)
    // Load caller frame's scope chain into this callframe so that whatever we call can get to its global data.
    jit.emitGetCallerFrameFromCallFrameHeaderPtr(JSInterfaceJIT::regT2);
    jit.emitGetFromCallFrameHeaderPtr(JSStack::ScopeChain, JSInterfaceJIT::regT1, JSInterfaceJIT::regT2);
    jit.emitPutCellToCallFrameHeader(JSInterfaceJIT::regT1, JSStack::ScopeChain);

#if CPU(MIPS)
    // Allocate stack space for (unused) 16 bytes (8-byte aligned) for 4 arguments.
    jit.subPtr(JSInterfaceJIT::TrustedImm32(16), JSInterfaceJIT::stackPointerRegister);
#endif

    // Calling convention is f(argumentGPR0, argumentGPR1, ...).
    // Host function signature is f(ExecState*).
    jit.move(JSInterfaceJIT::callFrameRegister, JSInterfaceJIT::argumentGPR0);

    jit.emitGetFromCallFrameHeaderPtr(JSStack::Callee, JSInterfaceJIT::argumentGPR1);
    jit.loadPtr(JSInterfaceJIT::Address(JSInterfaceJIT::argumentGPR1, JSFunction::offsetOfExecutable()), JSInterfaceJIT::regT2);
    jit.call(JSInterfaceJIT::Address(JSInterfaceJIT::regT2, executableOffsetToFunction));

#if CPU(MIPS)
    // Restore stack space
    jit.addPtr(JSInterfaceJIT::TrustedImm32(16), JSInterfaceJIT::stackPointerRegister);
#endif
#else
#error "JIT not supported on this platform."
    UNUSED_PARAM(executableOffsetToFunction);
    breakpoint();
#endif

    // Check for an exception
#if USE(JSVALUE64)
    jit.load64(vm->addressOfException(), JSInterfaceJIT::regT2);
    JSInterfaceJIT::Jump exceptionHandler = jit.branchTest64(JSInterfaceJIT::NonZero, JSInterfaceJIT::regT2);
#else
    JSInterfaceJIT::Jump exceptionHandler = jit.branch32(
        JSInterfaceJIT::NotEqual,
        JSInterfaceJIT::AbsoluteAddress(reinterpret_cast<char*>(vm->addressOfException()) + OBJECT_OFFSETOF(EncodedValueDescriptor, asBits.tag)),
        JSInterfaceJIT::TrustedImm32(JSValue::EmptyValueTag));
#endif

    jit.emitFunctionEpilogue();
    // Return.
    jit.ret();

    // Handle an exception
    exceptionHandler.link(&jit);

    jit.storePtr(JSInterfaceJIT::callFrameRegister, &vm->topCallFrame);

#if CPU(X86) && USE(JSVALUE32_64)
    jit.addPtr(JSInterfaceJIT::TrustedImm32(-12), JSInterfaceJIT::stackPointerRegister);
    jit.loadPtr(JSInterfaceJIT::Address(JSInterfaceJIT::callFrameRegister), JSInterfaceJIT::regT0);
    jit.push(JSInterfaceJIT::regT0);
#else
    jit.loadPtr(JSInterfaceJIT::Address(JSInterfaceJIT::callFrameRegister), JSInterfaceJIT::argumentGPR0);
#endif
    jit.move(JSInterfaceJIT::TrustedImmPtr(FunctionPtr(operationVMHandleException).value()), JSInterfaceJIT::regT3);
    jit.call(JSInterfaceJIT::regT3);
#if CPU(X86) && USE(JSVALUE32_64)
    jit.addPtr(JSInterfaceJIT::TrustedImm32(16), JSInterfaceJIT::stackPointerRegister);
#endif

    jit.jumpToExceptionHandler();

    LinkBuffer patchBuffer(*vm, &jit, GLOBAL_THUNK_ID);
    return FINALIZE_CODE(patchBuffer, ("native %s%s trampoline", entryType == EnterViaJump ? "Tail " : "", toCString(kind).data()));
}
Example #14
0
MacroAssemblerCodeRef arityFixup(VM* vm)
{
    JSInterfaceJIT jit(vm);

    // We enter with fixup count, in aligned stack units, in regT0 and the return thunk in
    // regT5 on 32-bit and regT7 on 64-bit.
#if USE(JSVALUE64)
#  if CPU(X86_64)
    jit.pop(JSInterfaceJIT::regT4);
#  endif
    jit.lshift32(JSInterfaceJIT::TrustedImm32(logStackAlignmentRegisters()), JSInterfaceJIT::regT0);
    jit.neg64(JSInterfaceJIT::regT0);
    jit.move(JSInterfaceJIT::callFrameRegister, JSInterfaceJIT::regT6);
    jit.load32(JSInterfaceJIT::Address(JSInterfaceJIT::callFrameRegister, JSStack::ArgumentCount * sizeof(Register)), JSInterfaceJIT::regT2);
    jit.add32(JSInterfaceJIT::TrustedImm32(JSStack::CallFrameHeaderSize), JSInterfaceJIT::regT2);

    // Move current frame down regT0 number of slots
    JSInterfaceJIT::Label copyLoop(jit.label());
    jit.load64(JSInterfaceJIT::regT6, JSInterfaceJIT::regT1);
    jit.store64(JSInterfaceJIT::regT1, MacroAssembler::BaseIndex(JSInterfaceJIT::regT6, JSInterfaceJIT::regT0, JSInterfaceJIT::TimesEight));
    jit.addPtr(JSInterfaceJIT::TrustedImm32(8), JSInterfaceJIT::regT6);
    jit.branchSub32(MacroAssembler::NonZero, JSInterfaceJIT::TrustedImm32(1), JSInterfaceJIT::regT2).linkTo(copyLoop, &jit);

    // Fill in regT0 - 1 missing arg slots with undefined
    jit.move(JSInterfaceJIT::regT0, JSInterfaceJIT::regT2);
    jit.move(JSInterfaceJIT::TrustedImm64(ValueUndefined), JSInterfaceJIT::regT1);
    jit.add32(JSInterfaceJIT::TrustedImm32(1), JSInterfaceJIT::regT2);
    JSInterfaceJIT::Label fillUndefinedLoop(jit.label());
    jit.store64(JSInterfaceJIT::regT1, MacroAssembler::BaseIndex(JSInterfaceJIT::regT6, JSInterfaceJIT::regT0, JSInterfaceJIT::TimesEight));
    jit.addPtr(JSInterfaceJIT::TrustedImm32(8), JSInterfaceJIT::regT6);
    jit.branchAdd32(MacroAssembler::NonZero, JSInterfaceJIT::TrustedImm32(1), JSInterfaceJIT::regT2).linkTo(fillUndefinedLoop, &jit);
    
    // Adjust call frame register and stack pointer to account for missing args
    jit.move(JSInterfaceJIT::regT0, JSInterfaceJIT::regT1);
    jit.lshift64(JSInterfaceJIT::TrustedImm32(3), JSInterfaceJIT::regT1);
    jit.addPtr(JSInterfaceJIT::regT1, JSInterfaceJIT::callFrameRegister);
    jit.addPtr(JSInterfaceJIT::regT1, JSInterfaceJIT::stackPointerRegister);

    // Save the original return PC.
    jit.loadPtr(JSInterfaceJIT::Address(JSInterfaceJIT::callFrameRegister, CallFrame::returnPCOffset()), GPRInfo::regT1);
    jit.storePtr(GPRInfo::regT1, MacroAssembler::BaseIndex(JSInterfaceJIT::regT6, JSInterfaceJIT::regT0, JSInterfaceJIT::TimesEight));
    
    // Install the new return PC.
    jit.storePtr(GPRInfo::regT7, JSInterfaceJIT::Address(JSInterfaceJIT::callFrameRegister, CallFrame::returnPCOffset()));

#  if CPU(X86_64)
    jit.push(JSInterfaceJIT::regT4);
#  endif
    jit.ret();
#else
#  if CPU(X86)
    jit.pop(JSInterfaceJIT::regT4);
#  endif
    jit.lshift32(JSInterfaceJIT::TrustedImm32(logStackAlignmentRegisters()), JSInterfaceJIT::regT0);
    jit.neg32(JSInterfaceJIT::regT0);
    jit.move(JSInterfaceJIT::callFrameRegister, JSInterfaceJIT::regT3);
    jit.load32(JSInterfaceJIT::Address(JSInterfaceJIT::callFrameRegister, JSStack::ArgumentCount * sizeof(Register)), JSInterfaceJIT::regT2);
    jit.add32(JSInterfaceJIT::TrustedImm32(JSStack::CallFrameHeaderSize), JSInterfaceJIT::regT2);

    // Move current frame down regT0 number of slots
    JSInterfaceJIT::Label copyLoop(jit.label());
    jit.load32(JSInterfaceJIT::regT3, JSInterfaceJIT::regT1);
    jit.store32(JSInterfaceJIT::regT1, MacroAssembler::BaseIndex(JSInterfaceJIT::regT3, JSInterfaceJIT::regT0, JSInterfaceJIT::TimesEight));
    jit.load32(MacroAssembler::Address(JSInterfaceJIT::regT3, 4), JSInterfaceJIT::regT1);
    jit.store32(JSInterfaceJIT::regT1, MacroAssembler::BaseIndex(JSInterfaceJIT::regT3, JSInterfaceJIT::regT0, JSInterfaceJIT::TimesEight, 4));
    jit.addPtr(JSInterfaceJIT::TrustedImm32(8), JSInterfaceJIT::regT3);
    jit.branchSub32(MacroAssembler::NonZero, JSInterfaceJIT::TrustedImm32(1), JSInterfaceJIT::regT2).linkTo(copyLoop, &jit);

