Example #1
0
/*------------------------------------------------------------------------
 *  The init process, this is where it all begins...
 *------------------------------------------------------------------------
 */
initproc()				/* The beginning */
{
	kprintf( "\n\nCPSC 415, Jan 2012\n32 Bit Xeros 1.1\nLocated at: %x to %x\n", &entry, &end );

        /* Your code goes here */

	kprintf("Max addr is %d %x\n", maxaddr, maxaddr);

	kmeminit();
	kprintf("memory inited\n");
	
	dispatchinit();
	kprintf("dispatcher inited\n");
  
	contextinit();
	kprintf("context inited inited\n");
	
	create( root, PROC_STACK );
	kprintf("create inited\n");
  
	dispatch();
  
	kprintf("Returned to init, you should never get here!\n");
        /* This code should never be reached after you are done */
	for(;;); /* loop forever */
}
Example #2
0
/*------------------------------------------------------------------------
 *  The init process, this is where it all begins...
 *------------------------------------------------------------------------
 */
void initproc( void )				/* The beginning */
{
  int i; 

  kprintf( "\n\nCPSC 415, 2015W1 \n32 Bit Xeros 1.1\nLocated at: %x to %x\n", 
	   &entry, &end); 
  
  
  /* Add your code below this line and before next comment */
  
  // init memory
  kmeminit();
  
  void (*funcPtr)(void);
  funcPtr = &root;
  create(funcPtr, 8000);
  //dispatch();
  
  
  

  for (i = 0; i < 2000000; i++);
  /* Add all of your code before this comment and after the previous comment */
  /* This code should never be reached after you are done */
  kprintf("\n\nWhen the kernel is working properly ");
  kprintf("this line should never be printed!\n");
  for(;;) ; /* loop forever */
}
Example #3
0
/*------------------------------------------------------------------------
 *  The init process, this is where it all begins...
 *------------------------------------------------------------------------
 */
void initproc( void )				/* The beginning */
{
	kprintf( "\n\nCPSC 415, 2012W1\nA2 Solution Kernel\n32 Bit Xeros 1.1\nLocated at: %x to %x\n", &entry, &end ); 

        /* Your code goes here */

        kprintf("Max addr is %d %x\n", maxaddr, maxaddr);

        kmeminit();
        kprintf("Memory initialized.\n");

        dispatchinit();
        kprintf("Dispatcher initialized.\n");
  
        contextinit();
        kprintf("Context initialized.\n");
        
        deviceinit();
        kprintf("Devices initialized.\n");

	kprintf("Creating Idle Process\n");
	create(idleproc, PROC_STACK);
        
	kprintf("Creating Root Process\n");
        create( root, PROC_STACK );

	kprintf("System initialization completed\nSystem Starting\n");
  
        dispatch();
  
        kprintf("Returned to init, you should never get here!\n");

        /* This code should never be reached after you are done */
	for(;;); /* loop forever */
}
Example #4
0
void entry() {
	__asm_initialize__();
	kmeminit();
	
	shell();
	
	while(1);
}
Example #5
0
/*------------------------------------------------------------------------
 *  The init process, this is where it all begins...
 *------------------------------------------------------------------------
 */
initproc()				/* The beginning */
{
    kprintf( "\n\nCPSC 415, Jan 2012\n32 Bit Xeros 1.1\nLocated at: %x to %x\n", &entry, &end );

    /* Your code goes here */

    kprintf("Max addr is %d %x\n", maxaddr, maxaddr);

    kmeminit();
    //kprintf("memory inited\n");

    dispatchinit();
    //kprintf("dispatcher inited\n");

    contextinit();
    //kprintf("context inited inited\n");

    //kprintf("Creating Idle Process\n");
    create(idleproc, PROC_STACK);

    //    kprintf("Creating Root Process\n");
    //create( root, PROC_STACK );
//		create( test1, PROC_STACK );
//		create( test2, PROC_STACK );
    //	create( test3, PROC_STACK );
//		create( test4, PROC_STACK );
    //	create( test5, PROC_STACK );
//		create( test6, PROC_STACK );
    //	create( test7, PROC_STACK );
    create( test8, PROC_STACK );

    kprintf("System initialization completed\n");

    device_init();

    dispatch();

    kprintf("Returned to init, you should never get here!\n");
    /* This code should never be reached after you are done */
    for(;;); /* loop forever */
}
Example #6
0
void
uvm_init()
{
	vaddr_t kvm_start, kvm_end;

	/*
	 * step 0: ensure that the hardware set the page size
	 */

	if (uvmexp.pagesize == 0) {
		panic("uvm_init: page size not set");
	}

	/*
	 * step 1: zero the uvm structure
	 */

	memset(&uvm, 0, sizeof(uvm));
#ifndef OSKIT
	averunnable.fscale = FSCALE;
#endif

	/*
	 * step 2: init the page sub-system.  this includes allocating the
	 * vm_page structures, and setting up all the page queues (and
	 * locks).  available memory will be put in the "free" queue.
	 * kvm_start and kvm_end will be set to the area of kernel virtual
	 * memory which is available for general use.
	 */

	uvm_page_init(&kvm_start, &kvm_end);

	/*
	 * step 3: init the map sub-system.  allocates the static pool of
	 * vm_map_entry structures that are used for "special" kernel maps
	 * (e.g. kernel_map, kmem_map, etc...).
	 */

	uvm_map_init();

	/*
	 * step 4: setup the kernel's virtual memory data structures.  this
	 * includes setting up the kernel_map/kernel_object and the kmem_map/
	 * kmem_object.
	 */
	
	uvm_km_init(kvm_start, kvm_end);

	/*
	 * step 5: init the pmap module.   the pmap module is free to allocate
	 * memory for its private use (e.g. pvlists).
	 */

	pmap_init();

	/*
	 * step 6: init the kernel memory allocator.   after this call the
	 * kernel memory allocator (malloc) can be used.
	 */

	kmeminit();

	/*
	 * step 7: init all pagers and the pager_map.
	 */
	uvm_pager_init();

	/*
	 * step 8: init anonymous memory systems (both amap and anons)
	 */

	amap_init();		/* init amap module */
	uvm_anon_init();	/* allocate initial anons */

	/*
	 * the VM system is now up!  now that malloc is up we can resize the
	 * <obj,off> => <page> hash table for general use and enable paging
	 * of kernel objects.
	 */

	uvm_page_rehash();
	uao_create(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS,
	    UAO_FLAG_KERNSWAP);

	/*
	 * done!
	 */

	return;
}
Example #7
0
void
uvm_init()
{
	vaddr_t kvm_start, kvm_end;

