Example #1
0
/* ARGSUSED */
int
sys___setlogin(struct lwp *l, const struct sys___setlogin_args *uap, register_t *retval)
{
	/* {
		syscallarg(const char *) namebuf;
	} */
	struct proc *p = l->l_proc;
	struct session *sp;
	char newname[sizeof sp->s_login + 1];
	int error;

	if ((error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_SETID,
	    p, NULL, NULL, NULL)) != 0)
		return (error);
	error = copyinstr(SCARG(uap, namebuf), newname, sizeof newname, NULL);
	if (error != 0)
		return (error == ENAMETOOLONG ? EINVAL : error);

	mutex_enter(proc_lock);
	sp = p->p_session;
	if (sp->s_flags & S_LOGIN_SET && p->p_pid != sp->s_sid &&
	    strncmp(newname, sp->s_login, sizeof sp->s_login) != 0)
		log(LOG_WARNING, "%s (pid %d) changing logname from "
		    "%.*s to %s\n", p->p_comm, p->p_pid,
		    (int)sizeof sp->s_login, sp->s_login, newname);
	sp->s_flags |= S_LOGIN_SET;
	strncpy(sp->s_login, newname, sizeof sp->s_login);
	mutex_exit(proc_lock);
	return (0);
}
Example #2
0
int
do_setresgid(struct lwp *l, gid_t r, gid_t e, gid_t sv, u_int flags)
{
	struct proc *p = l->l_proc;
	kauth_cred_t cred, ncred;

	ncred = kauth_cred_alloc();

	/* Get a write lock on the process credential. */
	proc_crmod_enter();
	cred = p->p_cred;

	/*
	 * check new value is one of the allowed existing values.
	 * otherwise, check if we have root privilege.
	 */
	if ((r != -1
	    && !((flags & ID_R_EQ_R) && r == kauth_cred_getgid(cred))
	    && !((flags & ID_R_EQ_E) && r == kauth_cred_getegid(cred))
	    && !((flags & ID_R_EQ_S) && r == kauth_cred_getsvgid(cred))) ||
	    (e != -1
	    && !((flags & ID_E_EQ_R) && e == kauth_cred_getgid(cred))
	    && !((flags & ID_E_EQ_E) && e == kauth_cred_getegid(cred))
	    && !((flags & ID_E_EQ_S) && e == kauth_cred_getsvgid(cred))) ||
	    (sv != -1
	    && !((flags & ID_S_EQ_R) && sv == kauth_cred_getgid(cred))
	    && !((flags & ID_S_EQ_E) && sv == kauth_cred_getegid(cred))
	    && !((flags & ID_S_EQ_S) && sv == kauth_cred_getsvgid(cred)))) {
		int error;

		error = kauth_authorize_process(cred, KAUTH_PROCESS_SETID,
		    p, NULL, NULL, NULL);
		if (error != 0) {
		 	proc_crmod_leave(cred, ncred, false);
			return error;
		}
	}

	/* If nothing has changed, short circuit the request */
	if ((r == -1 || r == kauth_cred_getgid(cred))
	    && (e == -1 || e == kauth_cred_getegid(cred))
	    && (sv == -1 || sv == kauth_cred_getsvgid(cred))) {
	 	proc_crmod_leave(cred, ncred, false);
		return 0;
	}

	kauth_cred_clone(cred, ncred);

	if (r != -1)
		kauth_cred_setgid(ncred, r);
	if (sv != -1)
		kauth_cred_setsvgid(ncred, sv);
	if (e != -1)
		kauth_cred_setegid(ncred, e);

	/* Broadcast our credentials to the process and other LWPs. */
 	proc_crmod_leave(ncred, cred, true);

	return 0;
}
Example #3
0
static int
kill1(struct lwp *l, pid_t pid, ksiginfo_t *ksi, register_t *retval)
{
	int error;
	struct proc *p;

	if ((u_int)ksi->ksi_signo >= NSIG)
		return EINVAL;

	if (pid != l->l_proc->p_pid) {
		if (ksi->ksi_pid != l->l_proc->p_pid)
			return EPERM;

		if (ksi->ksi_uid != kauth_cred_geteuid(l->l_cred))
			return EPERM;

		switch (ksi->ksi_code) {
		case SI_USER:
		case SI_QUEUE:
			break;
		default:
			return EPERM;
		}
	}

	if (pid > 0) {
		/* kill single process */
		mutex_enter(proc_lock);
		p = proc_find_raw(pid);
		if (p == NULL || (p->p_stat != SACTIVE && p->p_stat != SSTOP)) {
			mutex_exit(proc_lock);
			/* IEEE Std 1003.1-2001: return success for zombies */
			return p ? 0 : ESRCH;
		}
		mutex_enter(p->p_lock);
		error = kauth_authorize_process(l->l_cred,
		    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(ksi->ksi_signo),
		    NULL, NULL);
		if (!error && ksi->ksi_signo) {
			kpsignal2(p, ksi);
		}
		mutex_exit(p->p_lock);
		mutex_exit(proc_lock);
		return error;
	}

	switch (pid) {
	case -1:		/* broadcast signal */
		return killpg1(l, ksi, 0, 1);
	case 0:			/* signal own process group */
		return killpg1(l, ksi, 0, 0);
	default:		/* negative explicit process group */
		return killpg1(l, ksi, -pid, 0);
	}
	/* NOTREACHED */
}
Example #4
0
/*
 * Filter attach method for EVFILT_PROC.
 */
static int
filt_procattach(struct knote *kn)
{
	struct proc *p;
	struct lwp *curl;

	curl = curlwp;

	mutex_enter(proc_lock);
	if (kn->kn_flags & EV_FLAG1) {
		/*
		 * NOTE_TRACK attaches to the child process too early
		 * for proc_find, so do a raw look up and check the state
		 * explicitly.
		 */
		p = proc_find_raw(kn->kn_id);
		if (p != NULL && p->p_stat != SIDL)
			p = NULL;
	} else {
		p = proc_find(kn->kn_id);
	}

	if (p == NULL) {
		mutex_exit(proc_lock);
		return ESRCH;
	}

	/*
	 * Fail if it's not owned by you, or the last exec gave us
	 * setuid/setgid privs (unless you're root).
	 */
	mutex_enter(p->p_lock);
	mutex_exit(proc_lock);
	if (kauth_authorize_process(curl->l_cred, KAUTH_PROCESS_KEVENT_FILTER,
	    p, NULL, NULL, NULL) != 0) {
	    	mutex_exit(p->p_lock);
		return EACCES;
	}

	kn->kn_obj = p;
	kn->kn_flags |= EV_CLEAR;	/* automatically set */

	/*
	 * internal flag indicating registration done by kernel
	 */
	if (kn->kn_flags & EV_FLAG1) {
		kn->kn_data = kn->kn_sdata;	/* ppid */
		kn->kn_fflags = NOTE_CHILD;
		kn->kn_flags &= ~EV_FLAG1;
	}
	SLIST_INSERT_HEAD(&p->p_klist, kn, kn_selnext);
    	mutex_exit(p->p_lock);

	return 0;
}
Example #5
0
static int
linux_do_tkill(struct lwp *l, int tgid, int tid, int signum)
{
	struct proc *p;
	struct lwp *t;
	ksiginfo_t ksi;
	int error;

	if (signum < 0 || signum >= LINUX__NSIG)
		return EINVAL;
	signum = linux_to_native_signo[signum];

	if (tgid == -1) {
		tgid = tid;
	}

	KSI_INIT(&ksi);
	ksi.ksi_signo = signum;
	ksi.ksi_code = SI_LWP;
	ksi.ksi_pid = l->l_proc->p_pid;
	ksi.ksi_uid = kauth_cred_geteuid(l->l_cred);
	ksi.ksi_lid = tid;

	mutex_enter(proc_lock);
	p = proc_find(tgid);
	if (p == NULL) {
		mutex_exit(proc_lock);
		return ESRCH;
	}
	mutex_enter(p->p_lock);
	error = kauth_authorize_process(l->l_cred,
	    KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signum), NULL, NULL);
	if ((t = lwp_find(p, ksi.ksi_lid)) == NULL)
		error = ESRCH;
	else if (signum != 0)
		kpsignal2(p, &ksi);
	mutex_exit(p->p_lock);
	mutex_exit(proc_lock);

	return error;
}
int
ptrace(struct proc *p, struct ptrace_args *uap, register_t *retval)
{
	struct proc *t = current_proc();	/* target process */
	task_t		task;
	thread_t	th_act;
	struct uthread 	*ut;
	int tr_sigexc = 0;
	int error = 0;
	int stopped = 0;