    // Fill in regT0 - 1 missing arg slots with undefined
    jit.move(JSInterfaceJIT::regT0, JSInterfaceJIT::regT2);
    jit.add32(JSInterfaceJIT::TrustedImm32(1), JSInterfaceJIT::regT2);
    JSInterfaceJIT::Label fillUndefinedLoop(jit.label());
    jit.move(JSInterfaceJIT::TrustedImm32(0), JSInterfaceJIT::regT1);
    jit.store32(JSInterfaceJIT::regT1, MacroAssembler::BaseIndex(JSInterfaceJIT::regT3, JSInterfaceJIT::regT0, JSInterfaceJIT::TimesEight));
    jit.move(JSInterfaceJIT::TrustedImm32(JSValue::UndefinedTag), JSInterfaceJIT::regT1);
    jit.store32(JSInterfaceJIT::regT1, MacroAssembler::BaseIndex(JSInterfaceJIT::regT3, JSInterfaceJIT::regT0, JSInterfaceJIT::TimesEight, 4));

    jit.addPtr(JSInterfaceJIT::TrustedImm32(8), JSInterfaceJIT::regT3);
    jit.branchAdd32(MacroAssembler::NonZero, JSInterfaceJIT::TrustedImm32(1), JSInterfaceJIT::regT2).linkTo(fillUndefinedLoop, &jit);

    // Adjust call frame register and stack pointer to account for missing args
    jit.move(JSInterfaceJIT::regT0, JSInterfaceJIT::regT1);
    jit.lshift32(JSInterfaceJIT::TrustedImm32(3), JSInterfaceJIT::regT1);
    jit.addPtr(JSInterfaceJIT::regT1, JSInterfaceJIT::callFrameRegister);
    jit.addPtr(JSInterfaceJIT::regT1, JSInterfaceJIT::stackPointerRegister);

    // Save the original return PC.
    jit.loadPtr(JSInterfaceJIT::Address(JSInterfaceJIT::callFrameRegister, CallFrame::returnPCOffset()), GPRInfo::regT1);
    jit.storePtr(GPRInfo::regT1, MacroAssembler::BaseIndex(JSInterfaceJIT::regT3, JSInterfaceJIT::regT0, JSInterfaceJIT::TimesEight));
    
    // Install the new return PC.
    jit.storePtr(GPRInfo::regT5, JSInterfaceJIT::Address(JSInterfaceJIT::callFrameRegister, CallFrame::returnPCOffset()));
    
#  if CPU(X86)
    jit.push(JSInterfaceJIT::regT4);
#  endif
    jit.ret();
#endif

    LinkBuffer patchBuffer(*vm, &jit, GLOBAL_THUNK_ID);
    return FINALIZE_CODE(patchBuffer, ("fixup arity"));
}
Example #15
0
static MacroAssemblerCodeRef virtualForThunkGenerator(
    JSGlobalData* globalData, CodeSpecializationKind kind)
{
    // The return address is on the stack, or in the link register. We will hence
    // jump to the callee, or save the return address to the call frame while we
    // make a C++ function call to the appropriate DFG operation.

    CCallHelpers jit(globalData);
    
    CCallHelpers::JumpList slowCase;

    // FIXME: we should have a story for eliminating these checks. In many cases,
    // the DFG knows that the value is definitely a cell, or definitely a function.
    
#if USE(JSVALUE64)
    slowCase.append(
        jit.branchTestPtr(
            CCallHelpers::NonZero, GPRInfo::nonArgGPR0, GPRInfo::tagMaskRegister));
#else
    slowCase.append(
        jit.branch32(
            CCallHelpers::NotEqual, GPRInfo::nonArgGPR1,
            CCallHelpers::TrustedImm32(JSValue::CellTag)));
#endif
    jit.loadPtr(CCallHelpers::Address(GPRInfo::nonArgGPR0, JSCell::structureOffset()), GPRInfo::nonArgGPR2);
    slowCase.append(
        jit.branchPtr(
            CCallHelpers::NotEqual,
            CCallHelpers::Address(GPRInfo::nonArgGPR2, Structure::classInfoOffset()),
            CCallHelpers::TrustedImmPtr(&JSFunction::s_info)));
    
    // Now we know we have a JSFunction.
    
    jit.loadPtr(
        CCallHelpers::Address(GPRInfo::nonArgGPR0, JSFunction::offsetOfExecutable()),
        GPRInfo::nonArgGPR2);
    slowCase.append(
        jit.branch32(
            CCallHelpers::LessThan,
            CCallHelpers::Address(
                GPRInfo::nonArgGPR2, ExecutableBase::offsetOfNumParametersFor(kind)),
            CCallHelpers::TrustedImm32(0)));
    
    // Now we know that we have a CodeBlock, and we're committed to making a fast
    // call.
    
    jit.loadPtr(
        CCallHelpers::Address(GPRInfo::nonArgGPR0, JSFunction::offsetOfScopeChain()),
        GPRInfo::nonArgGPR1);
#if USE(JSVALUE64)
    jit.storePtr(
        GPRInfo::nonArgGPR1,
        CCallHelpers::Address(
            GPRInfo::callFrameRegister,
            static_cast<ptrdiff_t>(sizeof(Register)) * RegisterFile::ScopeChain));
#else
    jit.storePtr(
        GPRInfo::nonArgGPR1,
        CCallHelpers::Address(
            GPRInfo::callFrameRegister,
            static_cast<ptrdiff_t>(sizeof(Register)) * RegisterFile::ScopeChain +
            OBJECT_OFFSETOF(EncodedValueDescriptor, asBits.payload)));
    jit.store32(
        CCallHelpers::TrustedImm32(JSValue::CellTag),
        CCallHelpers::Address(
            GPRInfo::callFrameRegister,
            static_cast<ptrdiff_t>(sizeof(Register)) * RegisterFile::ScopeChain +
            OBJECT_OFFSETOF(EncodedValueDescriptor, asBits.tag)));
#endif
    
    jit.loadPtr(
        CCallHelpers::Address(GPRInfo::nonArgGPR2, ExecutableBase::offsetOfJITCodeWithArityCheckFor(kind)),
        GPRInfo::regT0);
    
    // Make a tail call. This will return back to DFG code.
    emitPointerValidation(jit, GPRInfo::regT0);
    jit.jump(GPRInfo::regT0);

    slowCase.link(&jit);
    
    // Here we don't know anything, so revert to the full slow path.
    
    slowPathFor(jit, globalData, kind == CodeForCall ? operationVirtualCall : operationVirtualConstruct);
    
    LinkBuffer patchBuffer(*globalData, &jit, GLOBAL_THUNK_ID);
    return FINALIZE_CODE(
        patchBuffer,
        ("DFG virtual %s slow path thunk", kind == CodeForCall ? "call" : "construct"));
}
Example #16
0
static MacroAssemblerCodeRef virtualForThunkGenerator(
    VM* vm, CodeSpecializationKind kind, RegisterPreservationMode registers)
{
    // The callee is in regT0 (for JSVALUE32_64, the tag is in regT1).
    // The return address is on the stack, or in the link register. We will hence
    // jump to the callee, or save the return address to the call frame while we
    // make a C++ function call to the appropriate JIT operation.

    CCallHelpers jit(vm);
    
    CCallHelpers::JumpList slowCase;

    // FIXME: we should have a story for eliminating these checks. In many cases,
    // the DFG knows that the value is definitely a cell, or definitely a function.
    
#if USE(JSVALUE64)
    jit.move(CCallHelpers::TrustedImm64(TagMask), GPRInfo::regT2);
    
    slowCase.append(
        jit.branchTest64(
            CCallHelpers::NonZero, GPRInfo::regT0, GPRInfo::regT2));
#else
    slowCase.append(
        jit.branch32(
            CCallHelpers::NotEqual, GPRInfo::regT1,
            CCallHelpers::TrustedImm32(JSValue::CellTag)));
#endif
    AssemblyHelpers::emitLoadStructure(jit, GPRInfo::regT0, GPRInfo::regT2, GPRInfo::regT1);
    slowCase.append(
        jit.branchPtr(
            CCallHelpers::NotEqual,
            CCallHelpers::Address(GPRInfo::regT2, Structure::classInfoOffset()),
            CCallHelpers::TrustedImmPtr(JSFunction::info())));
    
    // Now we know we have a JSFunction.
    
    jit.loadPtr(
        CCallHelpers::Address(GPRInfo::regT0, JSFunction::offsetOfExecutable()),
        GPRInfo::regT2);
    jit.loadPtr(
        CCallHelpers::Address(
            GPRInfo::regT2, ExecutableBase::offsetOfJITCodeWithArityCheckFor(kind, registers)),
        GPRInfo::regT2);
    slowCase.append(jit.branchTestPtr(CCallHelpers::Zero, GPRInfo::regT2));
    
    // Now we know that we have a CodeBlock, and we're committed to making a fast
    // call.
    
    jit.loadPtr(
        CCallHelpers::Address(GPRInfo::regT0, JSFunction::offsetOfScopeChain()),
        GPRInfo::regT1);
#if USE(JSVALUE64)
    jit.emitPutToCallFrameHeaderBeforePrologue(GPRInfo::regT1, JSStack::ScopeChain);
#else
    jit.emitPutPayloadToCallFrameHeaderBeforePrologue(GPRInfo::regT1, JSStack::ScopeChain);
    jit.emitPutTagToCallFrameHeaderBeforePrologue(CCallHelpers::TrustedImm32(JSValue::CellTag),
        JSStack::ScopeChain);
#endif
    