	/*
	 * step 0: ensure that the hardware set the page size
	 */

	if (uvmexp.pagesize == 0) {
		panic("uvm_init: page size not set");
	}

	/*
	 * step 1: zero the uvm structure
	 */

	memset(&uvm, 0, sizeof(uvm));
	averunnable.fscale = FSCALE;

	/*
	 * step 2: init the page sub-system.  this includes allocating the
	 * vm_page structures, and setting up all the page queues (and
	 * locks).  available memory will be put in the "free" queue.
	 * kvm_start and kvm_end will be set to the area of kernel virtual
	 * memory which is available for general use.
	 */

	uvm_page_init(&kvm_start, &kvm_end);

	/*
	 * step 3: init the map sub-system.  allocates the static pool of
	 * vm_map_entry structures that are used for "special" kernel maps
	 * (e.g. kernel_map, kmem_map, etc...).
	 */

	uvm_map_init();

	/*
	 * step 4: setup the kernel's virtual memory data structures.  this
	 * includes setting up the kernel_map/kernel_object and the kmem_map/
	 * kmem_object.
	 */

	uvm_km_init(kvm_start, kvm_end);

	/*
	 * step 5: init the pmap module.   the pmap module is free to allocate
	 * memory for its private use (e.g. pvlists).
	 */

	pmap_init();

	/*
	 * step 6: init the kernel memory allocator.   after this call the
	 * kernel memory allocator (malloc) can be used.
	 */

	uvm_km_page_init();
	kmeminit();
#if !defined(__HAVE_PMAP_DIRECT)
	kthread_create_deferred(uvm_km_createthread, NULL);
#endif

	/*
	 * step 7: init all pagers and the pager_map.
	 */

	uvm_pager_init();

	/*
	 * step 8: init anonymous memory system
	 */

	amap_init();		/* init amap module */

	/*
	 * the VM system is now up!  now that malloc is up we can resize the
	 * <obj,off> => <page> hash table for general use and enable paging
	 * of kernel objects.
	 */

	uvm_page_rehash();
	uao_create(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS,
	    UAO_FLAG_KERNSWAP);

	/*
	 * reserve some unmapped space for malloc/pool use after free usage
	 */
#ifdef DEADBEEF0
	kvm_start = trunc_page(DEADBEEF0) - PAGE_SIZE;
	if (uvm_map(kernel_map, &kvm_start, 3 * PAGE_SIZE,
	    NULL, UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_NONE,
	    UVM_PROT_NONE, UVM_INH_NONE, UVM_ADV_RANDOM, UVM_FLAG_FIXED)))
		panic("uvm_init: cannot reserve dead beef @0x%x\n", DEADBEEF0);
#endif
#ifdef DEADBEEF1
	kvm_start = trunc_page(DEADBEEF1) - PAGE_SIZE;
	if (uvm_map(kernel_map, &kvm_start, 3 * PAGE_SIZE,
	    NULL, UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_NONE,
	    UVM_PROT_NONE, UVM_INH_NONE, UVM_ADV_RANDOM, UVM_FLAG_FIXED)))
		panic("uvm_init: cannot reserve dead beef @0x%x\n", DEADBEEF1);
#endif
	/*
	 * init anonymous memory systems
	 */
	uvm_anon_init();
}
Example #8
0
void
bsd_init(void)
{
	struct uthread *ut;
	unsigned int i;
	struct vfs_context context;
	kern_return_t	ret;
	struct ucred temp_cred;
	struct posix_cred temp_pcred;
#if NFSCLIENT || CONFIG_IMAGEBOOT
	boolean_t       netboot = FALSE;
#endif

#define bsd_init_kprintf(x...) /* kprintf("bsd_init: " x) */

	throttle_init();

	printf(copyright);
	
	bsd_init_kprintf("calling kmeminit\n");
	kmeminit();
	
	bsd_init_kprintf("calling parse_bsd_args\n");
	parse_bsd_args();

#if CONFIG_DEV_KMEM
	bsd_init_kprintf("calling dev_kmem_init\n");
	dev_kmem_init();
#endif

	/* Initialize kauth subsystem before instancing the first credential */
	bsd_init_kprintf("calling kauth_init\n");
	kauth_init();

	/* Initialize process and pgrp structures. */
	bsd_init_kprintf("calling procinit\n");
	procinit();

	/* Initialize the ttys (MUST be before kminit()/bsd_autoconf()!)*/
	tty_init();

	kernproc = &proc0;	/* implicitly bzero'ed */

	/* kernel_task->proc = kernproc; */
	set_bsdtask_info(kernel_task,(void *)kernproc);

	/* give kernproc a name */
	bsd_init_kprintf("calling process_name\n");
	process_name("kernel_task", kernproc);

	/* allocate proc lock group attribute and group */
	bsd_init_kprintf("calling lck_grp_attr_alloc_init\n");
	proc_lck_grp_attr= lck_grp_attr_alloc_init();

	proc_lck_grp = lck_grp_alloc_init("proc",  proc_lck_grp_attr);
#if CONFIG_FINE_LOCK_GROUPS
	proc_slock_grp = lck_grp_alloc_init("proc-slock",  proc_lck_grp_attr);
	proc_fdmlock_grp = lck_grp_alloc_init("proc-fdmlock",  proc_lck_grp_attr);
	proc_ucred_mlock_grp = lck_grp_alloc_init("proc-ucred-mlock",  proc_lck_grp_attr);
	proc_mlock_grp = lck_grp_alloc_init("proc-mlock",  proc_lck_grp_attr);
#endif
	/* Allocate proc lock attribute */
	proc_lck_attr = lck_attr_alloc_init();
#if 0
#if __PROC_INTERNAL_DEBUG
	lck_attr_setdebug(proc_lck_attr);
#endif
#endif