	AUDIT_ARG(cmd, uap->req);
	AUDIT_ARG(pid, uap->pid);
	AUDIT_ARG(addr, uap->addr);
	AUDIT_ARG(value, uap->data);

	if (uap->req == PT_DENY_ATTACH) {
		proc_lock(p);
		if (ISSET(p->p_lflag, P_LTRACED)) {
			proc_unlock(p);
			exit1(p, W_EXITCODE(ENOTSUP, 0), retval);
			/* drop funnel before we return */
			thread_exception_return();
			/* NOTREACHED */
		}
		SET(p->p_lflag, P_LNOATTACH);
		proc_unlock(p);

		return(0);
	}

	if (uap->req == PT_FORCEQUOTA) {
		if (is_suser()) {
			OSBitOrAtomic(P_FORCEQUOTA, (UInt32 *)&t->p_flag);
			return (0);
		} else
			return (EPERM);
	}

	/*
	 *	Intercept and deal with "please trace me" request.
	 */	 
	if (uap->req == PT_TRACE_ME) {
		proc_lock(p);
		SET(p->p_lflag, P_LTRACED);
		/* Non-attached case, our tracer is our parent. */
		p->p_oppid = p->p_ppid;
		proc_unlock(p);
		return(0);
	}
	if (uap->req == PT_SIGEXC) {
		proc_lock(p);
		if (ISSET(p->p_lflag, P_LTRACED)) {
			SET(p->p_lflag, P_LSIGEXC);
			proc_unlock(p);
			return(0);
		} else {
			proc_unlock(p);
			return(EINVAL);
		}
	}

	/* 
	 * We do not want ptrace to do anything with kernel or launchd 
	 */
	if (uap->pid < 2) {
		return(EPERM);
	}

	/*
	 *	Locate victim, and make sure it is traceable.
	 */
	if ((t = proc_find(uap->pid)) == NULL)
			return (ESRCH);

	AUDIT_ARG(process, t);

	task = t->task;
	if (uap->req == PT_ATTACHEXC) {
		uap->req = PT_ATTACH;
		tr_sigexc = 1;
	}
	if (uap->req == PT_ATTACH) {
		int		err;
		
		if ( kauth_authorize_process(proc_ucred(p), KAUTH_PROCESS_CANTRACE, 
									 t, (uintptr_t)&err, 0, 0) == 0 ) {
			/* it's OK to attach */
			proc_lock(t);
			SET(t->p_lflag, P_LTRACED);
			if (tr_sigexc) 
				SET(t->p_lflag, P_LSIGEXC);
	
			t->p_oppid = t->p_ppid;
			proc_unlock(t);
			if (t->p_pptr != p)
				proc_reparentlocked(t, p, 1, 0);
	
			proc_lock(t);
			if (get_task_userstop(task) > 0 ) {
				stopped = 1;
			}
			t->p_xstat = 0;
			proc_unlock(t);
			psignal(t, SIGSTOP);
			/*
			 * If the process was stopped, wake up and run through
			 * issignal() again to properly connect to the tracing
			 * process.
			 */
			if (stopped)
				task_resume(task);       
			error = 0;
			goto out;
		}
		else {
			/* not allowed to attach, proper error code returned by kauth_authorize_process */
			if (ISSET(t->p_lflag, P_LNOATTACH)) {
				psignal(p, SIGSEGV);
			}
			
			error = err;
			goto out;
		}
	}

	/*
	 * You can't do what you want to the process if:
	 *	(1) It's not being traced at all,
	 */
	proc_lock(t);
	if (!ISSET(t->p_lflag, P_LTRACED)) {
		proc_unlock(t);
		error = EPERM;
		goto out;
	}

	/*
	 *	(2) it's not being traced by _you_, or
	 */
	if (t->p_pptr != p) {
		proc_unlock(t);
		error = EBUSY;
		goto out;
	}

	/*
	 *	(3) it's not currently stopped.
	 */
	if (t->p_stat != SSTOP) {
		proc_unlock(t);
		error = EBUSY;
		goto out;
	}

	/*
	 *	Mach version of ptrace executes request directly here,
	 *	thus simplifying the interaction of ptrace and signals.
	 */
	/* proc lock is held here */
	switch (uap->req) {

	case PT_DETACH:
		if (t->p_oppid != t->p_ppid) {
			struct proc *pp;

			proc_unlock(t);
			pp = proc_find(t->p_oppid);
			proc_reparentlocked(t, pp ? pp : initproc, 1, 0);
			if (pp != PROC_NULL)
				proc_rele(pp);
			proc_lock(t);
			
		}

		t->p_oppid = 0;
		CLR(t->p_lflag, P_LTRACED);
		CLR(t->p_lflag, P_LSIGEXC);
		proc_unlock(t);
		goto resume;
		
	case PT_KILL:
		/*
		 *	Tell child process to kill itself after it
		 *	is resumed by adding NSIG to p_cursig. [see issig]
		 */
		proc_unlock(t);
		psignal(t, SIGKILL);
		goto resume;

	case PT_STEP:			/* single step the child */
	case PT_CONTINUE:		/* continue the child */
		proc_unlock(t);
		th_act = (thread_t)get_firstthread(task);
		if (th_act == THREAD_NULL) {
			error = EINVAL;
			goto out;
		}

		if (uap->addr != (user_addr_t)1) {
#if defined(ppc)
#define ALIGNED(addr,size)	(((unsigned)(addr)&((size)-1))==0)
			if (!ALIGNED((int)uap->addr, sizeof(int)))
				return (ERESTART);
#undef 	ALIGNED
#endif
			thread_setentrypoint(th_act, uap->addr);
		}

		if ((unsigned)uap->data >= NSIG) {
			error = EINVAL;
			goto out;
		}

		if (uap->data != 0) {
			psignal(t, uap->data);
                }

		if (uap->req == PT_STEP) {
		        /*
			 * set trace bit
			 */
			if (thread_setsinglestep(th_act, 1) != KERN_SUCCESS) {
				error = ENOTSUP;
				goto out;
			}
		} else {
		        /*
			 * clear trace bit if on
			 */
			if (thread_setsinglestep(th_act, 0) != KERN_SUCCESS) {
				error = ENOTSUP;
				goto out;
			}
		}	
	resume:
		proc_lock(t);
		t->p_xstat = uap->data;
		t->p_stat = SRUN;
		if (t->sigwait) {
			wakeup((caddr_t)&(t->sigwait));
			proc_unlock(t);
			if ((t->p_lflag & P_LSIGEXC) == 0) {
				task_resume(task);
			}
		} else
			proc_unlock(t);
			
		break;
		
	case PT_THUPDATE:  {
		proc_unlock(t);
		if ((unsigned)uap->data >= NSIG) {
			error = EINVAL;
			goto out;
		}
		th_act = port_name_to_thread(CAST_DOWN(mach_port_name_t, uap->addr));
		if (th_act == THREAD_NULL)
			return (ESRCH);
		ut = (uthread_t)get_bsdthread_info(th_act);
		if (uap->data)
			ut->uu_siglist |= sigmask(uap->data);
		proc_lock(t);
		t->p_xstat = uap->data;
		t->p_stat = SRUN;
		proc_unlock(t);
		thread_deallocate(th_act);
		error = 0;
		}
		break;
	default:
		proc_unlock(t);
		error = EINVAL;
		goto out;
	}

	error = 0;
out:
	proc_rele(t);
	return(error);
}
Example #7
0
int
do_setresuid(struct lwp *l, uid_t r, uid_t e, uid_t sv, u_int flags)
{
	struct proc *p = l->l_proc;
	kauth_cred_t cred, ncred;

	ncred = kauth_cred_alloc();