    // Make a tail call. This will return back to JIT code.
    emitPointerValidation(jit, GPRInfo::regT2);
    jit.jump(GPRInfo::regT2);

    slowCase.link(&jit);
    
    // Here we don't know anything, so revert to the full slow path.
    
    slowPathFor(jit, vm, operationVirtualFor(kind, registers));
    
    LinkBuffer patchBuffer(*vm, &jit, GLOBAL_THUNK_ID);
    return FINALIZE_CODE(
        patchBuffer,
        ("Virtual %s%s slow path thunk", kind == CodeForCall ? "call" : "construct", registers == MustPreserveRegisters ? " that preserves registers" : ""));
}
Example #17
0
    virtual void perform() {
      const char* thread_name = "rbx.jit";
      ManagedThread::set_current(ls_, thread_name);

      ls_->set_run_state(ManagedThread::eIndependent);

      RUBINIUS_THREAD_START(thread_name, ls_->thread_id(), 1);

#ifndef RBX_WINDOWS
      sigset_t set;
      sigfillset(&set);
      pthread_sigmask(SIG_SETMASK, &set, NULL);
#endif

      for(;;) { // forever

        BackgroundCompileRequest* req = 0;

        // Lock, wait, get a request, unlock
        {
          utilities::thread::Mutex::LockGuard guard(mutex_);

          if(pause_) {
            state = cPaused;

            paused_ = true;
            pause_condition_.broadcast();

            if(stop_) goto halt;

            while(pause_) {
              condition_.wait(mutex_);
              if(stop_) goto halt;
            }

            state = cUnknown;
            paused_ = false;
          }

          // If we've been asked to stop, do so now.
          if(stop_) goto halt;


          while(pending_requests_.empty()) {
            state = cIdle;

            // unlock and wait...
            condition_.wait(mutex_);

            if(stop_) goto halt;
          }

          // now locked again, shift a request
          req = pending_requests_.front();

          state = cRunning;
        }

        // This isn't ideal, but it's the safest. Keep the GC from
        // running while we're building the IR.
        ls_->gc_dependent();

        Context ctx(ls_);
        jit::Compiler jit(&ctx);

        // mutex now unlock, allowing others to push more requests
        //

        current_req_ = req;
        current_compiler_ = &jit;

        int spec_id = 0;
        Class* cls = req->receiver_class();
        if(cls && !cls->nil_p()) {
          spec_id = cls->class_id();
        }

        void* func = 0;
        {
          timer::Running<1000000> timer(ls_->shared().stats.jit_time_spent);

          jit.compile(req);

          func = jit.generate_function();
        }

        // We were unable to compile this function, likely
        // because it's got something we don't support.
        if(!func) {
          if(ls_->config().jit_show_compiling) {
            CompiledCode* code = req->method();
            llvm::outs() << "[[[ JIT error background compiling "
                      << ls_->enclosure_name(code) << "#" << ls_->symbol_debug_str(code->name())
                      << (req->is_block() ? " (block)" : " (method)")
                      << " ]]]\n";
          }
          // If someone was waiting on this, wake them up.
          if(utilities::thread::Condition* cond = req->waiter()) {
            cond->signal();
          }

          current_req_ = 0;
          current_compiler_ = 0;
          pending_requests_.pop_front();
          delete req;

          // We don't depend on the GC here, so let it run independent
          // of us.
          ls_->gc_independent();

          continue;
        }

        if(show_machine_code_) {
          jit.show_machine_code();
        }

        // If the method has had jit'ing request disabled since we started
        // JIT'ing it, discard our work.
        if(!req->machine_code()->jit_disabled()) {

          jit::RuntimeDataHolder* rd = ctx.runtime_data_holder();

          atomic::memory_barrier();
          ls_->start_method_update();

          if(!req->is_block()) {
            if(spec_id) {
              req->method()->add_specialized(spec_id, reinterpret_cast<executor>(func), rd);
            } else {
              req->method()->set_unspecialized(reinterpret_cast<executor>(func), rd);
            }
          } else {
            req->method()->set_unspecialized(reinterpret_cast<executor>(func), rd);
          }

          req->machine_code()->clear_compiling();

          // assert(req->method()->jit_data());

          ls_->end_method_update();

          rd->run_write_barrier(ls_->write_barrier(), req->method());

          ls_->shared().stats.jitted_methods++;

          if(ls_->config().jit_show_compiling) {
            CompiledCode* code = req->method();
            llvm::outs() << "[[[ JIT finished background compiling "
                      << ls_->enclosure_name(code) << "#" << ls_->symbol_debug_str(code->name())
                      << (req->is_block() ? " (block)" : " (method)")
                      << " ]]]\n";
          }
        }

        // If someone was waiting on this, wake them up.
        if(utilities::thread::Condition* cond = req->waiter()) {
          cond->signal();
        }

        current_req_ = 0;
        current_compiler_ = 0;
        pending_requests_.pop_front();
        delete req;

        // We don't depend on the GC here, so let it run independent
        // of us.
        ls_->gc_independent();
      }

halt:
      RUBINIUS_THREAD_STOP(thread_name, ls_->thread_id(), 1);
    }
void jit (const char* const file_contents) {
  struct vector instruction_stream;
  struct stack relocation_table = { .size = 0, .items = { 0 } };
  int relocation_site = 0;
  int relative_offset = 0;
  GUARD(vector_create(&instruction_stream, 100));
  char prologue [] = {
    0x55, // push rbp
    0x48, 0x89, 0xE5, // mov rsp, rbp
    // backup callee saved registers
    0x41, 0x54, // pushq %r12
    0x41, 0x55, // pushq %r13
    0x41, 0x56, // pushq %r14
    // %rdi = memset
    // %rsi = putchar
    // %rdx = getgetchar
    // backup args to callee saved registers
    0x49, 0x89, 0xFC, // movq %rdi, %r12
    0x49, 0x89, 0xF5, // movq %rsi, %r13
    0x49, 0x89, 0xD6, // movq %rdx, %r14
    // %r12 = memset
    // %r13 = putchar
    // %r14 = getchar
    // allocate 30,008 B on stack
    0x48, 0x81, 0xEC, 0x38, 0x75, 0x00, 0x00, // subq $30000, %rsp
    // address of beginning of tape
    0x48, 0x8D, 0x3C, 0x24, // leaq (%rsp), %rdi
    // fill with 0's
    0xBE, 0x00, 0x00, 0x00, 0x00, // movl $0, %esi
    // length 30,000 B
    0x48, 0xC7, 0xC2, 0x30, 0x75, 0x00, 0x00, // movq $30000, %rdx
    // memset
    0x41, 0xFF, 0xD4, // callq *%r12
    0x49, 0x89, 0xE4 // movq %rsp, %r12
    // %r12 = &tape[0];
  };
  GUARD(vector_push(&instruction_stream, prologue, sizeof(prologue)));

  for (unsigned long i = 0; file_contents[i] != '\0'; ++i) {
    switch (file_contents[i]) {
      case '>':
        // see: http://stackoverflow.com/a/8550253/1027966
        {
          char opcodes [] = {
            0x49, 0xFF, 0xC4 // inc %r12
          };
          GUARD(vector_push(&instruction_stream, opcodes, sizeof(opcodes)));
        }
        break;
      case '<':
        {
          char opcodes [] = {
            0x49, 0xFF, 0xCC // dec %r12
          };
          GUARD(vector_push(&instruction_stream, opcodes, sizeof(opcodes)));
        }
        break;
      case '+':
        {
          char opcodes [] = {
            0x41, 0xFE, 0x04, 0x24 // incb (%r12)
          };
          GUARD(vector_push(&instruction_stream, opcodes, sizeof(opcodes)));
        }
        break;
      case '-':
        {
          char opcodes [] = {
            0x41, 0xFE, 0x0C, 0x24 // decv (%r12)
          };
          GUARD(vector_push(&instruction_stream, opcodes, sizeof(opcodes)));
        }
        break;
      case '.':
        {
          char opcodes [] = {
            0x41, 0x0F, 0xB6, 0x3C, 0x24, // movzbl (%r12), %edi
            0x41, 0xFF, 0xD5 // callq *%r13
          };
          GUARD(vector_push(&instruction_stream, opcodes, sizeof(opcodes)));
        }
        break;
      case ',':
        {
          char opcodes [] = {
            0x41, 0xFF, 0xD6, // callq *%r14
            0x41, 0x88, 0x04, 0x24 // movb %al, (%r12)
          };
          GUARD(vector_push(&instruction_stream, opcodes, sizeof(opcodes)));
        }
        break;
      case '[':
        {
          char opcodes [] = {
            0x41, 0x80, 0x3C, 0x24, 0x00, // cmpb $0, (%r12)
            // Needs to be patched up
            0x0F, 0x84, 0x00, 0x00, 0x00, 0x00 // je <32b relative offset, 2's compliment, LE>
          };
          GUARD(vector_push(&instruction_stream, opcodes, sizeof(opcodes)));
        }
        GUARD(stack_push(&relocation_table, instruction_stream.size)); // create a label after
        break;
      case ']':
        {
          char opcodes [] = {
            0x41, 0x80, 0x3C, 0x24, 0x00, // cmpb $0, (%r12)
            // Needs to be patched up
            0x0F, 0x85, 0x00, 0x00, 0x00, 0x00 // jne <32b relative offset, 2's compliment, LE>
          };
          GUARD(vector_push(&instruction_stream, opcodes, sizeof(opcodes)));
        }
        // patches self and matching open bracket
        GUARD(stack_pop(&relocation_table, &relocation_site));
        relative_offset = instruction_stream.size - relocation_site;
        vector_write32LE(&instruction_stream, instruction_stream.size - 4, -relative_offset);
        vector_write32LE(&instruction_stream, relocation_site - 4, relative_offset);
        break;
    }
  }