#if CONFIG_FINE_LOCK_GROUPS
	proc_list_mlock = lck_mtx_alloc_init(proc_mlock_grp, proc_lck_attr);
	proc_klist_mlock = lck_mtx_alloc_init(proc_mlock_grp, proc_lck_attr);
	lck_mtx_init(&kernproc->p_mlock, proc_mlock_grp, proc_lck_attr);
	lck_mtx_init(&kernproc->p_fdmlock, proc_fdmlock_grp, proc_lck_attr);
	lck_mtx_init(&kernproc->p_ucred_mlock, proc_ucred_mlock_grp, proc_lck_attr);
	lck_spin_init(&kernproc->p_slock, proc_slock_grp, proc_lck_attr);
#else
	proc_list_mlock = lck_mtx_alloc_init(proc_lck_grp, proc_lck_attr);
	proc_klist_mlock = lck_mtx_alloc_init(proc_lck_grp, proc_lck_attr);
	lck_mtx_init(&kernproc->p_mlock, proc_lck_grp, proc_lck_attr);
	lck_mtx_init(&kernproc->p_fdmlock, proc_lck_grp, proc_lck_attr);
	lck_mtx_init(&kernproc->p_ucred_mlock, proc_lck_grp, proc_lck_attr);
	lck_spin_init(&kernproc->p_slock, proc_lck_grp, proc_lck_attr);
#endif

	assert(bsd_simul_execs != 0);
	execargs_cache_lock = lck_mtx_alloc_init(proc_lck_grp, proc_lck_attr);
	execargs_cache_size = bsd_simul_execs;
	execargs_free_count = bsd_simul_execs;
	execargs_cache = (vm_offset_t *)kalloc(bsd_simul_execs * sizeof(vm_offset_t));
	bzero(execargs_cache, bsd_simul_execs * sizeof(vm_offset_t));
	
	if (current_task() != kernel_task)
		printf("bsd_init: We have a problem, "
				"current task is not kernel task\n");
	
	bsd_init_kprintf("calling get_bsdthread_info\n");
	ut = (uthread_t)get_bsdthread_info(current_thread());

#if CONFIG_MACF
	/*
	 * Initialize the MAC Framework
	 */
	mac_policy_initbsd();
	kernproc->p_mac_enforce = 0;

#if defined (__i386__) || defined (__x86_64__)
	/*
	 * We currently only support this on i386/x86_64, as that is the
	 * only lock code we have instrumented so far.
	 */
	check_policy_init(policy_check_flags);
#endif
#endif /* MAC */

	/* Initialize System Override call */
	init_system_override();
	
	/*
	 * Create process 0.
	 */
	proc_list_lock();
	LIST_INSERT_HEAD(&allproc, kernproc, p_list);
	kernproc->p_pgrp = &pgrp0;
	LIST_INSERT_HEAD(PGRPHASH(0), &pgrp0, pg_hash);
	LIST_INIT(&pgrp0.pg_members);
#ifdef CONFIG_FINE_LOCK_GROUPS
	lck_mtx_init(&pgrp0.pg_mlock, proc_mlock_grp, proc_lck_attr);
#else
	lck_mtx_init(&pgrp0.pg_mlock, proc_lck_grp, proc_lck_attr);
#endif
	/* There is no other bsd thread this point and is safe without pgrp lock */
	LIST_INSERT_HEAD(&pgrp0.pg_members, kernproc, p_pglist);
	kernproc->p_listflag |= P_LIST_INPGRP;
	kernproc->p_pgrpid = 0;
	kernproc->p_uniqueid = 0;

	pgrp0.pg_session = &session0;
	pgrp0.pg_membercnt = 1;

	session0.s_count = 1;
	session0.s_leader = kernproc;
	session0.s_listflags = 0;
#ifdef CONFIG_FINE_LOCK_GROUPS
	lck_mtx_init(&session0.s_mlock, proc_mlock_grp, proc_lck_attr);
#else
	lck_mtx_init(&session0.s_mlock, proc_lck_grp, proc_lck_attr);
#endif
	LIST_INSERT_HEAD(SESSHASH(0), &session0, s_hash);
	proc_list_unlock();

	kernproc->task = kernel_task;
	
	kernproc->p_stat = SRUN;
	kernproc->p_flag = P_SYSTEM;
	kernproc->p_lflag = 0;
	kernproc->p_ladvflag = 0;
	
#if DEVELOPMENT || DEBUG
	if (bootarg_disable_aslr)
		kernproc->p_flag |= P_DISABLE_ASLR;
#endif

	kernproc->p_nice = NZERO;
	kernproc->p_pptr = kernproc;

	TAILQ_INIT(&kernproc->p_uthlist);
	TAILQ_INSERT_TAIL(&kernproc->p_uthlist, ut, uu_list);
	
	kernproc->sigwait = FALSE;
	kernproc->sigwait_thread = THREAD_NULL;
	kernproc->exit_thread = THREAD_NULL;
	kernproc->p_csflags = CS_VALID;

	/*
	 * Create credential.  This also Initializes the audit information.
	 */
	bsd_init_kprintf("calling bzero\n");
	bzero(&temp_cred, sizeof(temp_cred));
	bzero(&temp_pcred, sizeof(temp_pcred));
	temp_pcred.cr_ngroups = 1;
	/* kern_proc, shouldn't call up to DS for group membership */
	temp_pcred.cr_flags = CRF_NOMEMBERD;
	temp_cred.cr_audit.as_aia_p = audit_default_aia_p;
	
	bsd_init_kprintf("calling kauth_cred_create\n");
	/*
	 * We have to label the temp cred before we create from it to
	 * properly set cr_ngroups, or the create will fail.
	 */
	posix_cred_label(&temp_cred, &temp_pcred);
	kernproc->p_ucred = kauth_cred_create(&temp_cred); 

	/* update cred on proc */
	PROC_UPDATE_CREDS_ONPROC(kernproc);

	/* give the (already exisiting) initial thread a reference on it */
	bsd_init_kprintf("calling kauth_cred_ref\n");
	kauth_cred_ref(kernproc->p_ucred);
	ut->uu_context.vc_ucred = kernproc->p_ucred;
	ut->uu_context.vc_thread = current_thread();

	TAILQ_INIT(&kernproc->p_aio_activeq);
	TAILQ_INIT(&kernproc->p_aio_doneq);
	kernproc->p_aio_total_count = 0;
	kernproc->p_aio_active_count = 0;

	bsd_init_kprintf("calling file_lock_init\n");
	file_lock_init();

#if CONFIG_MACF
	mac_cred_label_associate_kernel(kernproc->p_ucred);
#endif

	/* Create the file descriptor table. */
	kernproc->p_fd = &filedesc0;
	filedesc0.fd_cmask = cmask;
	filedesc0.fd_knlistsize = -1;
	filedesc0.fd_knlist = NULL;
	filedesc0.fd_knhash = NULL;
	filedesc0.fd_knhashmask = 0;

	/* Create the limits structures. */
	kernproc->p_limit = &limit0;
	for (i = 0; i < sizeof(kernproc->p_rlimit)/sizeof(kernproc->p_rlimit[0]); i++)
		limit0.pl_rlimit[i].rlim_cur = 
			limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur = NOFILE;
	limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur = maxprocperuid;
	limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
	limit0.pl_rlimit[RLIMIT_STACK] = vm_initial_limit_stack;
	limit0.pl_rlimit[RLIMIT_DATA] = vm_initial_limit_data;
	limit0.pl_rlimit[RLIMIT_CORE] = vm_initial_limit_core;
	limit0.pl_refcnt = 1;

	kernproc->p_stats = &pstats0;
	kernproc->p_sigacts = &sigacts0;