	/* Get a write lock on the process credential. */
	proc_crmod_enter();
	cred = p->p_cred;

	/*
	 * Check that the new value is one of the allowed existing values,
	 * or that we have root privilege.
	 */
	if ((r != -1
	    && !((flags & ID_R_EQ_R) && r == kauth_cred_getuid(cred))
	    && !((flags & ID_R_EQ_E) && r == kauth_cred_geteuid(cred))
	    && !((flags & ID_R_EQ_S) && r == kauth_cred_getsvuid(cred))) ||
	    (e != -1
	    && !((flags & ID_E_EQ_R) && e == kauth_cred_getuid(cred))
	    && !((flags & ID_E_EQ_E) && e == kauth_cred_geteuid(cred))
	    && !((flags & ID_E_EQ_S) && e == kauth_cred_getsvuid(cred))) ||
	    (sv != -1
	    && !((flags & ID_S_EQ_R) && sv == kauth_cred_getuid(cred))
	    && !((flags & ID_S_EQ_E) && sv == kauth_cred_geteuid(cred))
	    && !((flags & ID_S_EQ_S) && sv == kauth_cred_getsvuid(cred)))) {
		int error;

		error = kauth_authorize_process(cred, KAUTH_PROCESS_SETID,
		    p, NULL, NULL, NULL);
		if (error != 0) {
		 	proc_crmod_leave(cred, ncred, false);
			return error;
		}
	}

	/* If nothing has changed, short circuit the request */
	if ((r == -1 || r == kauth_cred_getuid(cred))
	    && (e == -1 || e == kauth_cred_geteuid(cred))
	    && (sv == -1 || sv == kauth_cred_getsvuid(cred))) {
		proc_crmod_leave(cred, ncred, false);
		return 0;
	}

	kauth_cred_clone(cred, ncred);

	if (r != -1 && r != kauth_cred_getuid(ncred)) {
		u_long nlwps;

		/* Update count of processes for this user. */
		(void)chgproccnt(kauth_cred_getuid(ncred), -1);
		(void)chgproccnt(r, 1);

		/* The first LWP of a process is excluded. */
		KASSERT(mutex_owned(p->p_lock));
		nlwps = p->p_nlwps - 1;
		(void)chglwpcnt(kauth_cred_getuid(ncred), -nlwps);
		(void)chglwpcnt(r, nlwps);

		kauth_cred_setuid(ncred, r);
	}
	if (sv != -1)
		kauth_cred_setsvuid(ncred, sv);
	if (e != -1)
		kauth_cred_seteuid(ncred, e);

	/* Broadcast our credentials to the process and other LWPs. */
 	proc_crmod_leave(ncred, cred, true);

	return 0;
}
Example #8
0
/*
 * Process debugging system call.
 */
int
sys_ptrace(struct lwp *l, const struct sys_ptrace_args *uap, register_t *retval)
{
	/* {
		syscallarg(int) req;
		syscallarg(pid_t) pid;
		syscallarg(void *) addr;
		syscallarg(int) data;
	} */
	struct proc *p = l->l_proc;
	struct lwp *lt;
	struct proc *t;				/* target process */
	struct uio uio;
	struct iovec iov;
	struct ptrace_io_desc piod;
	struct ptrace_lwpinfo pl;
	struct vmspace *vm;
	int error, write, tmp, req, pheld;
	int signo;
	ksiginfo_t ksi;
#ifdef COREDUMP
	char *path;
#endif

	error = 0;
	req = SCARG(uap, req);

	/*
	 * If attaching or detaching, we need to get a write hold on the
	 * proclist lock so that we can re-parent the target process.
	 */
	mutex_enter(proc_lock);

	/* "A foolish consistency..." XXX */
	if (req == PT_TRACE_ME) {
		t = p;
		mutex_enter(t->p_lock);
	} else {
		/* Find the process we're supposed to be operating on. */
		if ((t = p_find(SCARG(uap, pid), PFIND_LOCKED)) == NULL) {
			mutex_exit(proc_lock);
			return (ESRCH);
		}

		/* XXX-elad */
		mutex_enter(t->p_lock);
		error = kauth_authorize_process(l->l_cred, KAUTH_PROCESS_CANSEE,
		    t, KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
		if (error) {
			mutex_exit(proc_lock);
			mutex_exit(t->p_lock);
			return (ESRCH);
		}
	}

	/*
	 * Grab a reference on the process to prevent it from execing or
	 * exiting.
	 */
	if (!rw_tryenter(&t->p_reflock, RW_READER)) {
		mutex_exit(proc_lock);
		mutex_exit(t->p_lock);
		return EBUSY;
	}

	/* Make sure we can operate on it. */
	switch (req) {
	case  PT_TRACE_ME:
		/* Saying that you're being traced is always legal. */
		break;

	case  PT_ATTACH:
		/*
		 * You can't attach to a process if:
		 *	(1) it's the process that's doing the attaching,
		 */
		if (t->p_pid == p->p_pid) {
			error = EINVAL;
			break;
		}

		/*
		 *  (2) it's a system process
		 */
		if (t->p_flag & PK_SYSTEM) {
			error = EPERM;
			break;
		}

		/*
		 *	(3) it's already being traced, or
		 */
		if (ISSET(t->p_slflag, PSL_TRACED)) {
			error = EBUSY;
			break;
		}

		/*
		 * 	(4) the tracer is chrooted, and its root directory is
		 * 	    not at or above the root directory of the tracee
		 */
		mutex_exit(t->p_lock);	/* XXXSMP */
		tmp = proc_isunder(t, l);
		mutex_enter(t->p_lock);	/* XXXSMP */
		if (!tmp) {
			error = EPERM;
			break;
		}
		break;

	case  PT_READ_I:
	case  PT_READ_D:
	case  PT_WRITE_I:
	case  PT_WRITE_D:
	case  PT_IO:
#ifdef PT_GETREGS
	case  PT_GETREGS:
#endif
#ifdef PT_SETREGS
	case  PT_SETREGS:
#endif
#ifdef PT_GETFPREGS
	case  PT_GETFPREGS:
#endif
#ifdef PT_SETFPREGS
	case  PT_SETFPREGS:
#endif
#ifdef __HAVE_PTRACE_MACHDEP
	PTRACE_MACHDEP_REQUEST_CASES
#endif
		/*
		 * You can't read/write the memory or registers of a process
		 * if the tracer is chrooted, and its root directory is not at
		 * or above the root directory of the tracee.
		 */
		mutex_exit(t->p_lock);	/* XXXSMP */
		tmp = proc_isunder(t, l);
		mutex_enter(t->p_lock);	/* XXXSMP */
		if (!tmp) {
			error = EPERM;
			break;
		}
		/*FALLTHROUGH*/

	case  PT_CONTINUE:
	case  PT_KILL:
	case  PT_DETACH:
	case  PT_LWPINFO:
	case  PT_SYSCALL:
#ifdef COREDUMP
	case  PT_DUMPCORE:
#endif
#ifdef PT_STEP
	case  PT_STEP:
#endif
		/*
		 * You can't do what you want to the process if:
		 *	(1) It's not being traced at all,
		 */
		if (!ISSET(t->p_slflag, PSL_TRACED)) {
			error = EPERM;
			break;
		}

		/*
		 *	(2) it's being traced by procfs (which has
		 *	    different signal delivery semantics),
		 */
		if (ISSET(t->p_slflag, PSL_FSTRACE)) {
			uprintf("file system traced\n");
			error = EBUSY;
			break;
		}

		/*
		 *	(3) it's not being traced by _you_, or
		 */
		if (t->p_pptr != p) {
			uprintf("parent %d != %d\n", t->p_pptr->p_pid, p->p_pid);
			error = EBUSY;
			break;
		}