  char epilogue [] = {
    0x48, 0x81, 0xC4, 0x38, 0x75, 0x00, 0x00, // addq $30008, %rsp
    // restore callee saved registers
    0x41, 0x5E, // popq %r14
    0x41, 0x5D, // popq %r13
    0x41, 0x5C, // popq %r12
    0x5d, // pop rbp
    0xC3 // ret
  };
  GUARD(vector_push(&instruction_stream, epilogue, sizeof(epilogue)));
  /*print_instruction_stream(&instruction_stream);*/

  void* mem = mmap(NULL, instruction_stream.size, PROT_WRITE | PROT_EXEC,
    MAP_ANON | MAP_PRIVATE, -1, 0);
  memcpy(mem, instruction_stream.data, instruction_stream.size);
  void (*jitted_func) (fn_memset, fn_putchar, fn_getchar) = mem;
  jitted_func(memset, putchar, getchar);
  munmap(mem, instruction_stream.size);
  vector_destroy(&instruction_stream);
}

int main (int argc, char* argv []) {
  if (argc != 2) err("Usage: jit inputfile");
  char* file_contents = read_file(argv[1]);
  if (file_contents == NULL) err("Couldn't open file");
  jit(file_contents);
  free(file_contents);
}
Example #19
0
static MacroAssemblerCodeRef nativeForGenerator(VM* vm, CodeSpecializationKind kind, ThunkEntryType entryType = EnterViaCall)
{
    int executableOffsetToFunction = NativeExecutable::offsetOfNativeFunctionFor(kind);
    
    JSInterfaceJIT jit(vm);

    if (entryType == EnterViaCall)
        jit.emitFunctionPrologue();
#if USE(JSVALUE64)
    else if (entryType == EnterViaJump) {
        // We're coming from a specialized thunk that has saved the prior tag registers' contents.
        // Restore them now.
#if CPU(ARM64)
        jit.popPair(JSInterfaceJIT::tagTypeNumberRegister, JSInterfaceJIT::tagMaskRegister);
#else
        jit.pop(JSInterfaceJIT::tagMaskRegister);
        jit.pop(JSInterfaceJIT::tagTypeNumberRegister);
#endif
    }
#endif

    jit.emitPutToCallFrameHeader(0, JSStack::CodeBlock);
    jit.storePtr(JSInterfaceJIT::callFrameRegister, &vm->topCallFrame);

#if CPU(X86)
    // Calling convention:      f(ecx, edx, ...);
    // Host function signature: f(ExecState*);
    jit.move(JSInterfaceJIT::callFrameRegister, X86Registers::ecx);

    jit.subPtr(JSInterfaceJIT::TrustedImm32(8), JSInterfaceJIT::stackPointerRegister); // Align stack after prologue.

    // call the function
    jit.emitGetFromCallFrameHeaderPtr(JSStack::Callee, JSInterfaceJIT::regT1);
    jit.loadPtr(JSInterfaceJIT::Address(JSInterfaceJIT::regT1, JSFunction::offsetOfExecutable()), JSInterfaceJIT::regT1);
    jit.call(JSInterfaceJIT::Address(JSInterfaceJIT::regT1, executableOffsetToFunction));

    jit.addPtr(JSInterfaceJIT::TrustedImm32(8), JSInterfaceJIT::stackPointerRegister);

#elif CPU(X86_64)
#if !OS(WINDOWS)
    // Calling convention:      f(edi, esi, edx, ecx, ...);
    // Host function signature: f(ExecState*);
    jit.move(JSInterfaceJIT::callFrameRegister, X86Registers::edi);

    jit.emitGetFromCallFrameHeaderPtr(JSStack::Callee, X86Registers::esi);
    jit.loadPtr(JSInterfaceJIT::Address(X86Registers::esi, JSFunction::offsetOfExecutable()), X86Registers::r9);
    jit.call(JSInterfaceJIT::Address(X86Registers::r9, executableOffsetToFunction));

#else
    // Calling convention:      f(ecx, edx, r8, r9, ...);
    // Host function signature: f(ExecState*);
    jit.move(JSInterfaceJIT::callFrameRegister, X86Registers::ecx);

    // Leave space for the callee parameter home addresses.
    // At this point the stack is aligned to 16 bytes, but if this changes at some point, we need to emit code to align it.
    jit.subPtr(JSInterfaceJIT::TrustedImm32(4 * sizeof(int64_t)), JSInterfaceJIT::stackPointerRegister);

    jit.emitGetFromCallFrameHeaderPtr(JSStack::Callee, X86Registers::edx);
    jit.loadPtr(JSInterfaceJIT::Address(X86Registers::edx, JSFunction::offsetOfExecutable()), X86Registers::r9);
    jit.call(JSInterfaceJIT::Address(X86Registers::r9, executableOffsetToFunction));

    jit.addPtr(JSInterfaceJIT::TrustedImm32(4 * sizeof(int64_t)), JSInterfaceJIT::stackPointerRegister);
#endif

#elif CPU(ARM64)
    COMPILE_ASSERT(ARM64Registers::x0 != JSInterfaceJIT::regT3, T3_not_trampled_by_arg_0);
    COMPILE_ASSERT(ARM64Registers::x1 != JSInterfaceJIT::regT3, T3_not_trampled_by_arg_1);
    COMPILE_ASSERT(ARM64Registers::x2 != JSInterfaceJIT::regT3, T3_not_trampled_by_arg_2);

    // Host function signature: f(ExecState*);
    jit.move(JSInterfaceJIT::callFrameRegister, ARM64Registers::x0);

    jit.emitGetFromCallFrameHeaderPtr(JSStack::Callee, ARM64Registers::x1);
    jit.loadPtr(JSInterfaceJIT::Address(ARM64Registers::x1, JSFunction::offsetOfExecutable()), ARM64Registers::x2);
    jit.call(JSInterfaceJIT::Address(ARM64Registers::x2, executableOffsetToFunction));
#elif CPU(ARM) || CPU(SH4) || CPU(MIPS)
#if CPU(MIPS)
    // Allocate stack space for (unused) 16 bytes (8-byte aligned) for 4 arguments.
    jit.subPtr(JSInterfaceJIT::TrustedImm32(16), JSInterfaceJIT::stackPointerRegister);
#endif

    // Calling convention is f(argumentGPR0, argumentGPR1, ...).
    // Host function signature is f(ExecState*).
    jit.move(JSInterfaceJIT::callFrameRegister, JSInterfaceJIT::argumentGPR0);

    jit.emitGetFromCallFrameHeaderPtr(JSStack::Callee, JSInterfaceJIT::argumentGPR1);
    jit.loadPtr(JSInterfaceJIT::Address(JSInterfaceJIT::argumentGPR1, JSFunction::offsetOfExecutable()), JSInterfaceJIT::regT2);
    jit.call(JSInterfaceJIT::Address(JSInterfaceJIT::regT2, executableOffsetToFunction));

#if CPU(MIPS)
    // Restore stack space
    jit.addPtr(JSInterfaceJIT::TrustedImm32(16), JSInterfaceJIT::stackPointerRegister);
#endif
#else
#error "JIT not supported on this platform."
    UNUSED_PARAM(executableOffsetToFunction);
    abortWithReason(TGNotSupported);
#endif

    // Check for an exception
#if USE(JSVALUE64)
    jit.load64(vm->addressOfException(), JSInterfaceJIT::regT2);
    JSInterfaceJIT::Jump exceptionHandler = jit.branchTest64(JSInterfaceJIT::NonZero, JSInterfaceJIT::regT2);
#else
    JSInterfaceJIT::Jump exceptionHandler = jit.branch32(
        JSInterfaceJIT::NotEqual,
        JSInterfaceJIT::AbsoluteAddress(vm->addressOfException()),
        JSInterfaceJIT::TrustedImm32(0));
#endif

    jit.emitFunctionEpilogue();
    // Return.
    jit.ret();

    // Handle an exception
    exceptionHandler.link(&jit);

    jit.copyCalleeSavesToVMCalleeSavesBuffer();
    jit.storePtr(JSInterfaceJIT::callFrameRegister, &vm->topCallFrame);

#if CPU(X86) && USE(JSVALUE32_64)
    jit.addPtr(JSInterfaceJIT::TrustedImm32(-12), JSInterfaceJIT::stackPointerRegister);
    jit.move(JSInterfaceJIT::callFrameRegister, JSInterfaceJIT::regT0);
    jit.push(JSInterfaceJIT::regT0);
#else
#if OS(WINDOWS)
    // Allocate space on stack for the 4 parameter registers.
    jit.subPtr(JSInterfaceJIT::TrustedImm32(4 * sizeof(int64_t)), JSInterfaceJIT::stackPointerRegister);
#endif
    jit.move(JSInterfaceJIT::callFrameRegister, JSInterfaceJIT::argumentGPR0);
#endif
    jit.move(JSInterfaceJIT::TrustedImmPtr(FunctionPtr(operationVMHandleException).value()), JSInterfaceJIT::regT3);
    jit.call(JSInterfaceJIT::regT3);
#if CPU(X86) && USE(JSVALUE32_64)
    jit.addPtr(JSInterfaceJIT::TrustedImm32(16), JSInterfaceJIT::stackPointerRegister);
#elif OS(WINDOWS)
    jit.addPtr(JSInterfaceJIT::TrustedImm32(4 * sizeof(int64_t)), JSInterfaceJIT::stackPointerRegister);
#endif

    jit.jumpToExceptionHandler();