	/*
	 * Charge root for one process: launchd.
	 */
	bsd_init_kprintf("calling chgproccnt\n");
	(void)chgproccnt(0, 1);

	/*
	 *	Allocate a kernel submap for pageable memory
	 *	for temporary copying (execve()).
	 */
	{
		vm_offset_t	minimum;

		bsd_init_kprintf("calling kmem_suballoc\n");
		assert(bsd_pageable_map_size != 0);
		ret = kmem_suballoc(kernel_map,
				&minimum,
				(vm_size_t)bsd_pageable_map_size,
				TRUE,
				VM_FLAGS_ANYWHERE | VM_MAKE_TAG(VM_KERN_MEMORY_BSD),
				&bsd_pageable_map);
		if (ret != KERN_SUCCESS) 
			panic("bsd_init: Failed to allocate bsd pageable map");
	}

	/*
	 * Initialize buffers and hash links for buffers
	 *
	 * SIDE EFFECT: Starts a thread for bcleanbuf_thread(), so must
	 *		happen after a credential has been associated with
	 *		the kernel task.
	 */
	bsd_init_kprintf("calling bsd_bufferinit\n");
	bsd_bufferinit();

	/* Initialize the execve() semaphore */
	bsd_init_kprintf("calling semaphore_create\n");

	if (ret != KERN_SUCCESS)
		panic("bsd_init: Failed to create execve semaphore");

	/*
	 * Initialize the calendar.
	 */
	bsd_init_kprintf("calling IOKitInitializeTime\n");
	IOKitInitializeTime();

	bsd_init_kprintf("calling ubc_init\n");
	ubc_init();

	/*
	 * Initialize device-switches.
	 */
	bsd_init_kprintf("calling devsw_init() \n");
	devsw_init();

	/* Initialize the file systems. */
	bsd_init_kprintf("calling vfsinit\n");
	vfsinit();

#if CONFIG_PROC_UUID_POLICY
	/* Initial proc_uuid_policy subsystem */
	bsd_init_kprintf("calling proc_uuid_policy_init()\n");
	proc_uuid_policy_init();
#endif

#if SOCKETS
	/* Initialize per-CPU cache allocator */
	mcache_init();

	/* Initialize mbuf's. */
	bsd_init_kprintf("calling mbinit\n");
	mbinit();
	net_str_id_init(); /* for mbuf tags */
#endif /* SOCKETS */

	/*
	 * Initializes security event auditing.
	 * XXX: Should/could this occur later?
	 */
#if CONFIG_AUDIT
	bsd_init_kprintf("calling audit_init\n");
 	audit_init();  
#endif

	/* Initialize kqueues */
	bsd_init_kprintf("calling knote_init\n");
	knote_init();

	/* Initialize for async IO */
	bsd_init_kprintf("calling aio_init\n");
	aio_init();

	/* Initialize pipes */
	bsd_init_kprintf("calling pipeinit\n");
	pipeinit();

	/* Initialize SysV shm subsystem locks; the subsystem proper is
	 * initialized through a sysctl.
	 */
#if SYSV_SHM
	bsd_init_kprintf("calling sysv_shm_lock_init\n");
	sysv_shm_lock_init();
#endif
#if SYSV_SEM
	bsd_init_kprintf("calling sysv_sem_lock_init\n");
	sysv_sem_lock_init();
#endif
#if SYSV_MSG
	bsd_init_kprintf("sysv_msg_lock_init\n");
	sysv_msg_lock_init();
#endif
	bsd_init_kprintf("calling pshm_lock_init\n");
	pshm_lock_init();
	bsd_init_kprintf("calling psem_lock_init\n");
	psem_lock_init();

	pthread_init();
	/* POSIX Shm and Sem */
	bsd_init_kprintf("calling pshm_cache_init\n");
	pshm_cache_init();
	bsd_init_kprintf("calling psem_cache_init\n");
	psem_cache_init();
	bsd_init_kprintf("calling time_zone_slock_init\n");
	time_zone_slock_init();
	bsd_init_kprintf("calling select_waitq_init\n");
	select_waitq_init();

	/*
	 * Initialize protocols.  Block reception of incoming packets
	 * until everything is ready.
	 */
	bsd_init_kprintf("calling sysctl_register_fixed\n");
	sysctl_register_fixed(); 
	bsd_init_kprintf("calling sysctl_mib_init\n");
	sysctl_mib_init();
#if NETWORKING
	bsd_init_kprintf("calling dlil_init\n");
	dlil_init();
	bsd_init_kprintf("calling proto_kpi_init\n");
	proto_kpi_init();
#endif /* NETWORKING */
#if SOCKETS
	bsd_init_kprintf("calling socketinit\n");
	socketinit();
	bsd_init_kprintf("calling domaininit\n");
	domaininit();
	iptap_init();
#if FLOW_DIVERT
	flow_divert_init();
#endif	/* FLOW_DIVERT */
#endif /* SOCKETS */

	kernproc->p_fd->fd_cdir = NULL;
	kernproc->p_fd->fd_rdir = NULL;

#if CONFIG_FREEZE
#ifndef CONFIG_MEMORYSTATUS
    #error "CONFIG_FREEZE defined without matching CONFIG_MEMORYSTATUS"
#endif
	/* Initialise background freezing */
	bsd_init_kprintf("calling memorystatus_freeze_init\n");
	memorystatus_freeze_init();
#endif

#if CONFIG_MEMORYSTATUS
	/* Initialize kernel memory status notifications */
	bsd_init_kprintf("calling memorystatus_init\n");
	memorystatus_init();
#endif /* CONFIG_MEMORYSTATUS */

	bsd_init_kprintf("calling macx_init\n");
	macx_init();

	bsd_init_kprintf("calling acct_init\n");
	acct_init();

#ifdef GPROF
	/* Initialize kernel profiling. */
	kmstartup();
#endif

	bsd_init_kprintf("calling bsd_autoconf\n");
	bsd_autoconf();

#if CONFIG_DTRACE
	dtrace_postinit();
#endif

	/*
	 * We attach the loopback interface *way* down here to ensure
	 * it happens after autoconf(), otherwise it becomes the
	 * "primary" interface.
	 */
#include <loop.h>
#if NLOOP > 0
	bsd_init_kprintf("calling loopattach\n");
	loopattach();			/* XXX */
#endif
#if NGIF
	/* Initialize gif interface (after lo0) */
	gif_init();
#endif