		/*
		 *	(4) it's not currently stopped.
		 */
		if (t->p_stat != SSTOP || !t->p_waited /* XXXSMP */) {
			uprintf("stat %d flag %d\n", t->p_stat,
			    !t->p_waited);
			error = EBUSY;
			break;
		}
		break;

	default:			/* It was not a legal request. */
		error = EINVAL;
		break;
	}

	if (error == 0)
		error = kauth_authorize_process(l->l_cred,
		    KAUTH_PROCESS_PTRACE, t, KAUTH_ARG(req),
		    NULL, NULL);

	if (error != 0) {
		mutex_exit(proc_lock);
		mutex_exit(t->p_lock);
		rw_exit(&t->p_reflock);
		return error;
	}

	/* Do single-step fixup if needed. */
	FIX_SSTEP(t);

	/*
	 * XXX NJWLWP
	 *
	 * The entire ptrace interface needs work to be useful to a
	 * process with multiple LWPs. For the moment, we'll kluge
	 * this; memory access will be fine, but register access will
	 * be weird.
	 */
	lt = LIST_FIRST(&t->p_lwps);
	KASSERT(lt != NULL);
	lwp_addref(lt);

	/*
	 * Which locks do we need held? XXX Ugly.
	 */
	switch (req) {
#ifdef PT_STEP
	case PT_STEP:
#endif
	case PT_CONTINUE:
	case PT_DETACH:
	case PT_KILL:
	case PT_SYSCALL:
	case PT_ATTACH:
	case PT_TRACE_ME:
		pheld = 1;
		break;
	default:
		mutex_exit(proc_lock);
		mutex_exit(t->p_lock);
		pheld = 0;
		break;
	}

	/* Now do the operation. */
	write = 0;
	*retval = 0;
	tmp = 0;

	switch (req) {
	case  PT_TRACE_ME:
		/* Just set the trace flag. */
		SET(t->p_slflag, PSL_TRACED);
		t->p_opptr = t->p_pptr;
		break;

	case  PT_WRITE_I:		/* XXX no separate I and D spaces */
	case  PT_WRITE_D:
#if defined(__HAVE_RAS)
		/*
		 * Can't write to a RAS
		 */
		if (ras_lookup(t, SCARG(uap, addr)) != (void *)-1) {
			error = EACCES;
			break;
		}
#endif
		write = 1;
		tmp = SCARG(uap, data);
		/* FALLTHROUGH */

	case  PT_READ_I:		/* XXX no separate I and D spaces */
	case  PT_READ_D:
		/* write = 0 done above. */
		iov.iov_base = (void *)&tmp;
		iov.iov_len = sizeof(tmp);
		uio.uio_iov = &iov;
		uio.uio_iovcnt = 1;
		uio.uio_offset = (off_t)(unsigned long)SCARG(uap, addr);
		uio.uio_resid = sizeof(tmp);
		uio.uio_rw = write ? UIO_WRITE : UIO_READ;
		UIO_SETUP_SYSSPACE(&uio);

		error = process_domem(l, lt, &uio);
		if (!write)
			*retval = tmp;
		break;

	case  PT_IO:
		error = copyin(SCARG(uap, addr), &piod, sizeof(piod));
		if (error)
			break;
		switch (piod.piod_op) {
		case PIOD_READ_D:
		case PIOD_READ_I:
			uio.uio_rw = UIO_READ;
			break;
		case PIOD_WRITE_D:
		case PIOD_WRITE_I:
			/*
			 * Can't write to a RAS
			 */
			if (ras_lookup(t, SCARG(uap, addr)) != (void *)-1) {
				return (EACCES);
			}
			uio.uio_rw = UIO_WRITE;
			break;
		default:
			error = EINVAL;
			break;
		}
		if (error)
			break;
		error = proc_vmspace_getref(l->l_proc, &vm);
		if (error)
			break;
		iov.iov_base = piod.piod_addr;
		iov.iov_len = piod.piod_len;
		uio.uio_iov = &iov;
		uio.uio_iovcnt = 1;
		uio.uio_offset = (off_t)(unsigned long)piod.piod_offs;
		uio.uio_resid = piod.piod_len;
		uio.uio_vmspace = vm;

		error = process_domem(l, lt, &uio);
		piod.piod_len -= uio.uio_resid;
		(void) copyout(&piod, SCARG(uap, addr), sizeof(piod));
		uvmspace_free(vm);
		break;

#ifdef COREDUMP
	case  PT_DUMPCORE:
		if ((path = SCARG(uap, addr)) != NULL) {
			char *dst;
			int len = SCARG(uap, data);
			if (len < 0 || len >= MAXPATHLEN) {
				error = EINVAL;
				break;
			}
			dst = malloc(len + 1, M_TEMP, M_WAITOK);
			if ((error = copyin(path, dst, len)) != 0) {
				free(dst, M_TEMP);
				break;
			}
			path = dst;
			path[len] = '\0';
		}
		error = coredump(lt, path);
		if (path)
			free(path, M_TEMP);
		break;
#endif

#ifdef PT_STEP
	case  PT_STEP:
		/*
		 * From the 4.4BSD PRM:
		 * "Execution continues as in request PT_CONTINUE; however
		 * as soon as possible after execution of at least one
		 * instruction, execution stops again. [ ... ]"
		 */
#endif
	case  PT_CONTINUE:
	case  PT_SYSCALL:
	case  PT_DETACH:
		if (req == PT_SYSCALL) {
			if (!ISSET(t->p_slflag, PSL_SYSCALL)) {
				SET(t->p_slflag, PSL_SYSCALL);
#ifdef __HAVE_SYSCALL_INTERN
				(*t->p_emul->e_syscall_intern)(t);
#endif
			}
		} else {
			if (ISSET(t->p_slflag, PSL_SYSCALL)) {
				CLR(t->p_slflag, PSL_SYSCALL);
#ifdef __HAVE_SYSCALL_INTERN
				(*t->p_emul->e_syscall_intern)(t);
#endif
			}
		}
		p->p_trace_enabled = trace_is_enabled(p);

		/*
		 * From the 4.4BSD PRM:
		 * "The data argument is taken as a signal number and the
		 * child's execution continues at location addr as if it
		 * incurred that signal.  Normally the signal number will
		 * be either 0 to indicate that the signal that caused the
		 * stop should be ignored, or that value fetched out of
		 * the process's image indicating which signal caused
		 * the stop.  If addr is (int *)1 then execution continues
		 * from where it stopped."
		 */

		/* Check that the data is a valid signal number or zero. */
		if (SCARG(uap, data) < 0 || SCARG(uap, data) >= NSIG) {
			error = EINVAL;
			break;
		}

		uvm_lwp_hold(lt);

		/* If the address parameter is not (int *)1, set the pc. */
		if ((int *)SCARG(uap, addr) != (int *)1)
			if ((error = process_set_pc(lt, SCARG(uap, addr))) != 0) {
				uvm_lwp_rele(lt);
				break;
			}

#ifdef PT_STEP
		/*
		 * Arrange for a single-step, if that's requested and possible.
		 */
		error = process_sstep(lt, req == PT_STEP);
		if (error) {
			uvm_lwp_rele(lt);
			break;
		}
#endif

		uvm_lwp_rele(lt);

		if (req == PT_DETACH) {
			CLR(t->p_slflag, PSL_TRACED|PSL_FSTRACE|PSL_SYSCALL);

			/* give process back to original parent or init */
			if (t->p_opptr != t->p_pptr) {
				struct proc *pp = t->p_opptr;
				proc_reparent(t, pp ? pp : initproc);
			}