    LinkBuffer patchBuffer(*vm, jit, GLOBAL_THUNK_ID);
    return FINALIZE_CODE(patchBuffer, ("native %s%s trampoline", entryType == EnterViaJump ? "Tail " : "", toCString(kind).data()));
}
Example #20
0
static MacroAssemblerCodeRef arrayIteratorNextThunkGenerator(VM* vm, ArrayIterationKind kind)
{
    typedef SpecializedThunkJIT::TrustedImm32 TrustedImm32;
    typedef SpecializedThunkJIT::TrustedImmPtr TrustedImmPtr;
    typedef SpecializedThunkJIT::Address Address;
    typedef SpecializedThunkJIT::BaseIndex BaseIndex;
    typedef SpecializedThunkJIT::Jump Jump;
    
    SpecializedThunkJIT jit(vm);
    // Make sure we're being called on an array iterator, and load m_iteratedObject, and m_nextIndex into regT0 and regT1 respectively
    jit.loadArgumentWithSpecificClass(JSArrayIterator::info(), SpecializedThunkJIT::ThisArgument, SpecializedThunkJIT::regT4, SpecializedThunkJIT::regT1);

    // Early exit if we don't have a thunk for this form of iteration
    jit.appendFailure(jit.branch32(SpecializedThunkJIT::AboveOrEqual, Address(SpecializedThunkJIT::regT4, JSArrayIterator::offsetOfIterationKind()), TrustedImm32(ArrayIterateKeyValue)));
    
    jit.loadPtr(Address(SpecializedThunkJIT::regT4, JSArrayIterator::offsetOfIteratedObject()), SpecializedThunkJIT::regT0);
    
    jit.load32(Address(SpecializedThunkJIT::regT4, JSArrayIterator::offsetOfNextIndex()), SpecializedThunkJIT::regT1);
    
    // Pull out the butterfly from iteratedObject
    jit.load8(Address(SpecializedThunkJIT::regT0, JSCell::indexingTypeOffset()), SpecializedThunkJIT::regT3);
    jit.loadPtr(Address(SpecializedThunkJIT::regT0, JSObject::butterflyOffset()), SpecializedThunkJIT::regT2);
    
    jit.and32(TrustedImm32(IndexingShapeMask), SpecializedThunkJIT::regT3);

    Jump notDone = jit.branch32(SpecializedThunkJIT::Below, SpecializedThunkJIT::regT1, Address(SpecializedThunkJIT::regT2, Butterfly::offsetOfPublicLength()));
    // Return the termination signal to indicate that we've finished
    jit.move(TrustedImmPtr(vm->iterationTerminator.get()), SpecializedThunkJIT::regT0);
    jit.returnJSCell(SpecializedThunkJIT::regT0);
    
    notDone.link(&jit);
    
    if (kind == ArrayIterateKey) {
        jit.add32(TrustedImm32(1), Address(SpecializedThunkJIT::regT4, JSArrayIterator::offsetOfNextIndex()));
        jit.returnInt32(SpecializedThunkJIT::regT1);
        return jit.finalize(vm->jitStubs->ctiNativeTailCall(vm), "array-iterator-next-key");
        
    }
    ASSERT(kind == ArrayIterateValue);
    
    // Okay, now we're returning a value so make sure we're inside the vector size
    jit.appendFailure(jit.branch32(SpecializedThunkJIT::AboveOrEqual, SpecializedThunkJIT::regT1, Address(SpecializedThunkJIT::regT2, Butterfly::offsetOfVectorLength())));
    
    // So now we perform inline loads for int32, value/undecided, and double storage
    Jump undecidedStorage = jit.branch32(SpecializedThunkJIT::Equal, SpecializedThunkJIT::regT3, TrustedImm32(UndecidedShape));
    Jump notContiguousStorage = jit.branch32(SpecializedThunkJIT::NotEqual, SpecializedThunkJIT::regT3, TrustedImm32(ContiguousShape));
    
    undecidedStorage.link(&jit);
    
    jit.loadPtr(Address(SpecializedThunkJIT::regT0, JSObject::butterflyOffset()), SpecializedThunkJIT::regT2);
    
#if USE(JSVALUE64)
    jit.load64(BaseIndex(SpecializedThunkJIT::regT2, SpecializedThunkJIT::regT1, SpecializedThunkJIT::TimesEight), SpecializedThunkJIT::regT0);
    Jump notHole = jit.branchTest64(SpecializedThunkJIT::NonZero, SpecializedThunkJIT::regT0);
    jit.move(JSInterfaceJIT::TrustedImm64(ValueUndefined), JSInterfaceJIT::regT0);
    notHole.link(&jit);
    jit.addPtr(TrustedImm32(1), Address(SpecializedThunkJIT::regT4, JSArrayIterator::offsetOfNextIndex()));
    jit.returnJSValue(SpecializedThunkJIT::regT0);
#else
    jit.load32(BaseIndex(SpecializedThunkJIT::regT2, SpecializedThunkJIT::regT1, SpecializedThunkJIT::TimesEight, JSValue::offsetOfTag()), SpecializedThunkJIT::regT3);
    Jump notHole = jit.branch32(SpecializedThunkJIT::NotEqual, SpecializedThunkJIT::regT3, TrustedImm32(JSValue::EmptyValueTag));
    jit.move(JSInterfaceJIT::TrustedImm32(JSValue::UndefinedTag), JSInterfaceJIT::regT1);
    jit.move(JSInterfaceJIT::TrustedImm32(0), JSInterfaceJIT::regT0);
    jit.add32(TrustedImm32(1), Address(SpecializedThunkJIT::regT4, JSArrayIterator::offsetOfNextIndex()));
    jit.returnJSValue(SpecializedThunkJIT::regT0, JSInterfaceJIT::regT1);
    notHole.link(&jit);
    jit.load32(BaseIndex(SpecializedThunkJIT::regT2, SpecializedThunkJIT::regT1, SpecializedThunkJIT::TimesEight, JSValue::offsetOfPayload()), SpecializedThunkJIT::regT0);
    jit.add32(TrustedImm32(1), Address(SpecializedThunkJIT::regT4, JSArrayIterator::offsetOfNextIndex()));
    jit.move(SpecializedThunkJIT::regT3, SpecializedThunkJIT::regT1);
    jit.returnJSValue(SpecializedThunkJIT::regT0, SpecializedThunkJIT::regT1);
#endif
    notContiguousStorage.link(&jit);
    
    Jump notInt32Storage = jit.branch32(SpecializedThunkJIT::NotEqual, SpecializedThunkJIT::regT3, TrustedImm32(Int32Shape));
    jit.loadPtr(Address(SpecializedThunkJIT::regT0, JSObject::butterflyOffset()), SpecializedThunkJIT::regT2);
    jit.load32(BaseIndex(SpecializedThunkJIT::regT2, SpecializedThunkJIT::regT1, SpecializedThunkJIT::TimesEight, JSValue::offsetOfPayload()), SpecializedThunkJIT::regT0);
    jit.add32(TrustedImm32(1), Address(SpecializedThunkJIT::regT4, JSArrayIterator::offsetOfNextIndex()));
    jit.returnInt32(SpecializedThunkJIT::regT0);
    notInt32Storage.link(&jit);
    
    jit.appendFailure(jit.branch32(SpecializedThunkJIT::NotEqual, SpecializedThunkJIT::regT3, TrustedImm32(DoubleShape)));
    jit.loadPtr(Address(SpecializedThunkJIT::regT0, JSObject::butterflyOffset()), SpecializedThunkJIT::regT2);
    jit.loadDouble(BaseIndex(SpecializedThunkJIT::regT2, SpecializedThunkJIT::regT1, SpecializedThunkJIT::TimesEight), SpecializedThunkJIT::fpRegT0);
    jit.add32(TrustedImm32(1), Address(SpecializedThunkJIT::regT4, JSArrayIterator::offsetOfNextIndex()));
    jit.returnDouble(SpecializedThunkJIT::fpRegT0);
    
    return jit.finalize(vm->jitStubs->ctiNativeTailCall(vm), "array-iterator-next-value");
}
Example #21
0
void compileOSRExit(ExecState* exec)
{
    if (exec->vm().callFrameForCatch)
        RELEASE_ASSERT(exec->vm().callFrameForCatch == exec);
    
    CodeBlock* codeBlock = exec->codeBlock();
    ASSERT(codeBlock);
    ASSERT(codeBlock->jitType() == JITCode::DFGJIT);

    VM* vm = &exec->vm();
    
    // It's sort of preferable that we don't GC while in here. Anyways, doing so wouldn't
    // really be profitable.
    DeferGCForAWhile deferGC(vm->heap);

    uint32_t exitIndex = vm->osrExitIndex;
    OSRExit& exit = codeBlock->jitCode()->dfg()->osrExit[exitIndex];
    
    if (vm->callFrameForCatch)
        ASSERT(exit.m_kind == GenericUnwind);
    if (exit.isExceptionHandler())
        ASSERT(!!vm->exception());
        
    
    prepareCodeOriginForOSRExit(exec, exit.m_codeOrigin);
    
    // Compute the value recoveries.
    Operands<ValueRecovery> operands;
    codeBlock->jitCode()->dfg()->variableEventStream.reconstruct(codeBlock, exit.m_codeOrigin, codeBlock->jitCode()->dfg()->minifiedDFG, exit.m_streamIndex, operands);
    
    SpeculationRecovery* recovery = 0;
    if (exit.m_recoveryIndex != UINT_MAX)
        recovery = &codeBlock->jitCode()->dfg()->speculationRecovery[exit.m_recoveryIndex];

