Example #1
0
/*
 *	kmem_back:
 *
 *	Allocate physical pages for the specified virtual address range.
 */
int
kmem_back_domain(int domain, vm_object_t object, vm_offset_t addr,
    vm_size_t size, int flags)
{
	vm_offset_t offset, i;
	vm_page_t m, mpred;
	int pflags;

	KASSERT(object == kernel_object,
	    ("kmem_back_domain: only supports kernel object."));

	offset = addr - VM_MIN_KERNEL_ADDRESS;
	pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
	pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
	if (flags & M_WAITOK)
		pflags |= VM_ALLOC_WAITFAIL;

	i = 0;
	VM_OBJECT_WLOCK(object);
retry:
	mpred = vm_radix_lookup_le(&object->rtree, atop(offset + i));
	for (; i < size; i += PAGE_SIZE, mpred = m) {
		m = vm_page_alloc_domain_after(object, atop(offset + i),
		    domain, pflags, mpred);

		/*
		 * Ran out of space, free everything up and return. Don't need
		 * to lock page queues here as we know that the pages we got
		 * aren't on any queues.
		 */
		if (m == NULL) {
			if ((flags & M_NOWAIT) == 0)
				goto retry;
			VM_OBJECT_WUNLOCK(object);
			kmem_unback(object, addr, i);
			return (KERN_NO_SPACE);
		}
		KASSERT(vm_phys_domain(m) == domain,
		    ("kmem_back_domain: Domain mismatch %d != %d",
		    vm_phys_domain(m), domain));
		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
			pmap_zero_page(m);
		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
		    ("kmem_malloc: page %p is managed", m));
		m->valid = VM_PAGE_BITS_ALL;
		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL,
		    VM_PROT_ALL | PMAP_ENTER_WIRED, 0);
	}
	VM_OBJECT_WUNLOCK(object);

	return (KERN_SUCCESS);
}
Example #2
0
/*
 *	Allocates a region from the kernel address map and physical pages
 *	within the specified address range to the kernel object.  Creates a
 *	wired mapping from this region to these pages, and returns the
 *	region's starting virtual address.  The allocated pages are not
 *	necessarily physically contiguous.  If M_ZERO is specified through the
 *	given flags, then the pages are zeroed before they are mapped.
 */
vm_offset_t
kmem_alloc_attr_domain(int domain, vm_size_t size, int flags, vm_paddr_t low,
    vm_paddr_t high, vm_memattr_t memattr)
{
	vmem_t *vmem;
	vm_object_t object = kernel_object;
	vm_offset_t addr, i, offset;
	vm_page_t m;
	int pflags, tries;

	size = round_page(size);
	vmem = vm_dom[domain].vmd_kernel_arena;
	if (vmem_alloc(vmem, size, M_BESTFIT | flags, &addr))
		return (0);
	offset = addr - VM_MIN_KERNEL_ADDRESS;
	pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
	pflags &= ~(VM_ALLOC_NOWAIT | VM_ALLOC_WAITOK | VM_ALLOC_WAITFAIL);
	pflags |= VM_ALLOC_NOWAIT;
	VM_OBJECT_WLOCK(object);
	for (i = 0; i < size; i += PAGE_SIZE) {
		tries = 0;
retry:
		m = vm_page_alloc_contig_domain(object, atop(offset + i),
		    domain, pflags, 1, low, high, PAGE_SIZE, 0, memattr);
		if (m == NULL) {
			VM_OBJECT_WUNLOCK(object);
			if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) {
				if (!vm_page_reclaim_contig_domain(domain,
				    pflags, 1, low, high, PAGE_SIZE, 0) &&
				    (flags & M_WAITOK) != 0)
					vm_wait_domain(domain);
				VM_OBJECT_WLOCK(object);
				tries++;
				goto retry;
			}
			kmem_unback(object, addr, i);
			vmem_free(vmem, addr, size);
			return (0);
		}
		KASSERT(vm_phys_domain(m) == domain,
		    ("kmem_alloc_attr_domain: Domain mismatch %d != %d",
		    vm_phys_domain(m), domain));
		if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
			pmap_zero_page(m);
		m->valid = VM_PAGE_BITS_ALL;
		pmap_enter(kernel_pmap, addr + i, m, VM_PROT_ALL,
		    VM_PROT_ALL | PMAP_ENTER_WIRED, 0);
	}
	VM_OBJECT_WUNLOCK(object);
	return (addr);
}
Example #3
0
/*
 * Free specified single object.
 */
void
memguard_free(void *ptr)
{
	vm_offset_t addr;
	u_long req_size, size, sizev;
	char *temp;
	int i;

	addr = trunc_page((uintptr_t)ptr);
	req_size = *v2sizep(addr);
	sizev = *v2sizev(addr);
	size = round_page(req_size);

	/*
	 * Page should not be guarded right now, so force a write.
	 * The purpose of this is to increase the likelihood of
	 * catching a double-free, but not necessarily a
	 * tamper-after-free (the second thread freeing might not
	 * write before freeing, so this forces it to and,
	 * subsequently, trigger a fault).
	 */
	temp = ptr;
	for (i = 0; i < size; i += PAGE_SIZE)
		temp[i] = 'M';

	/*
	 * This requires carnal knowledge of the implementation of
	 * kmem_free(), but since we've already replaced kmem_malloc()
	 * above, it's not really any worse.  We want to use the
	 * vm_map lock to serialize updates to memguard_wasted, since
	 * we had the lock at increment.
	 */
	kmem_unback(kmem_object, addr, size);
	if (sizev > size)
		addr -= PAGE_SIZE;
	vmem_xfree(memguard_arena, addr, sizev);
	if (req_size < PAGE_SIZE)
		memguard_wasted -= (PAGE_SIZE - req_size);
}