			/* not being traced any more */
			t->p_opptr = NULL;
		}

		signo = SCARG(uap, data);
	sendsig:
		/* Finally, deliver the requested signal (or none). */
		if (t->p_stat == SSTOP) {
			/*
			 * Unstop the process.  If it needs to take a
			 * signal, make all efforts to ensure that at
			 * an LWP runs to see it.
			 */
			t->p_xstat = signo;
			proc_unstop(t);
		} else if (signo != 0) {
			KSI_INIT_EMPTY(&ksi);
			ksi.ksi_signo = signo;
			kpsignal2(t, &ksi);
		}
		break;

	case  PT_KILL:
		/* just send the process a KILL signal. */
		signo = SIGKILL;
		goto sendsig;	/* in PT_CONTINUE, above. */

	case  PT_ATTACH:
		/*
		 * Go ahead and set the trace flag.
		 * Save the old parent (it's reset in
		 *   _DETACH, and also in kern_exit.c:wait4()
		 * Reparent the process so that the tracing
		 *   proc gets to see all the action.
		 * Stop the target.
		 */
		t->p_opptr = t->p_pptr;
		if (t->p_pptr != p) {
			struct proc *parent = t->p_pptr;

			if (parent->p_lock < t->p_lock) {
				if (!mutex_tryenter(parent->p_lock)) {
					mutex_exit(t->p_lock);
					mutex_enter(parent->p_lock);
				}
			} else if (parent->p_lock > t->p_lock) {
				mutex_enter(parent->p_lock);
			}
			parent->p_slflag |= PSL_CHTRACED;
			proc_reparent(t, p);
			if (parent->p_lock != t->p_lock)
				mutex_exit(parent->p_lock);
		}
		SET(t->p_slflag, PSL_TRACED);
		signo = SIGSTOP;
		goto sendsig;

	case PT_LWPINFO:
		if (SCARG(uap, data) != sizeof(pl)) {
			error = EINVAL;
			break;
		}
		error = copyin(SCARG(uap, addr), &pl, sizeof(pl));
		if (error)
			break;
		tmp = pl.pl_lwpid;
		lwp_delref(lt);
		mutex_enter(t->p_lock);
		if (tmp == 0)
			lt = LIST_FIRST(&t->p_lwps);
		else {
			lt = lwp_find(t, tmp);
			if (lt == NULL) {
				mutex_exit(t->p_lock);
				error = ESRCH;
				break;
			}
			lt = LIST_NEXT(lt, l_sibling);
		}
		while (lt != NULL && lt->l_stat == LSZOMB)
			lt = LIST_NEXT(lt, l_sibling);
		pl.pl_lwpid = 0;
		pl.pl_event = 0;
		if (lt) {
			lwp_addref(lt);
			pl.pl_lwpid = lt->l_lid;
			if (lt->l_lid == t->p_sigctx.ps_lwp)
				pl.pl_event = PL_EVENT_SIGNAL;
		}
		mutex_exit(t->p_lock);

		error = copyout(&pl, SCARG(uap, addr), sizeof(pl));
		break;

#ifdef PT_SETREGS
	case  PT_SETREGS:
		write = 1;
#endif
#ifdef PT_GETREGS
	case  PT_GETREGS:
		/* write = 0 done above. */
#endif
#if defined(PT_SETREGS) || defined(PT_GETREGS)
		tmp = SCARG(uap, data);
		if (tmp != 0 && t->p_nlwps > 1) {
			lwp_delref(lt);
			mutex_enter(t->p_lock);
			lt = lwp_find(t, tmp);
			if (lt == NULL) {
				mutex_exit(t->p_lock);
				error = ESRCH;
				break;
			}
			lwp_addref(lt);
			mutex_exit(t->p_lock);
		}
		if (!process_validregs(lt))
			error = EINVAL;
		else {
			error = proc_vmspace_getref(l->l_proc, &vm);
			if (error)
				break;
			iov.iov_base = SCARG(uap, addr);
			iov.iov_len = sizeof(struct reg);
			uio.uio_iov = &iov;
			uio.uio_iovcnt = 1;
			uio.uio_offset = 0;
			uio.uio_resid = sizeof(struct reg);
			uio.uio_rw = write ? UIO_WRITE : UIO_READ;
			uio.uio_vmspace = vm;

			error = process_doregs(l, lt, &uio);
			uvmspace_free(vm);
		}
		break;
#endif

#ifdef PT_SETFPREGS
	case  PT_SETFPREGS:
		write = 1;
#endif
#ifdef PT_GETFPREGS
	case  PT_GETFPREGS:
		/* write = 0 done above. */
#endif
#if defined(PT_SETFPREGS) || defined(PT_GETFPREGS)
		tmp = SCARG(uap, data);
		if (tmp != 0 && t->p_nlwps > 1) {
			lwp_delref(lt);
			mutex_enter(t->p_lock);
			lt = lwp_find(t, tmp);
			if (lt == NULL) {
				mutex_exit(t->p_lock);
				error = ESRCH;
				break;
			}
			lwp_addref(lt);
			mutex_exit(t->p_lock);
		}
		if (!process_validfpregs(lt))
			error = EINVAL;
		else {
			error = proc_vmspace_getref(l->l_proc, &vm);
			if (error)
				break;
			iov.iov_base = SCARG(uap, addr);
			iov.iov_len = sizeof(struct fpreg);
			uio.uio_iov = &iov;
			uio.uio_iovcnt = 1;
			uio.uio_offset = 0;
			uio.uio_resid = sizeof(struct fpreg);
			uio.uio_rw = write ? UIO_WRITE : UIO_READ;
			uio.uio_vmspace = vm;

			error = process_dofpregs(l, lt, &uio);
			uvmspace_free(vm);
		}
		break;
#endif

#ifdef __HAVE_PTRACE_MACHDEP
	PTRACE_MACHDEP_REQUEST_CASES
		error = ptrace_machdep_dorequest(l, lt,
		    req, SCARG(uap, addr), SCARG(uap, data));
		break;
#endif
	}

	if (pheld) {
		mutex_exit(t->p_lock);
		mutex_exit(proc_lock);
	}
	if (lt != NULL)
		lwp_delref(lt);
	rw_exit(&t->p_reflock);

	return error;
}
Example #9
0
int
ptrace(struct proc *p, struct ptrace_args *uap, int32_t *retval)
{
	struct proc *t = current_proc();	/* target process */
	task_t		task;
	thread_t	th_act;
	struct uthread 	*ut;
	int tr_sigexc = 0;
	int error = 0;
	int stopped = 0;

	AUDIT_ARG(cmd, uap->req);
	AUDIT_ARG(pid, uap->pid);
	AUDIT_ARG(addr, uap->addr);
	AUDIT_ARG(value32, uap->data);

	if (uap->req == PT_DENY_ATTACH) {
		proc_lock(p);
		if (ISSET(p->p_lflag, P_LTRACED)) {
			proc_unlock(p);
			KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_FRCEXIT) | DBG_FUNC_NONE,
					      p->p_pid, W_EXITCODE(ENOTSUP, 0), 4, 0, 0);
			exit1(p, W_EXITCODE(ENOTSUP, 0), retval);

			thread_exception_return();
			/* NOTREACHED */
		}
		SET(p->p_lflag, P_LNOATTACH);
		proc_unlock(p);

		return(0);
	}

	if (uap->req == PT_FORCEQUOTA) {
		if (kauth_cred_issuser(kauth_cred_get())) {
			OSBitOrAtomic(P_FORCEQUOTA, &t->p_flag);
			return (0);
		} else
			return (EPERM);
	}

	/*
	 *	Intercept and deal with "please trace me" request.
	 */	 
	if (uap->req == PT_TRACE_ME) {
retry_trace_me:;
		proc_t pproc = proc_parent(p);
		if (pproc == NULL)
			return (EINVAL);
#if CONFIG_MACF
		/*
		 * NB: Cannot call kauth_authorize_process(..., KAUTH_PROCESS_CANTRACE, ...)
		 *     since that assumes the process being checked is the current process
		 *     when, in this case, it is the current process's parent.
		 *     Most of the other checks in cantrace() don't apply either.
		 */
		if ((error = mac_proc_check_debug(pproc, p)) == 0) {
#endif
			proc_lock(p);
			/* Make sure the process wasn't re-parented. */
			if (p->p_ppid != pproc->p_pid) {
				proc_unlock(p);
				proc_rele(pproc);
				goto retry_trace_me;
			}
			SET(p->p_lflag, P_LTRACED);
			/* Non-attached case, our tracer is our parent. */
			p->p_oppid = p->p_ppid;
			proc_unlock(p);
			/* Child and parent will have to be able to run modified code. */
			cs_allow_invalid(p);
			cs_allow_invalid(pproc);
#if CONFIG_MACF
		}
#endif
		proc_rele(pproc);
		return (error);
	}
	if (uap->req == PT_SIGEXC) {
		proc_lock(p);
		if (ISSET(p->p_lflag, P_LTRACED)) {
			SET(p->p_lflag, P_LSIGEXC);
			proc_unlock(p);
			return(0);
		} else {
			proc_unlock(p);
			return(EINVAL);
		}
	}