    {
        CCallHelpers jit(vm, codeBlock);
        OSRExitCompiler exitCompiler(jit);

        if (exit.m_kind == GenericUnwind) {
            // We are acting as a defacto op_catch because we arrive here from genericUnwind().
            // So, we must restore our call frame and stack pointer.
            jit.restoreCalleeSavesFromVMEntryFrameCalleeSavesBuffer();
            jit.loadPtr(vm->addressOfCallFrameForCatch(), GPRInfo::callFrameRegister);
            jit.addPtr(CCallHelpers::TrustedImm32(codeBlock->stackPointerOffset() * sizeof(Register)),
                GPRInfo::callFrameRegister, CCallHelpers::stackPointerRegister);
        }

        jit.jitAssertHasValidCallFrame();
        
        if (vm->m_perBytecodeProfiler && codeBlock->jitCode()->dfgCommon()->compilation) {
            Profiler::Database& database = *vm->m_perBytecodeProfiler;
            Profiler::Compilation* compilation = codeBlock->jitCode()->dfgCommon()->compilation.get();
            
            Profiler::OSRExit* profilerExit = compilation->addOSRExit(
                exitIndex, Profiler::OriginStack(database, codeBlock, exit.m_codeOrigin),
                exit.m_kind, exit.m_kind == UncountableInvalidation);
            jit.add64(CCallHelpers::TrustedImm32(1), CCallHelpers::AbsoluteAddress(profilerExit->counterAddress()));
        }

        exitCompiler.compileExit(exit, operands, recovery);
        
        LinkBuffer patchBuffer(*vm, jit, codeBlock);
        exit.m_code = FINALIZE_CODE_IF(
            shouldDumpDisassembly() || Options::verboseOSR(),
            patchBuffer,
            ("DFG OSR exit #%u (%s, %s) from %s, with operands = %s",
                exitIndex, toCString(exit.m_codeOrigin).data(),
                exitKindToString(exit.m_kind), toCString(*codeBlock).data(),
                toCString(ignoringContext<DumpContext>(operands)).data()));
    }
    
    MacroAssembler::repatchJump(exit.codeLocationForRepatch(codeBlock), CodeLocationLabel(exit.m_code.code()));
    
    vm->osrExitJumpDestination = exit.m_code.code().executableAddress();
}
Example #22
0
MacroAssemblerCodeRef generateRegisterPreservationWrapper(VM& vm, ExecutableBase* executable, MacroAssemblerCodePtr target)
{
#if ENABLE(FTL_JIT)
    // We shouldn't ever be generating wrappers for native functions.
    RegisterSet toSave = registersToPreserve();
    ptrdiff_t offset = registerPreservationOffset();
    
    AssemblyHelpers jit(&vm, 0);
    
    jit.preserveReturnAddressAfterCall(GPRInfo::regT1);
    jit.load32(
        AssemblyHelpers::Address(
            AssemblyHelpers::stackPointerRegister,
            (JSStack::ArgumentCount - JSStack::CallerFrameAndPCSize) * sizeof(Register) + PayloadOffset),
        GPRInfo::regT2);
    
    // Place the stack pointer where we want it to be.
    jit.subPtr(AssemblyHelpers::TrustedImm32(offset), AssemblyHelpers::stackPointerRegister);
    
    // Compute the number of things we will be copying.
    jit.add32(
        AssemblyHelpers::TrustedImm32(
            JSStack::CallFrameHeaderSize - JSStack::CallerFrameAndPCSize),
        GPRInfo::regT2);

    ASSERT(!toSave.get(GPRInfo::regT4));
    jit.move(AssemblyHelpers::stackPointerRegister, GPRInfo::regT4);
    
    AssemblyHelpers::Label loop = jit.label();
    jit.sub32(AssemblyHelpers::TrustedImm32(1), GPRInfo::regT2);
    jit.load64(AssemblyHelpers::Address(GPRInfo::regT4, offset), GPRInfo::regT0);
    jit.store64(GPRInfo::regT0, GPRInfo::regT4);
    jit.addPtr(AssemblyHelpers::TrustedImm32(sizeof(Register)), GPRInfo::regT4);
    jit.branchTest32(AssemblyHelpers::NonZero, GPRInfo::regT2).linkTo(loop, &jit);

    // At this point regT4 + offset points to where we save things.
    ptrdiff_t currentOffset = 0;
    jit.storePtr(GPRInfo::regT1, AssemblyHelpers::Address(GPRInfo::regT4, currentOffset));
    
    for (GPRReg gpr = AssemblyHelpers::firstRegister(); gpr <= AssemblyHelpers::lastRegister(); gpr = static_cast<GPRReg>(gpr + 1)) {
        if (!toSave.get(gpr))
            continue;
        currentOffset += sizeof(Register);
        jit.store64(gpr, AssemblyHelpers::Address(GPRInfo::regT4, currentOffset));
    }
    
    // Assume that there aren't any saved FP registers.
    
    // Restore the tag registers.
    jit.move(AssemblyHelpers::TrustedImm64(TagTypeNumber), GPRInfo::tagTypeNumberRegister);
    jit.add64(AssemblyHelpers::TrustedImm32(TagMask - TagTypeNumber), GPRInfo::tagTypeNumberRegister, GPRInfo::tagMaskRegister);
    
    jit.move(
        AssemblyHelpers::TrustedImmPtr(
            vm.getCTIStub(registerRestorationThunkGenerator).code().executableAddress()),
        GPRInfo::nonArgGPR0);
    jit.restoreReturnAddressBeforeReturn(GPRInfo::nonArgGPR0);
    AssemblyHelpers::Jump jump = jit.jump();
    
    LinkBuffer linkBuffer(vm, &jit, GLOBAL_THUNK_ID);
    linkBuffer.link(jump, CodeLocationLabel(target));

    if (Options::verboseFTLToJSThunk())
        dataLog("Need a thunk for calls from FTL to non-FTL version of ", *executable, "\n");
    
    return FINALIZE_DFG_CODE(linkBuffer, ("Register preservation wrapper for %s/%s, %p", toCString(executable->hashFor(CodeForCall)).data(), toCString(executable->hashFor(CodeForConstruct)).data(), target.executableAddress()));
#else // ENABLE(FTL_JIT)
    UNUSED_PARAM(vm);
    UNUSED_PARAM(executable);
    UNUSED_PARAM(target);
    // We don't support non-FTL builds for two reasons:
    // - It just so happens that currently only the FTL bottoms out in this code.
    // - The code above uses 64-bit instructions. It doesn't necessarily have to; it would be
    //   easy to change it so that it doesn't. But obviously making that change would be a
    //   prerequisite to removing this #if.
    UNREACHABLE_FOR_PLATFORM();
    return MacroAssemblerCodeRef();
#endif // ENABLE(FTL_JIT)
}
MacroAssemblerCodeRef arityFixup(VM* vm)
{
    JSInterfaceJIT jit(vm);

    // We enter with fixup count in regT0
#if USE(JSVALUE64)
#  if CPU(X86_64)
    jit.pop(JSInterfaceJIT::regT4);
#  endif
    jit.neg64(JSInterfaceJIT::regT0);
    jit.move(JSInterfaceJIT::callFrameRegister, JSInterfaceJIT::regT3);
    jit.load32(JSInterfaceJIT::Address(JSInterfaceJIT::callFrameRegister, JSStack::ArgumentCount * 8), JSInterfaceJIT::regT2);
    jit.add32(JSInterfaceJIT::TrustedImm32(JSStack::CallFrameHeaderSize), JSInterfaceJIT::regT2);

    // Move current frame down regT0 number of slots
    JSInterfaceJIT::Label copyLoop(jit.label());
    jit.load64(JSInterfaceJIT::regT3, JSInterfaceJIT::regT1);
    jit.store64(JSInterfaceJIT::regT1, MacroAssembler::BaseIndex(JSInterfaceJIT::regT3, JSInterfaceJIT::regT0, JSInterfaceJIT::TimesEight));
    jit.addPtr(JSInterfaceJIT::TrustedImm32(8), JSInterfaceJIT::regT3);
    jit.branchSub32(MacroAssembler::NonZero, JSInterfaceJIT::TrustedImm32(1), JSInterfaceJIT::regT2).linkTo(copyLoop, &jit);

    // Fill in regT0 missing arg slots with undefined
    jit.move(JSInterfaceJIT::regT0, JSInterfaceJIT::regT2);
    jit.move(JSInterfaceJIT::TrustedImm64(ValueUndefined), JSInterfaceJIT::regT1);
    JSInterfaceJIT::Label fillUndefinedLoop(jit.label());
    jit.store64(JSInterfaceJIT::regT1, MacroAssembler::BaseIndex(JSInterfaceJIT::regT3, JSInterfaceJIT::regT0, JSInterfaceJIT::TimesEight));
    jit.addPtr(JSInterfaceJIT::TrustedImm32(8), JSInterfaceJIT::regT3);
    jit.branchAdd32(MacroAssembler::NonZero, JSInterfaceJIT::TrustedImm32(1), JSInterfaceJIT::regT2).linkTo(fillUndefinedLoop, &jit);

    // Adjust call frame register to account for missing args
    jit.lshift64(JSInterfaceJIT::TrustedImm32(3), JSInterfaceJIT::regT0);
    jit.addPtr(JSInterfaceJIT::regT0, JSInterfaceJIT::callFrameRegister);