#if PFLOG
	/* Initialize packet filter log interface */
	pfloginit();
#endif /* PFLOG */

#if NETHER > 0
	/* Register the built-in dlil ethernet interface family */
	bsd_init_kprintf("calling ether_family_init\n");
	ether_family_init();
#endif /* ETHER */

#if NETWORKING
	/* Call any kext code that wants to run just after network init */
	bsd_init_kprintf("calling net_init_run\n");
	net_init_run();
	
#if CONTENT_FILTER
	cfil_init();
#endif

#if PACKET_MANGLER
	pkt_mnglr_init();
#endif	

#if NECP
	/* Initialize Network Extension Control Policies */
	necp_init();
#endif

	netagent_init();

	/* register user tunnel kernel control handler */
	utun_register_control();
#if IPSEC
	ipsec_register_control();
#endif /* IPSEC */
	netsrc_init();
	nstat_init();
	tcp_cc_init();
#if MPTCP
	mptcp_control_register();
#endif /* MPTCP */
#endif /* NETWORKING */

	bsd_init_kprintf("calling vnode_pager_bootstrap\n");
	vnode_pager_bootstrap();

	bsd_init_kprintf("calling inittodr\n");
	inittodr(0);

	/* Mount the root file system. */
	while( TRUE) {
		int err;

		bsd_init_kprintf("calling setconf\n");
		setconf();
#if NFSCLIENT
		netboot = (mountroot == netboot_mountroot);
#endif

		bsd_init_kprintf("vfs_mountroot\n");
		if (0 == (err = vfs_mountroot()))
			break;
		rootdevice[0] = '\0';
#if NFSCLIENT
		if (netboot) {
			PE_display_icon( 0, "noroot");  /* XXX a netboot-specific icon would be nicer */
			vc_progress_set(FALSE, 0);
			for (i=1; 1; i*=2) {
				printf("bsd_init: failed to mount network root, error %d, %s\n",
					err, PE_boot_args());
				printf("We are hanging here...\n");
				IOSleep(i*60*1000);
			}
			/*NOTREACHED*/
		}
#endif
		printf("cannot mount root, errno = %d\n", err);
		boothowto |= RB_ASKNAME;
	}

	IOSecureBSDRoot(rootdevice);

	context.vc_thread = current_thread();
	context.vc_ucred = kernproc->p_ucred;
	mountlist.tqh_first->mnt_flag |= MNT_ROOTFS;

	bsd_init_kprintf("calling VFS_ROOT\n");
	/* Get the vnode for '/'.  Set fdp->fd_fd.fd_cdir to reference it. */
	if (VFS_ROOT(mountlist.tqh_first, &rootvnode, &context))
		panic("bsd_init: cannot find root vnode: %s", PE_boot_args());
	rootvnode->v_flag |= VROOT;
	(void)vnode_ref(rootvnode);
	(void)vnode_put(rootvnode);
	filedesc0.fd_cdir = rootvnode;

#if NFSCLIENT
	if (netboot) {
		int err;

		netboot = TRUE;
		/* post mount setup */
		if ((err = netboot_setup()) != 0) {
			PE_display_icon( 0, "noroot");  /* XXX a netboot-specific icon would be nicer */
			vc_progress_set(FALSE, 0);
			for (i=1; 1; i*=2) {
				printf("bsd_init: NetBoot could not find root, error %d: %s\n",
					err, PE_boot_args());
				printf("We are hanging here...\n");
				IOSleep(i*60*1000);
			}
			/*NOTREACHED*/
		}
	}
#endif
	

#if CONFIG_IMAGEBOOT
	/*
	 * See if a system disk image is present. If so, mount it and
	 * switch the root vnode to point to it
	 */ 
	if (netboot == FALSE && imageboot_needed()) {
		/* 
		 * An image was found.  No turning back: we're booted
		 * with a kernel from the disk image.
		 */
		imageboot_setup(); 
	}
#endif /* CONFIG_IMAGEBOOT */
  
	/* set initial time; all other resource data is  already zero'ed */
	microtime_with_abstime(&kernproc->p_start, &kernproc->p_stats->ps_start);

#if DEVFS
	{
	    char mounthere[] = "/dev";	/* !const because of internal casting */

	    bsd_init_kprintf("calling devfs_kernel_mount\n");
	    devfs_kernel_mount(mounthere);
	}
#endif /* DEVFS */

	/* Initialize signal state for process 0. */
	bsd_init_kprintf("calling siginit\n");
	siginit(kernproc);

	bsd_init_kprintf("calling bsd_utaskbootstrap\n");
	bsd_utaskbootstrap();

#if defined(__LP64__)
	kernproc->p_flag |= P_LP64;
#endif

	pal_kernel_announce();

	bsd_init_kprintf("calling mountroot_post_hook\n");

	/* invoke post-root-mount hook */
	if (mountroot_post_hook != NULL)
		mountroot_post_hook();

#if 0 /* not yet */
	consider_zone_gc(FALSE);
#endif


	bsd_init_kprintf("done\n");
}
Example #9
0
void
uvm_init(void)
{
	vaddr_t kvm_start, kvm_end;

	/*
	 * step 0: ensure that the hardware set the page size
	 */

	if (uvmexp.pagesize == 0) {
		panic("uvm_init: page size not set");
	}

	/*
	 * step 1: zero the uvm structure
	 */

	memset(&uvm, 0, sizeof(uvm));
	averunnable.fscale = FSCALE;
	uvm_amap_init();

	/*
	 * step 2: init the page sub-system.  this includes allocating the
	 * vm_page structures, and setting up all the page queues (and
	 * locks).  available memory will be put in the "free" queue.
	 * kvm_start and kvm_end will be set to the area of kernel virtual
	 * memory which is available for general use.
	 */

	uvm_page_init(&kvm_start, &kvm_end);

	/*
	 * step 3: init the map sub-system.  allocates the static pool of
	 * vm_map_entry structures that are used for "special" kernel maps
	 * (e.g. kernel_map, kmem_map, etc...).
	 */

	uvm_map_init();

	/*
	 * step 4: setup the kernel's virtual memory data structures.  this
	 * includes setting up the kernel_map/kernel_object.
	 */

	uvm_km_init(kvm_start, kvm_end);

	/*
	 * step 5: init the pmap module.   the pmap module is free to allocate
	 * memory for its private use (e.g. pvlists).
	 */

	pmap_init();