	/* 
	 * We do not want ptrace to do anything with kernel or launchd 
	 */
	if (uap->pid < 2) {
		return(EPERM);
	}

	/*
	 *	Locate victim, and make sure it is traceable.
	 */
	if ((t = proc_find(uap->pid)) == NULL)
			return (ESRCH);

	AUDIT_ARG(process, t);

	task = t->task;
	if (uap->req == PT_ATTACHEXC) {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdeprecated-declarations"
		uap->req = PT_ATTACH;
		tr_sigexc = 1;
	}
	if (uap->req == PT_ATTACH) {
#pragma clang diagnostic pop
		int		err;


		if ( kauth_authorize_process(proc_ucred(p), KAUTH_PROCESS_CANTRACE, 
									 t, (uintptr_t)&err, 0, 0) == 0 ) {
			/* it's OK to attach */
			proc_lock(t);
			SET(t->p_lflag, P_LTRACED);
			if (tr_sigexc) 
				SET(t->p_lflag, P_LSIGEXC);
	
			t->p_oppid = t->p_ppid;
			/* Check whether child and parent are allowed to run modified
			 * code (they'll have to) */
			proc_unlock(t);
			cs_allow_invalid(t);
			cs_allow_invalid(p);
			if (t->p_pptr != p)
				proc_reparentlocked(t, p, 1, 0);
	
			proc_lock(t);
			if (get_task_userstop(task) > 0 ) {
				stopped = 1;
			}
			t->p_xstat = 0;
			proc_unlock(t);
			psignal(t, SIGSTOP);
			/*
			 * If the process was stopped, wake up and run through
			 * issignal() again to properly connect to the tracing
			 * process.
			 */
			if (stopped)
				task_resume(task);       
			error = 0;
			goto out;
		}
		else {
			/* not allowed to attach, proper error code returned by kauth_authorize_process */
			if (ISSET(t->p_lflag, P_LNOATTACH)) {
				psignal(p, SIGSEGV);
			}
			
			error = err;
			goto out;
		}
	}

	/*
	 * You can't do what you want to the process if:
	 *	(1) It's not being traced at all,
	 */
	proc_lock(t);
	if (!ISSET(t->p_lflag, P_LTRACED)) {
		proc_unlock(t);
		error = EPERM;
		goto out;
	}

	/*
	 *	(2) it's not being traced by _you_, or
	 */
	if (t->p_pptr != p) {
		proc_unlock(t);
		error = EBUSY;
		goto out;
	}

	/*
	 *	(3) it's not currently stopped.
	 */
	if (t->p_stat != SSTOP) {
		proc_unlock(t);
		error = EBUSY;
		goto out;
	}

	/*
	 *	Mach version of ptrace executes request directly here,
	 *	thus simplifying the interaction of ptrace and signals.
	 */
	/* proc lock is held here */
	switch (uap->req) {

	case PT_DETACH:
		if (t->p_oppid != t->p_ppid) {
			struct proc *pp;

			proc_unlock(t);
			pp = proc_find(t->p_oppid);
			if (pp != PROC_NULL) {
				proc_reparentlocked(t, pp, 1, 0);
				proc_rele(pp);
			} else {
				/* original parent exited while traced */
				proc_list_lock();
				t->p_listflag |= P_LIST_DEADPARENT;
				proc_list_unlock();
				proc_reparentlocked(t, initproc, 1, 0);
			}
			proc_lock(t);
		}

		t->p_oppid = 0;
		CLR(t->p_lflag, P_LTRACED);
		CLR(t->p_lflag, P_LSIGEXC);
		proc_unlock(t);
		goto resume;
		
	case PT_KILL:
		/*
		 *	Tell child process to kill itself after it
		 *	is resumed by adding NSIG to p_cursig. [see issig]
		 */
		proc_unlock(t);
#if CONFIG_MACF
		error = mac_proc_check_signal(p, t, SIGKILL);
		if (0 != error)
			goto resume;
#endif
		psignal(t, SIGKILL);
		goto resume;

	case PT_STEP:			/* single step the child */
	case PT_CONTINUE:		/* continue the child */
		proc_unlock(t);
		th_act = (thread_t)get_firstthread(task);
		if (th_act == THREAD_NULL) {
			error = EINVAL;
			goto out;
		}

		/* force use of Mach SPIs (and task_for_pid security checks) to adjust PC */
		if (uap->addr != (user_addr_t)1) {
			error = ENOTSUP;
			goto out;
		}

		if ((unsigned)uap->data >= NSIG) {
			error = EINVAL;
			goto out;
		}

		if (uap->data != 0) {
#if CONFIG_MACF
			error = mac_proc_check_signal(p, t, uap->data);
			if (0 != error)
				goto out;
#endif
			psignal(t, uap->data);
		}

		if (uap->req == PT_STEP) {
		        /*
			 * set trace bit 
			 * we use sending SIGSTOP as a comparable security check.
			 */
#if CONFIG_MACF
			error = mac_proc_check_signal(p, t, SIGSTOP);
			if (0 != error) {
				goto out;
			}
#endif
			if (thread_setsinglestep(th_act, 1) != KERN_SUCCESS) {
				error = ENOTSUP;
				goto out;
			}
		} else {
		        /*
			 * clear trace bit if on
			 * we use sending SIGCONT as a comparable security check.
			 */
#if CONFIG_MACF
			error = mac_proc_check_signal(p, t, SIGCONT);
			if (0 != error) {
				goto out;
			}
#endif
			if (thread_setsinglestep(th_act, 0) != KERN_SUCCESS) {
				error = ENOTSUP;
				goto out;
			}
		}	
	resume:
		proc_lock(t);
		t->p_xstat = uap->data;
		t->p_stat = SRUN;
		if (t->sigwait) {
			wakeup((caddr_t)&(t->sigwait));
			proc_unlock(t);
			if ((t->p_lflag & P_LSIGEXC) == 0) {
				task_resume(task);
			}
		} else
			proc_unlock(t);
			
		break;
		
	case PT_THUPDATE:  {
		proc_unlock(t);
		if ((unsigned)uap->data >= NSIG) {
			error = EINVAL;
			goto out;
		}
		th_act = port_name_to_thread(CAST_MACH_PORT_TO_NAME(uap->addr));
		if (th_act == THREAD_NULL) {
			error = ESRCH;
			goto out;
		}
		ut = (uthread_t)get_bsdthread_info(th_act);
		if (uap->data)
			ut->uu_siglist |= sigmask(uap->data);
		proc_lock(t);
		t->p_xstat = uap->data;
		t->p_stat = SRUN;
		proc_unlock(t);
		thread_deallocate(th_act);
		error = 0;
		}
		break;
	default:
		proc_unlock(t);
		error = EINVAL;
		goto out;
	}

	error = 0;
out:
	proc_rele(t);
	return(error);
}
Example #10
0
/*
 * General fork call.  Note that another LWP in the process may call exec()
 * or exit() while we are forking.  It's safe to continue here, because
 * neither operation will complete until all LWPs have exited the process.
 */
int
fork1(struct lwp *l1, int flags, int exitsig, void *stack, size_t stacksize,
    void (*func)(void *), void *arg, register_t *retval,
    struct proc **rnewprocp)
{
	struct proc	*p1, *p2, *parent;
	struct plimit   *p1_lim;
	uid_t		uid;
	struct lwp	*l2;
	int		count;
	vaddr_t		uaddr;
	int		tnprocs;
	int		tracefork;
	int		error = 0;

	p1 = l1->l_proc;
	uid = kauth_cred_getuid(l1->l_cred);
	tnprocs = atomic_inc_uint_nv(&nprocs);

	/*
	 * Although process entries are dynamically created, we still keep
	 * a global limit on the maximum number we will create.
	 */
	if (__predict_false(tnprocs >= maxproc))
		error = -1;
	else
		error = kauth_authorize_process(l1->l_cred,
		    KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);

	if (error) {
		static struct timeval lasttfm;
		atomic_dec_uint(&nprocs);
		if (ratecheck(&lasttfm, &fork_tfmrate))
			tablefull("proc", "increase kern.maxproc or NPROC");
		if (forkfsleep)
			kpause("forkmx", false, forkfsleep, NULL);
		return EAGAIN;
	}