#  if CPU(X86_64)
    jit.push(JSInterfaceJIT::regT4);
#  endif
    jit.ret();
#else
#  if CPU(X86)
    jit.pop(JSInterfaceJIT::regT4);
#  endif
    jit.neg32(JSInterfaceJIT::regT0);
    jit.move(JSInterfaceJIT::callFrameRegister, JSInterfaceJIT::regT3);
    jit.load32(JSInterfaceJIT::Address(JSInterfaceJIT::callFrameRegister, JSStack::ArgumentCount * 8), JSInterfaceJIT::regT2);
    jit.add32(JSInterfaceJIT::TrustedImm32(JSStack::CallFrameHeaderSize), JSInterfaceJIT::regT2);

    // Move current frame down regT0 number of slots
    JSInterfaceJIT::Label copyLoop(jit.label());
    jit.load32(JSInterfaceJIT::regT3, JSInterfaceJIT::regT1);
    jit.store32(JSInterfaceJIT::regT1, MacroAssembler::BaseIndex(JSInterfaceJIT::regT3, JSInterfaceJIT::regT0, JSInterfaceJIT::TimesEight));
    jit.load32(MacroAssembler::Address(JSInterfaceJIT::regT3, 4), JSInterfaceJIT::regT1);
    jit.store32(JSInterfaceJIT::regT1, MacroAssembler::BaseIndex(JSInterfaceJIT::regT3, JSInterfaceJIT::regT0, JSInterfaceJIT::TimesEight, 4));
    jit.addPtr(JSInterfaceJIT::TrustedImm32(8), JSInterfaceJIT::regT3);
    jit.branchSub32(MacroAssembler::NonZero, JSInterfaceJIT::TrustedImm32(1), JSInterfaceJIT::regT2).linkTo(copyLoop, &jit);

    // Fill in regT0 missing arg slots with undefined
    jit.move(JSInterfaceJIT::regT0, JSInterfaceJIT::regT2);
    JSInterfaceJIT::Label fillUndefinedLoop(jit.label());
    jit.move(JSInterfaceJIT::TrustedImm32(0), JSInterfaceJIT::regT1);
    jit.store32(JSInterfaceJIT::regT1, MacroAssembler::BaseIndex(JSInterfaceJIT::regT3, JSInterfaceJIT::regT0, JSInterfaceJIT::TimesEight));
    jit.move(JSInterfaceJIT::TrustedImm32(JSValue::UndefinedTag), JSInterfaceJIT::regT1);
    jit.store32(JSInterfaceJIT::regT1, MacroAssembler::BaseIndex(JSInterfaceJIT::regT3, JSInterfaceJIT::regT0, JSInterfaceJIT::TimesEight, 4));

    jit.addPtr(JSInterfaceJIT::TrustedImm32(8), JSInterfaceJIT::regT3);
    jit.branchAdd32(MacroAssembler::NonZero, JSInterfaceJIT::TrustedImm32(1), JSInterfaceJIT::regT2).linkTo(fillUndefinedLoop, &jit);

    // Adjust call frame register to account for missing args
    jit.lshift32(JSInterfaceJIT::TrustedImm32(3), JSInterfaceJIT::regT0);
    jit.addPtr(JSInterfaceJIT::regT0, JSInterfaceJIT::callFrameRegister);

#  if CPU(X86)
    jit.push(JSInterfaceJIT::regT4);
#  endif
    jit.ret();
#endif

    LinkBuffer patchBuffer(*vm, &jit, GLOBAL_THUNK_ID);
    return FINALIZE_CODE(patchBuffer, ("fixup arity"));
}
void compileOSRExit(ExecState* exec)
{
    SamplingRegion samplingRegion("DFG OSR Exit Compilation");
    
    CodeBlock* codeBlock = exec->codeBlock();
    
    ASSERT(codeBlock);
    ASSERT(codeBlock->jitType() == JITCode::DFGJIT);
    
    VM* vm = &exec->vm();
    
    // It's sort of preferable that we don't GC while in here. Anyways, doing so wouldn't
    // really be profitable.
    DeferGCForAWhile deferGC(vm->heap);

    uint32_t exitIndex = vm->osrExitIndex;
    OSRExit& exit = codeBlock->jitCode()->dfg()->osrExit[exitIndex];
    
    prepareCodeOriginForOSRExit(exec, exit.m_codeOrigin);
    
    // Compute the value recoveries.
    Operands<ValueRecovery> operands;
    codeBlock->jitCode()->dfg()->variableEventStream.reconstruct(codeBlock, exit.m_codeOrigin, codeBlock->jitCode()->dfg()->minifiedDFG, exit.m_streamIndex, operands);
    
    // There may be an override, for forward speculations.
    if (!!exit.m_valueRecoveryOverride) {
        operands.setOperand(
            exit.m_valueRecoveryOverride->operand, exit.m_valueRecoveryOverride->recovery);
    }
    
    SpeculationRecovery* recovery = 0;
    if (exit.m_recoveryIndex != UINT_MAX)
        recovery = &codeBlock->jitCode()->dfg()->speculationRecovery[exit.m_recoveryIndex];

    {
        CCallHelpers jit(vm, codeBlock);
        OSRExitCompiler exitCompiler(jit);

        jit.jitAssertHasValidCallFrame();
        
        if (vm->m_perBytecodeProfiler && codeBlock->jitCode()->dfgCommon()->compilation) {
            Profiler::Database& database = *vm->m_perBytecodeProfiler;
            Profiler::Compilation* compilation = codeBlock->jitCode()->dfgCommon()->compilation.get();
            
            Profiler::OSRExit* profilerExit = compilation->addOSRExit(
                exitIndex, Profiler::OriginStack(database, codeBlock, exit.m_codeOrigin),
                exit.m_kind, exit.m_kind == UncountableInvalidation);
            jit.add64(CCallHelpers::TrustedImm32(1), CCallHelpers::AbsoluteAddress(profilerExit->counterAddress()));
        }
        
        exitCompiler.compileExit(exit, operands, recovery);
        
        LinkBuffer patchBuffer(*vm, jit, codeBlock);
        exit.m_code = FINALIZE_CODE_IF(
            shouldShowDisassembly() || Options::verboseOSR(),
            patchBuffer,
            ("DFG OSR exit #%u (%s, %s) from %s, with operands = %s",
                exitIndex, toCString(exit.m_codeOrigin).data(),
                exitKindToString(exit.m_kind), toCString(*codeBlock).data(),
                toCString(ignoringContext<DumpContext>(operands)).data()));
    }
    
    {
        RepatchBuffer repatchBuffer(codeBlock);
        repatchBuffer.relink(exit.codeLocationForRepatch(codeBlock), CodeLocationLabel(exit.m_code.code()));
    }
    
    vm->osrExitJumpDestination = exit.m_code.code().executableAddress();
}
Example #25
0
// FIXME: We should distinguish between a megamorphic virtual call vs. a slow
// path virtual call so that we can enable fast tail calls for megamorphic
// virtual calls by using the shuffler.
// https://bugs.webkit.org/show_bug.cgi?id=148831
MacroAssemblerCodeRef virtualThunkFor(VM* vm, CallLinkInfo& callLinkInfo)
{
    // The callee is in regT0 (for JSVALUE32_64, the tag is in regT1).
    // The return address is on the stack, or in the link register. We will hence
    // jump to the callee, or save the return address to the call frame while we
    // make a C++ function call to the appropriate JIT operation.

    CCallHelpers jit(vm);
    
    CCallHelpers::JumpList slowCase;
    
    // This is a slow path execution, and regT2 contains the CallLinkInfo. Count the
    // slow path execution for the profiler.
    jit.add32(
        CCallHelpers::TrustedImm32(1),
        CCallHelpers::Address(GPRInfo::regT2, CallLinkInfo::offsetOfSlowPathCount()));

    // FIXME: we should have a story for eliminating these checks. In many cases,
    // the DFG knows that the value is definitely a cell, or definitely a function.
    
#if USE(JSVALUE64)
    jit.move(CCallHelpers::TrustedImm64(TagMask), GPRInfo::regT4);
    
    slowCase.append(
        jit.branchTest64(
            CCallHelpers::NonZero, GPRInfo::regT0, GPRInfo::regT4));
#else
    slowCase.append(
        jit.branch32(
            CCallHelpers::NotEqual, GPRInfo::regT1,
            CCallHelpers::TrustedImm32(JSValue::CellTag)));
#endif
    AssemblyHelpers::emitLoadStructure(jit, GPRInfo::regT0, GPRInfo::regT4, GPRInfo::regT1);
    slowCase.append(
        jit.branchPtr(
            CCallHelpers::NotEqual,
            CCallHelpers::Address(GPRInfo::regT4, Structure::classInfoOffset()),
            CCallHelpers::TrustedImmPtr(JSFunction::info())));
    
    // Now we know we have a JSFunction.
    
    jit.loadPtr(
        CCallHelpers::Address(GPRInfo::regT0, JSFunction::offsetOfExecutable()),
        GPRInfo::regT4);
    jit.loadPtr(
        CCallHelpers::Address(
            GPRInfo::regT4, ExecutableBase::offsetOfJITCodeWithArityCheckFor(
                callLinkInfo.specializationKind())),
        GPRInfo::regT4);
    slowCase.append(jit.branchTestPtr(CCallHelpers::Zero, GPRInfo::regT4));
    
    // Now we know that we have a CodeBlock, and we're committed to making a fast
    // call.
    