	/*
	 * step 6: init the kernel memory allocator.   after this call the
	 * kernel memory allocator (malloc) can be used. this includes
	 * setting up the kmem_map.
	 */

	kmeminit();

#ifdef DEBUG
	debug_init();
#endif

	/*
	 * step 7: init all pagers and the pager_map.
	 */

	uvm_pager_init();

	/*
	 * step 8: init the uvm_loan() facility.
	 */

	uvm_loan_init();

	/*
	 * Initialize pools.  This must be done before anyone manipulates
	 * any vm_maps because we use a pool for some map entry structures.
	 */

	pool_subsystem_init();

	/*
	 * init slab memory allocator kmem(9).
	 */

	kmem_init();

	/*
	 * the VM system is now up!  now that kmem is up we can resize the
	 * <obj,off> => <page> hash table for general use and enable paging
	 * of kernel objects.
	 */

	uao_create(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS,
	    UAO_FLAG_KERNSWAP);

	uvmpdpol_reinit();

	/*
	 * init anonymous memory systems
	 */

	uvm_anon_init();

	uvm_uarea_init();

	/*
	 * init readahead module
	 */

	uvm_ra_init();
}
Example #10
0
void
uvm_init(void)
{
	vaddr_t kvm_start, kvm_end;

	/*
	 * step 0: ensure that the hardware set the page size
	 */

	if (uvmexp.pagesize == 0) {
		panic("uvm_init: page size not set");
	}

	/*
	 * step 1: set up stats.
	 */
	averunnable.fscale = FSCALE;

	/*
	 * step 2: init the page sub-system.  this includes allocating the
	 * vm_page structures, and setting up all the page queues (and
	 * locks).  available memory will be put in the "free" queue.
	 * kvm_start and kvm_end will be set to the area of kernel virtual
	 * memory which is available for general use.
	 */

	uvm_page_init(&kvm_start, &kvm_end);

	/*
	 * step 3: init the map sub-system.  allocates the static pool of
	 * vm_map_entry structures that are used for "special" kernel maps
	 * (e.g. kernel_map, kmem_map, etc...).
	 */

	uvm_map_init();

	/*
	 * step 4: setup the kernel's virtual memory data structures.  this
	 * includes setting up the kernel_map/kernel_object and the kmem_map/
	 * kmem_object.
	 */

	uvm_km_init(kvm_start, kvm_end);

	/*
	 * step 5: init the pmap module.   the pmap module is free to allocate
	 * memory for its private use (e.g. pvlists).
	 */

	pmap_init();

	/*
	 * step 6: init the kernel memory allocator.   after this call the
	 * kernel memory allocator (malloc) can be used.
	 */

	kmeminit();

	/*
	 * step 6.5: init the dma allocator, which is backed by pools.
	 */
	dma_alloc_init();

	/*
	 * step 7: init all pagers and the pager_map.
	 */

	uvm_pager_init();

	/*
	 * step 8: init anonymous memory system
	 */

	amap_init();		/* init amap module */

	/*
	 * step 9: init uvm_km_page allocator memory.
	 */
	uvm_km_page_init();

	/*
	 * the VM system is now up!  now that malloc is up we can
	 * enable paging of kernel objects.
	 */

	uao_create(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS,
	    UAO_FLAG_KERNSWAP);

	/*
	 * reserve some unmapped space for malloc/pool use after free usage
	 */
#ifdef DEADBEEF0
	kvm_start = trunc_page(DEADBEEF0) - PAGE_SIZE;
	if (uvm_map(kernel_map, &kvm_start, 3 * PAGE_SIZE,
	    NULL, UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_NONE,
	    UVM_PROT_NONE, UVM_INH_NONE, UVM_ADV_RANDOM, UVM_FLAG_FIXED)))
		panic("uvm_init: cannot reserve dead beef @0x%x", DEADBEEF0);
#endif
#ifdef DEADBEEF1
	kvm_start = trunc_page(DEADBEEF1) - PAGE_SIZE;
	if (uvm_map(kernel_map, &kvm_start, 3 * PAGE_SIZE,
	    NULL, UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_NONE,
	    UVM_PROT_NONE, UVM_INH_NONE, UVM_ADV_RANDOM, UVM_FLAG_FIXED)))
		panic("uvm_init: cannot reserve dead beef @0x%x", DEADBEEF1);
#endif
	/*
	 * init anonymous memory systems
	 */
	uvm_anon_init();

#ifndef SMALL_KERNEL
	/*
	 * Switch kernel and kmem_map over to a best-fit allocator,
	 * instead of walking the tree.
	 */
	uvm_map_set_uaddr(kernel_map, &kernel_map->uaddr_any[3],
	    uaddr_bestfit_create(vm_map_min(kernel_map),
	    vm_map_max(kernel_map)));
	uvm_map_set_uaddr(kmem_map, &kmem_map->uaddr_any[3],
	    uaddr_bestfit_create(vm_map_min(kmem_map),
	    vm_map_max(kmem_map)));
#endif /* !SMALL_KERNEL */
}
Example #11
0
void _main()
{
    mem_extent_t *ramext;
    u8 sn[6];
    u32 cpu_clk_hz = 0;
    rtc_time_t tm;
    s32 ret;

    /*
        This section runs with interrupts disabled.  The boot console is not available in this
        section.
    */
    preempt_disable();

    /* Copy kernel read/write data areas into kernel RAM */
    memcpy(&_sdata, &_etext, &_edata - &_sdata);        /* Copy .data section to kernel RAM */
    bzero(&_sbss, &_ebss - &_sbss);                     /* Initialise .bss section          */

    /* Begin platform initialisation */
    if(plat_init() != SUCCESS)
        boot_early_fail(1);

    if(plat_mem_detect() != SUCCESS)    /* Detect installed RAM, initialise memory extents  */
        boot_early_fail(2);

    /* Initialise kernel slabs */
    slab_init(&_ebss);                  /* Slabs sit after the .bss section */

    /* Initialise kernel heap */
    kmeminit(g_slab_end, mem_get_highest_addr(MEM_EXTENT_KERN | MEM_EXTENT_RAM) - KERNEL_STACK_LEN);

    /* Initialise user heap.  Place it in the largest user RAM extent. */
    ramext = mem_get_largest_extent(MEM_EXTENT_USER | MEM_EXTENT_RAM);
    umeminit(ramext->base, ramext->base + ramext->len);

	/* By default, all exceptions cause a context-dump followed by a halt. */
	cpu_irq_init_table();

    /* Initialise device tree */
	if(dev_init() != SUCCESS)
        boot_early_fail(3);