	/*
	 * Enforce limits.
	 */
	count = chgproccnt(uid, 1);
	if (__predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
		if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
		    p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
		    &p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0) {
			(void)chgproccnt(uid, -1);
			atomic_dec_uint(&nprocs);
			if (forkfsleep)
				kpause("forkulim", false, forkfsleep, NULL);
			return EAGAIN;
		}
	}

	/*
	 * Allocate virtual address space for the U-area now, while it
	 * is still easy to abort the fork operation if we're out of
	 * kernel virtual address space.
	 */
	uaddr = uvm_uarea_alloc();
	if (__predict_false(uaddr == 0)) {
		(void)chgproccnt(uid, -1);
		atomic_dec_uint(&nprocs);
		return ENOMEM;
	}

	/*
	 * We are now committed to the fork.  From here on, we may
	 * block on resources, but resource allocation may NOT fail.
	 */

	/* Allocate new proc. */
	p2 = proc_alloc();

	/*
	 * Make a proc table entry for the new process.
	 * Start by zeroing the section of proc that is zero-initialized,
	 * then copy the section that is copied directly from the parent.
	 */
	memset(&p2->p_startzero, 0,
	    (unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
	memcpy(&p2->p_startcopy, &p1->p_startcopy,
	    (unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));

	TAILQ_INIT(&p2->p_sigpend.sp_info);

	LIST_INIT(&p2->p_lwps);
	LIST_INIT(&p2->p_sigwaiters);

	/*
	 * Duplicate sub-structures as needed.
	 * Increase reference counts on shared objects.
	 * Inherit flags we want to keep.  The flags related to SIGCHLD
	 * handling are important in order to keep a consistent behaviour
	 * for the child after the fork.  If we are a 32-bit process, the
	 * child will be too.
	 */
	p2->p_flag =
	    p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
	p2->p_emul = p1->p_emul;
	p2->p_execsw = p1->p_execsw;

	if (flags & FORK_SYSTEM) {
		/*
		 * Mark it as a system process.  Set P_NOCLDWAIT so that
		 * children are reparented to init(8) when they exit.
		 * init(8) can easily wait them out for us.
		 */
		p2->p_flag |= (PK_SYSTEM | PK_NOCLDWAIT);
	}

	mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
	mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
	rw_init(&p2->p_reflock);
	cv_init(&p2->p_waitcv, "wait");
	cv_init(&p2->p_lwpcv, "lwpwait");

	/*
	 * Share a lock between the processes if they are to share signal
	 * state: we must synchronize access to it.
	 */
	if (flags & FORK_SHARESIGS) {
		p2->p_lock = p1->p_lock;
		mutex_obj_hold(p1->p_lock);
	} else
		p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);

	kauth_proc_fork(p1, p2);

	p2->p_raslist = NULL;
#if defined(__HAVE_RAS)
	ras_fork(p1, p2);
#endif

	/* bump references to the text vnode (for procfs) */
	p2->p_textvp = p1->p_textvp;
	if (p2->p_textvp)
		vref(p2->p_textvp);

	if (flags & FORK_SHAREFILES)
		fd_share(p2);
	else if (flags & FORK_CLEANFILES)
		p2->p_fd = fd_init(NULL);
	else
		p2->p_fd = fd_copy();

	/* XXX racy */
	p2->p_mqueue_cnt = p1->p_mqueue_cnt;

	if (flags & FORK_SHARECWD)
		cwdshare(p2);
	else
		p2->p_cwdi = cwdinit();

	/*
	 * Note: p_limit (rlimit stuff) is copy-on-write, so normally
	 * we just need increase pl_refcnt.
	 */
	p1_lim = p1->p_limit;
	if (!p1_lim->pl_writeable) {
		lim_addref(p1_lim);
		p2->p_limit = p1_lim;
	} else {
		p2->p_limit = lim_copy(p1_lim);
	}

	if (flags & FORK_PPWAIT) {
		/* Mark ourselves as waiting for a child. */
		l1->l_pflag |= LP_VFORKWAIT;
		p2->p_lflag = PL_PPWAIT;
		p2->p_vforklwp = l1;
	} else {
		p2->p_lflag = 0;
	}
	p2->p_sflag = 0;
	p2->p_slflag = 0;
	parent = (flags & FORK_NOWAIT) ? initproc : p1;
	p2->p_pptr = parent;
	p2->p_ppid = parent->p_pid;
	LIST_INIT(&p2->p_children);

	p2->p_aio = NULL;

#ifdef KTRACE
	/*
	 * Copy traceflag and tracefile if enabled.
	 * If not inherited, these were zeroed above.
	 */
	if (p1->p_traceflag & KTRFAC_INHERIT) {
		mutex_enter(&ktrace_lock);
		p2->p_traceflag = p1->p_traceflag;
		if ((p2->p_tracep = p1->p_tracep) != NULL)
			ktradref(p2);
		mutex_exit(&ktrace_lock);
	}
#endif

	/*
	 * Create signal actions for the child process.
	 */
	p2->p_sigacts = sigactsinit(p1, flags & FORK_SHARESIGS);
	mutex_enter(p1->p_lock);
	p2->p_sflag |=
	    (p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
	sched_proc_fork(p1, p2);
	mutex_exit(p1->p_lock);

	p2->p_stflag = p1->p_stflag;

	/*
	 * p_stats.
	 * Copy parts of p_stats, and zero out the rest.
	 */
	p2->p_stats = pstatscopy(p1->p_stats);

	/*
	 * Set up the new process address space.
	 */
	uvm_proc_fork(p1, p2, (flags & FORK_SHAREVM) ? true : false);

	/*
	 * Finish creating the child process.
	 * It will return through a different path later.
	 */
	lwp_create(l1, p2, uaddr, (flags & FORK_PPWAIT) ? LWP_VFORK : 0,
	    stack, stacksize, (func != NULL) ? func : child_return, arg, &l2,
	    l1->l_class);

	/*
	 * Inherit l_private from the parent.
	 * Note that we cannot use lwp_setprivate() here since that
	 * also sets the CPU TLS register, which is incorrect if the
	 * process has changed that without letting the kernel know.
	 */
	l2->l_private = l1->l_private;

	/*
	 * If emulation has a process fork hook, call it now.
	 */
	if (p2->p_emul->e_proc_fork)
		(*p2->p_emul->e_proc_fork)(p2, l1, flags);

	/*
	 * ...and finally, any other random fork hooks that subsystems
	 * might have registered.
	 */
	doforkhooks(p2, p1);

	SDT_PROBE(proc,,,create, p2, p1, flags, 0, 0);

	/*
	 * It's now safe for the scheduler and other processes to see the
	 * child process.
	 */
	mutex_enter(proc_lock);

	if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
		p2->p_lflag |= PL_CONTROLT;

	LIST_INSERT_HEAD(&parent->p_children, p2, p_sibling);
	p2->p_exitsig = exitsig;		/* signal for parent on exit */

	/*
	 * We don't want to tracefork vfork()ed processes because they
	 * will not receive the SIGTRAP until it is too late.
	 */
	tracefork = (p1->p_slflag & (PSL_TRACEFORK|PSL_TRACED)) ==
	    (PSL_TRACEFORK|PSL_TRACED) && (flags && FORK_PPWAIT) == 0;
	if (tracefork) {
		p2->p_slflag |= PSL_TRACED;
		p2->p_opptr = p2->p_pptr;
		if (p2->p_pptr != p1->p_pptr) {
			struct proc *parent1 = p2->p_pptr;

			if (parent1->p_lock < p2->p_lock) {
				if (!mutex_tryenter(parent1->p_lock)) {
					mutex_exit(p2->p_lock);
					mutex_enter(parent1->p_lock);
				}
			} else if (parent1->p_lock > p2->p_lock) {
				mutex_enter(parent1->p_lock);
			}
			parent1->p_slflag |= PSL_CHTRACED;
			proc_reparent(p2, p1->p_pptr);
			if (parent1->p_lock != p2->p_lock)
				mutex_exit(parent1->p_lock);
		}