    // Make a tail call. This will return back to JIT code.
    emitPointerValidation(jit, GPRInfo::regT4);
    if (callLinkInfo.isTailCall()) {
        jit.preserveReturnAddressAfterCall(GPRInfo::regT0);
        jit.prepareForTailCallSlow(GPRInfo::regT4);
    }
    jit.jump(GPRInfo::regT4);

    slowCase.link(&jit);
    
    // Here we don't know anything, so revert to the full slow path.
    
    slowPathFor(jit, vm, operationVirtualCall);
    
    LinkBuffer patchBuffer(*vm, jit, GLOBAL_THUNK_ID);
    return FINALIZE_CODE(
        patchBuffer,
        ("Virtual %s slow path thunk",
        callLinkInfo.callMode() == CallMode::Regular ? "call" : callLinkInfo.callMode() == CallMode::Tail ? "tail call" : "construct"));
}
Example #26
0
  void LLVMState::run(STATE) {
    GCTokenImpl gct;
    JITCompileRequest* compile_request = nil<JITCompileRequest>();
    OnStack<1> os(state, compile_request);

    metrics().init(metrics::eJITMetrics);

    state->gc_dependent(gct, 0);

    bool show_machine_code_ = jit_dump_code() & cMachineCode;

    while(!thread_exit_) {

      current_compiler_ = 0;

      {
        GCIndependent guard(state, 0);

        {
          utilities::thread::Mutex::LockGuard lg(compile_lock_);

          while(compile_list_.get()->empty_p()) {
            compile_cond_.wait(compile_lock_);

            if(thread_exit_) break;
          }
        }
      }

      if(thread_exit_) break;

      {
        utilities::thread::Mutex::LockGuard guard(request_lock_);

        compile_request = try_as<JITCompileRequest>(compile_list_.get()->shift(state));
        if(!compile_request || compile_request->nil_p()) continue;
      }

      utilities::thread::Condition* cond = compile_request->waiter();

      // Don't proceed until requester has reached the wait_cond
      if(cond) wait_mutex.lock();

      Context ctx(this);
      jit::Compiler jit(&ctx);

      current_compiler_ = &jit;

      uint32_t class_id = 0;
      uint32_t serial_id = 0;
      void* func = 0;

      try {
        if(compile_request->receiver_class() &&
            !compile_request->receiver_class()->nil_p()) {
          // Apparently already compiled, probably some race
          if(compile_request->method()->find_specialized(
                compile_request->receiver_class())) {
            if(config().jit_show_compiling) {
              CompiledCode* code = compile_request->method();
              llvm::outs() << "[[[ JIT already compiled "
                        << enclosure_name(code) << "#" << symbol_debug_str(code->name())
                        << (compile_request->is_block() ? " (block)" : " (method)")
                        << " ]]]\n";
            }

            // If someone was waiting on this, wake them up.
            if(cond) {
              wait_mutex.unlock();
              cond->signal();
            }

            current_compiler_ = 0;

            continue;
          }

          class_id = compile_request->receiver_class()->class_id();
          serial_id = compile_request->receiver_class()->serial_id();
        }

        {
          timer::StopWatch<timer::microseconds> timer(
              metrics().m.jit_metrics.time_last_us,
              metrics().m.jit_metrics.time_total_us);

          jit.compile(compile_request);

          bool indy = !config().jit_sync;
          func = jit.generate_function(indy);
        }

        // We were unable to compile this function, likely
        // because it's got something we don't support.
        if(!func) {
          if(config().jit_show_compiling) {
            CompiledCode* code = compile_request->method();
            llvm::outs() << "[[[ JIT error background compiling "
                      << enclosure_name(code) << "#" << symbol_debug_str(code->name())
                      << (compile_request->is_block() ? " (block)" : " (method)")
                      << " ]]]\n";
          }
          // If someone was waiting on this, wake them up.
          if(cond) {
            wait_mutex.unlock();
            cond->signal();
          }

          current_compiler_ = 0;

          continue;
        }
      } catch(LLVMState::CompileError& e) {
        utilities::logger::warn("JIT: compile error: %s", e.error());

        metrics().m.jit_metrics.methods_failed++;

        // If someone was waiting on this, wake them up.
        if(cond) {
          wait_mutex.unlock();
          cond->signal();
        }
        current_compiler_ = 0;

        continue;
      }

      if(show_machine_code_) {
        jit.show_machine_code();
      }

      // If the method has had jit'ing request disabled since we started
      // JIT'ing it, discard our work.
      if(!compile_request->machine_code()->jit_disabled()) {

        jit::RuntimeDataHolder* rd = ctx.runtime_data_holder();

        atomic::memory_barrier();
        start_method_update();

        if(!compile_request->is_block()) {
          if(class_id) {
            compile_request->method()->add_specialized(state,
                class_id, serial_id, reinterpret_cast<executor>(func), rd);
          } else {
            compile_request->method()->set_unspecialized(reinterpret_cast<executor>(func), rd);
          }
        } else {
          compile_request->method()->set_unspecialized(reinterpret_cast<executor>(func), rd);
        }

        compile_request->machine_code()->clear_compiling();

        end_method_update();

        rd->run_write_barrier(shared().om, compile_request->method());

        if(config().jit_show_compiling) {
          CompiledCode* code = compile_request->method();
          llvm::outs() << "[[[ JIT finished background compiling "
                    << enclosure_name(code) << "#" << symbol_debug_str(code->name())
                    << (compile_request->is_block() ? " (block)" : " (method)")
                    << " ]]]\n";
        }
      }

      // If someone was waiting on this, wake them up.
      if(cond) {
        wait_mutex.unlock();
        cond->signal();
      }

      current_compiler_ = 0;
      metrics().m.jit_metrics.methods_compiled++;
    }
  }
Example #27
0
void compileOSRExit(ExecState* exec)
{
    SamplingRegion samplingRegion("DFG OSR Exit Compilation");
    
    CodeBlock* codeBlock = exec->codeBlock();
    
    ASSERT(codeBlock);
    ASSERT(codeBlock->getJITType() == JITCode::DFGJIT);
    
    JSGlobalData* globalData = &exec->globalData();
    
    uint32_t exitIndex = globalData->osrExitIndex;
    OSRExit& exit = codeBlock->osrExit(exitIndex);
    
    // Make sure all code on our inline stack is JIT compiled. This is necessary since
    // we may opt to inline a code block even before it had ever been compiled by the
    // JIT, but our OSR exit infrastructure currently only works if the target of the
    // OSR exit is JIT code. This could be changed since there is nothing particularly
    // hard about doing an OSR exit into the interpreter, but for now this seems to make
    // sense in that if we're OSR exiting from inlined code of a DFG code block, then
    // probably it's a good sign that the thing we're exiting into is hot. Even more
    // interestingly, since the code was inlined, it may never otherwise get JIT
    // compiled since the act of inlining it may ensure that it otherwise never runs.
    for (CodeOrigin codeOrigin = exit.m_codeOrigin; codeOrigin.inlineCallFrame; codeOrigin = codeOrigin.inlineCallFrame->caller) {
        static_cast<FunctionExecutable*>(codeOrigin.inlineCallFrame->executable.get())
            ->baselineCodeBlockFor(codeOrigin.inlineCallFrame->isCall ? CodeForCall : CodeForConstruct)
            ->jitCompile(exec);
    }
    
    // Compute the value recoveries.
    Operands<ValueRecovery> operands;
    codeBlock->variableEventStream().reconstruct(codeBlock, exit.m_codeOrigin, codeBlock->minifiedDFG(), exit.m_streamIndex, operands);
    
    // There may be an override, for forward speculations.
    if (!!exit.m_valueRecoveryOverride) {
        operands.setOperand(
            exit.m_valueRecoveryOverride->operand, exit.m_valueRecoveryOverride->recovery);
    }
    
    SpeculationRecovery* recovery = 0;
    if (exit.m_recoveryIndex)
        recovery = &codeBlock->speculationRecovery(exit.m_recoveryIndex - 1);

#if DFG_ENABLE(DEBUG_VERBOSE)
    dataLog(
        "Generating OSR exit #", exitIndex, " (seq#", exit.m_streamIndex,
        ", bc#", exit.m_codeOrigin.bytecodeIndex, ", @", exit.m_nodeIndex, ", ",
        exit.m_kind, ") for ", *codeBlock, ".\n");
#endif

    {
        CCallHelpers jit(globalData, codeBlock);
        OSRExitCompiler exitCompiler(jit);

        jit.jitAssertHasValidCallFrame();
        
        if (globalData->m_perBytecodeProfiler && codeBlock->compilation()) {
            Profiler::Database& database = *globalData->m_perBytecodeProfiler;
            Profiler::Compilation* compilation = codeBlock->compilation();
            
            Profiler::OSRExit* profilerExit = compilation->addOSRExit(
                exitIndex, Profiler::OriginStack(database, codeBlock, exit.m_codeOrigin),
                exit.m_kind,
                exit.m_watchpointIndex != std::numeric_limits<unsigned>::max());
            jit.add64(CCallHelpers::TrustedImm32(1), CCallHelpers::AbsoluteAddress(profilerExit->counterAddress()));
        }
        
        exitCompiler.compileExit(exit, operands, recovery);
        
        LinkBuffer patchBuffer(*globalData, &jit, codeBlock);
        exit.m_code = FINALIZE_CODE_IF(
            shouldShowDisassembly(),
            patchBuffer,
            ("DFG OSR exit #%u (bc#%u, @%u, %s) from %s",
                exitIndex, exit.m_codeOrigin.bytecodeIndex, exit.m_nodeIndex,
                exitKindToString(exit.m_kind), toCString(*codeBlock).data()));
    }
    
    {
        RepatchBuffer repatchBuffer(codeBlock);
        repatchBuffer.relink(exit.codeLocationForRepatch(codeBlock), CodeLocationLabel(exit.m_code.code()));
    }
    
    globalData->osrExitJumpDestination = exit.m_code.code().executableAddress();
}