	/*
        It's not yet possible to initialise the real (platform) console because devices haven't
        been enumerated and interrupts are disabled.  In the meantime, create a temporary in-memory
        kernel console device to capture output from the boot process.
    */

    if(early_boot_console_init() != SUCCESS)
        boot_early_fail(4);

    printf("%s\nplatform: %s\n", g_warmup_message, plat_get_name());

    printf("%uMB RAM detected\n", (mem_get_total_size(MEM_EXTENT_USER | MEM_EXTENT_RAM)
            + mem_get_total_size(MEM_EXTENT_KERN | MEM_EXTENT_RAM)) >> 20);

    /* === Initialise peripherals - phase 2 === */
    if(dev_enumerate() != SUCCESS)
        boot_early_fail(5);

    /* Initialise the console */
    if(plat_console_init() != SUCCESS)
        boot_early_fail(6);

    ret = sched_init("[sys]");      /* Init scheduler and create system process */

    /*
        Enable interrupts and continue booting
    */
    preempt_enable();

    /* Copy the contents of the temporary console to the real console; close the temp console. */
    early_boot_console_close();

    /* Activate red LED while the boot process continues */
	plat_led_off(LED_ALL);
	plat_led_on(LED_RED);

    /*
        Device enumeration is done; interrupts are enabled, and the console should be functional.
        Booting continues...
    */

    /* Zero any user RAM extents.  This happens after init'ing the DUART, because beeper. */
/*
    put("Clearing user RAM: ");
    mem_zero_extents(MEM_EXTENT_USER | MEM_EXTENT_RAM);
    puts("done");
*/

    /* Initialise the block cache, then scan mass-storage devices for partitions */
    block_cache_init(2039);
    partition_init();

    boot_list_mass_storage();
    boot_list_partitions();

    /* ret is set by the call to sched_init(), above */
    if(ret != SUCCESS)
        printf("sched: init failed: %s\n", kstrerror(ret));

    ret = vfs_init();
	if(ret != SUCCESS)
		printf("vfs: init failed: %s\n", kstrerror(ret));

    /* Display approximate CPU clock speed */
    if(plat_get_cpu_clock(&cpu_clk_hz) == SUCCESS)
        printf("\nCPU fclk ~%2u.%uMHz\n", cpu_clk_hz / 1000000, (cpu_clk_hz % 1000000) / 100000);

    /* Initialise tick handler */
    tick_init();

    /* Display memory information */
	printf("%u bytes of kernel heap memory available\n"
           "%u bytes of user memory available\n", kfreemem(), ufreemem());

    /* Display platform serial number */
    if(plat_get_serial_number(sn) == SUCCESS)
    {
        printf("Hardware serial number %02X%02X%02X%02X%02X%02X\n",
                sn[0], sn[1], sn[2], sn[3], sn[4], sn[5]);
    }

    /* Display the current date and time */
    if(get_time(&tm) == SUCCESS)
    {
        char timebuf[12], datebuf[32];

        if((time_iso8601(&tm, timebuf, sizeof(timebuf)) == SUCCESS) &&
            (date_long(&tm, datebuf, sizeof(datebuf)) == SUCCESS))
            printf("%s %s\n", timebuf, datebuf);
        else
            puts("Date/time invalid - please set clock");
    }

    /* Create housekeeper process */
//    proc_create(0, 0, "[hk]", NULL, housekeeper, 0, 0, PROC_TYPE_KERNEL, NULL, NULL);

    /* Initialise networking system */
    ret = net_init();
    if(ret != SUCCESS)
        printf("net: init failed: %s\n", kstrerror(ret));

    /* Startup complete - activate green LED */
	plat_led_off(LED_RED);
	plat_led_on(LED_GREEN);

	monitor();      /* start interactive "shell" thing */

	cpu_halt();		/* should never be reached */
}
Example #12
0
/*
 * This function is called very early on in the Mach startup, from the
 * function start_kernel_threads() in osfmk/kern/startup.c.  It's called
 * in the context of the current (startup) task using a call to the
 * function kernel_thread_create() to jump into start_kernel_threads().
 * Internally, kernel_thread_create() calls thread_create_internal(),
 * which calls uthread_alloc().  The function of uthread_alloc() is
 * normally to allocate a uthread structure, and fill out the uu_sigmask,
 * uu_context fields.  It skips filling these out in the case of the "task"
 * being "kernel_task", because the order of operation is inverted.  To
 * account for that, we need to manually fill in at least the contents
 * of the uu_context.vc_ucred field so that the uthread structure can be
 * used like any other.
 */
void
bsd_init(void)
{
	struct uthread *ut;
	unsigned int i;
#if __i386__ || __x86_64__
	int error;
#endif	
	struct vfs_context context;
	kern_return_t	ret;
	struct ucred temp_cred;

#define bsd_init_kprintf(x...) /* kprintf("bsd_init: " x) */

	kernel_flock = funnel_alloc(KERNEL_FUNNEL);
	if (kernel_flock == (funnel_t *)0 ) {
		panic("bsd_init: Failed to allocate kernel funnel");
	}
        
	printf(copyright);
	
	bsd_init_kprintf("calling kmeminit\n");
	kmeminit();
	
	bsd_init_kprintf("calling parse_bsd_args\n");
	parse_bsd_args();

	/* Initialize kauth subsystem before instancing the first credential */
	bsd_init_kprintf("calling kauth_init\n");
	kauth_init();

	/* Initialize process and pgrp structures. */
	bsd_init_kprintf("calling procinit\n");
	procinit();

	/* Initialize the ttys (MUST be before kminit()/bsd_autoconf()!)*/
	tty_init();

	kernproc = &proc0;	/* implicitly bzero'ed */

	/* kernel_task->proc = kernproc; */
	set_bsdtask_info(kernel_task,(void *)kernproc);

	/* give kernproc a name */
	bsd_init_kprintf("calling process_name\n");
	process_name("kernel_task", kernproc);

	/* allocate proc lock group attribute and group */
	bsd_init_kprintf("calling lck_grp_attr_alloc_init\n");
	proc_lck_grp_attr= lck_grp_attr_alloc_init();

	proc_lck_grp = lck_grp_alloc_init("proc",  proc_lck_grp_attr);
#ifndef CONFIG_EMBEDDED
	proc_slock_grp = lck_grp_alloc_init("proc-slock",  proc_lck_grp_attr);
	proc_fdmlock_grp = lck_grp_alloc_init("proc-fdmlock",  proc_lck_grp_attr);
	proc_mlock_grp = lck_grp_alloc_init("proc-mlock",  proc_lck_grp_attr);
#endif
	/* Allocate proc lock attribute */
	proc_lck_attr = lck_attr_alloc_init();
#if 0
#if __PROC_INTERNAL_DEBUG
	lck_attr_setdebug(proc_lck_attr);
#endif
#endif