		/*
		 * Set ptrace status.
		 */
		p1->p_fpid = p2->p_pid;
		p2->p_fpid = p1->p_pid;
	}

	LIST_INSERT_AFTER(p1, p2, p_pglist);
	LIST_INSERT_HEAD(&allproc, p2, p_list);

	p2->p_trace_enabled = trace_is_enabled(p2);
#ifdef __HAVE_SYSCALL_INTERN
	(*p2->p_emul->e_syscall_intern)(p2);
#endif

	/*
	 * Update stats now that we know the fork was successful.
	 */
	uvmexp.forks++;
	if (flags & FORK_PPWAIT)
		uvmexp.forks_ppwait++;
	if (flags & FORK_SHAREVM)
		uvmexp.forks_sharevm++;

	/*
	 * Pass a pointer to the new process to the caller.
	 */
	if (rnewprocp != NULL)
		*rnewprocp = p2;

	if (ktrpoint(KTR_EMUL))
		p2->p_traceflag |= KTRFAC_TRC_EMUL;

	/*
	 * Notify any interested parties about the new process.
	 */
	if (!SLIST_EMPTY(&p1->p_klist)) {
		mutex_exit(proc_lock);
		KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
		mutex_enter(proc_lock);
	}

	/*
	 * Make child runnable, set start time, and add to run queue except
	 * if the parent requested the child to start in SSTOP state.
	 */
	mutex_enter(p2->p_lock);

	/*
	 * Start profiling.
	 */
	if ((p2->p_stflag & PST_PROFIL) != 0) {
		mutex_spin_enter(&p2->p_stmutex);
		startprofclock(p2);
		mutex_spin_exit(&p2->p_stmutex);
	}

	getmicrotime(&p2->p_stats->p_start);
	p2->p_acflag = AFORK;
	lwp_lock(l2);
	KASSERT(p2->p_nrlwps == 1);
	if (p2->p_sflag & PS_STOPFORK) {
		struct schedstate_percpu *spc = &l2->l_cpu->ci_schedstate;
		p2->p_nrlwps = 0;
		p2->p_stat = SSTOP;
		p2->p_waited = 0;
		p1->p_nstopchild++;
		l2->l_stat = LSSTOP;
		KASSERT(l2->l_wchan == NULL);
		lwp_unlock_to(l2, spc->spc_lwplock);
	} else {
		p2->p_nrlwps = 1;
		p2->p_stat = SACTIVE;
		l2->l_stat = LSRUN;
		sched_enqueue(l2, false);
		lwp_unlock(l2);
	}

	/*
	 * Return child pid to parent process,
	 * marking us as parent via retval[1].
	 */
	if (retval != NULL) {
		retval[0] = p2->p_pid;
		retval[1] = 0;
	}
	mutex_exit(p2->p_lock);

	/*
	 * Preserve synchronization semantics of vfork.  If waiting for
	 * child to exec or exit, sleep until it clears LP_VFORKWAIT.
	 */
#if 0
	while (l1->l_pflag & LP_VFORKWAIT) {
		cv_wait(&l1->l_waitcv, proc_lock);
	}
#else
	while (p2->p_lflag & PL_PPWAIT)
		cv_wait(&p1->p_waitcv, proc_lock);
#endif

	/*
	 * Let the parent know that we are tracing its child.
	 */
	if (tracefork) {
		ksiginfo_t ksi;

		KSI_INIT_EMPTY(&ksi);
		ksi.ksi_signo = SIGTRAP;
		ksi.ksi_lid = l1->l_lid;
		kpsignal(p1, &ksi, NULL);
	}
	mutex_exit(proc_lock);

	return 0;
}
static int
linux_clone_nptl(struct lwp *l, const struct linux_sys_clone_args *uap, register_t *retval)
{
	/* {
		syscallarg(int) flags;
		syscallarg(void *) stack;
		syscallarg(void *) parent_tidptr;
		syscallarg(void *) tls;
		syscallarg(void *) child_tidptr;
	} */
	struct proc *p;
	struct lwp *l2;
	struct linux_emuldata *led;
	void *parent_tidptr, *tls, *child_tidptr;
	struct schedstate_percpu *spc;
	vaddr_t uaddr;
	lwpid_t lid;
	int flags, tnprocs, error;

	p = l->l_proc;
	flags = SCARG(uap, flags);
	parent_tidptr = SCARG(uap, parent_tidptr);
	tls = SCARG(uap, tls);
	child_tidptr = SCARG(uap, child_tidptr);

	tnprocs = atomic_inc_uint_nv(&nprocs);
	if (__predict_false(tnprocs >= maxproc) ||
	    kauth_authorize_process(l->l_cred, KAUTH_PROCESS_FORK, p,
	    KAUTH_ARG(tnprocs), NULL, NULL) != 0) {
		atomic_dec_uint(&nprocs);
		return EAGAIN;
	}

	uaddr = uvm_uarea_alloc();
	if (__predict_false(uaddr == 0)) {
		atomic_dec_uint(&nprocs);
		return ENOMEM;
	}

	error = lwp_create(l, p, uaddr, LWP_DETACHED | LWP_PIDLID,
	    SCARG(uap, stack), 0, child_return, NULL, &l2, l->l_class);
	if (__predict_false(error)) {
		DPRINTF(("%s: lwp_create error=%d\n", __func__, error));
		atomic_dec_uint(&nprocs);
		uvm_uarea_free(uaddr);
		return error;
	}
	lid = l2->l_lid;

	/* LINUX_CLONE_CHILD_CLEARTID: clear TID in child's memory on exit() */
	if (flags & LINUX_CLONE_CHILD_CLEARTID) {
		led = l2->l_emuldata;
		led->led_clear_tid = child_tidptr;
	}

	/* LINUX_CLONE_PARENT_SETTID: store child's TID in parent's memory */
	if (flags & LINUX_CLONE_PARENT_SETTID) {
		if ((error = copyout(&lid, parent_tidptr, sizeof(lid))) != 0)
			printf("%s: LINUX_CLONE_PARENT_SETTID "
			    "failed (parent_tidptr = %p tid = %d error=%d)\n",
			    __func__, parent_tidptr, lid, error);
	}

	/* LINUX_CLONE_CHILD_SETTID: store child's TID in child's memory  */
	if (flags & LINUX_CLONE_CHILD_SETTID) {
		if ((error = copyout(&lid, child_tidptr, sizeof(lid))) != 0)
			printf("%s: LINUX_CLONE_CHILD_SETTID "
			    "failed (child_tidptr = %p, tid = %d error=%d)\n",
			    __func__, child_tidptr, lid, error);
	}

	if (flags & LINUX_CLONE_SETTLS) {
		error = LINUX_LWP_SETPRIVATE(l2, tls);
		if (error) {
			DPRINTF(("%s: LINUX_LWP_SETPRIVATE %d\n", __func__,
			    error));
			lwp_exit(l2);
			return error;
		}
	}

	/*
	 * Set the new LWP running, unless the process is stopping,
	 * then the LWP is created stopped.
	 */
	mutex_enter(p->p_lock);
	lwp_lock(l2);
	spc = &l2->l_cpu->ci_schedstate;
	if ((l->l_flag & (LW_WREBOOT | LW_WSUSPEND | LW_WEXIT)) == 0) {
	    	if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
			KASSERT(l2->l_wchan == NULL);
	    		l2->l_stat = LSSTOP;
			p->p_nrlwps--;
			lwp_unlock_to(l2, spc->spc_lwplock);
		} else {
			KASSERT(lwp_locked(l2, spc->spc_mutex));
			l2->l_stat = LSRUN;
			sched_enqueue(l2, false);
			lwp_unlock(l2);
		}
	} else {
		l2->l_stat = LSSUSPENDED;
		p->p_nrlwps--;
		lwp_unlock_to(l2, spc->spc_lwplock);
	}
	mutex_exit(p->p_lock);

	retval[0] = lid;
	retval[1] = 0;
	return 0;
}