#ifdef CONFIG_EMBEDDED
	proc_list_mlock = lck_mtx_alloc_init(proc_lck_grp, proc_lck_attr);
	proc_klist_mlock = lck_mtx_alloc_init(proc_lck_grp, proc_lck_attr);
	lck_mtx_init(&kernproc->p_mlock, proc_lck_grp, proc_lck_attr);
	lck_mtx_init(&kernproc->p_fdmlock, proc_lck_grp, proc_lck_attr);
	lck_spin_init(&kernproc->p_slock, proc_lck_grp, proc_lck_attr);
#else	
	proc_list_mlock = lck_mtx_alloc_init(proc_mlock_grp, proc_lck_attr);
	proc_klist_mlock = lck_mtx_alloc_init(proc_mlock_grp, proc_lck_attr);
	lck_mtx_init(&kernproc->p_mlock, proc_mlock_grp, proc_lck_attr);
	lck_mtx_init(&kernproc->p_fdmlock, proc_fdmlock_grp, proc_lck_attr);
	lck_spin_init(&kernproc->p_slock, proc_slock_grp, proc_lck_attr);
#endif

	execargs_cache_lock = lck_mtx_alloc_init(proc_lck_grp, proc_lck_attr);
	execargs_cache_size = bsd_simul_execs;
	execargs_free_count = bsd_simul_execs;
	execargs_cache = (vm_offset_t *)kalloc(bsd_simul_execs * sizeof(vm_offset_t));
	bzero(execargs_cache, bsd_simul_execs * sizeof(vm_offset_t));
	
	if (current_task() != kernel_task)
		printf("bsd_init: We have a problem, "
				"current task is not kernel task\n");
	
	bsd_init_kprintf("calling get_bsdthread_info\n");
	ut = (uthread_t)get_bsdthread_info(current_thread());

#if CONFIG_MACF
	/*
	 * Initialize the MAC Framework
	 */
	mac_policy_initbsd();
	kernproc->p_mac_enforce = 0;
#endif /* MAC */

	/*
	 * Create process 0.
	 */
	proc_list_lock();
	LIST_INSERT_HEAD(&allproc, kernproc, p_list);
	kernproc->p_pgrp = &pgrp0;
	LIST_INSERT_HEAD(PGRPHASH(0), &pgrp0, pg_hash);
	LIST_INIT(&pgrp0.pg_members);
#ifdef CONFIG_EMBEDDED
	lck_mtx_init(&pgrp0.pg_mlock, proc_lck_grp, proc_lck_attr);	
#else
	lck_mtx_init(&pgrp0.pg_mlock, proc_mlock_grp, proc_lck_attr);
#endif
	/* There is no other bsd thread this point and is safe without pgrp lock */
	LIST_INSERT_HEAD(&pgrp0.pg_members, kernproc, p_pglist);
	kernproc->p_listflag |= P_LIST_INPGRP;
	kernproc->p_pgrpid = 0;

	pgrp0.pg_session = &session0;
	pgrp0.pg_membercnt = 1;

	session0.s_count = 1;
	session0.s_leader = kernproc;
	session0.s_listflags = 0;
#ifdef CONFIG_EMBEDDED
	lck_mtx_init(&session0.s_mlock, proc_lck_grp, proc_lck_attr);
#else
	lck_mtx_init(&session0.s_mlock, proc_mlock_grp, proc_lck_attr);
#endif
	LIST_INSERT_HEAD(SESSHASH(0), &session0, s_hash);
	proc_list_unlock();

#if CONFIG_LCTX
	kernproc->p_lctx = NULL;
#endif

	kernproc->task = kernel_task;
	
	kernproc->p_stat = SRUN;
	kernproc->p_flag = P_SYSTEM;
	kernproc->p_nice = NZERO;
	kernproc->p_pptr = kernproc;

	TAILQ_INIT(&kernproc->p_uthlist);
	TAILQ_INSERT_TAIL(&kernproc->p_uthlist, ut, uu_list);
	
	kernproc->sigwait = FALSE;
	kernproc->sigwait_thread = THREAD_NULL;
	kernproc->exit_thread = THREAD_NULL;
	kernproc->p_csflags = CS_VALID;

	/*
	 * Create credential.  This also Initializes the audit information.
	 */
	bsd_init_kprintf("calling bzero\n");
	bzero(&temp_cred, sizeof(temp_cred));
	temp_cred.cr_ngroups = 1;

	temp_cred.cr_audit.as_aia_p = &audit_default_aia;
        /* XXX the following will go away with cr_au */
	temp_cred.cr_au.ai_auid = AU_DEFAUDITID;

	bsd_init_kprintf("calling kauth_cred_create\n");
	kernproc->p_ucred = kauth_cred_create(&temp_cred); 

	/* give the (already exisiting) initial thread a reference on it */
	bsd_init_kprintf("calling kauth_cred_ref\n");
	kauth_cred_ref(kernproc->p_ucred);
	ut->uu_context.vc_ucred = kernproc->p_ucred;
	ut->uu_context.vc_thread = current_thread();

	TAILQ_INIT(&kernproc->p_aio_activeq);
	TAILQ_INIT(&kernproc->p_aio_doneq);
	kernproc->p_aio_total_count = 0;
	kernproc->p_aio_active_count = 0;

	bsd_init_kprintf("calling file_lock_init\n");
	file_lock_init();

#if CONFIG_MACF
	mac_cred_label_associate_kernel(kernproc->p_ucred);
	mac_task_label_update_cred (kernproc->p_ucred, (struct task *) kernproc->task);
#endif

	/* Create the file descriptor table. */
	filedesc0.fd_refcnt = 1+1;	/* +1 so shutdown will not _FREE_ZONE */
	kernproc->p_fd = &filedesc0;
	filedesc0.fd_cmask = cmask;
	filedesc0.fd_knlistsize = -1;
	filedesc0.fd_knlist = NULL;
	filedesc0.fd_knhash = NULL;
	filedesc0.fd_knhashmask = 0;

	/* Create the limits structures. */
	kernproc->p_limit = &limit0;
	for (i = 0; i < sizeof(kernproc->p_rlimit)/sizeof(kernproc->p_rlimit[0]); i++)
		limit0.pl_rlimit[i].rlim_cur = 
			limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
	limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur = NOFILE;
	limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur = maxprocperuid;
	limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
	limit0.pl_rlimit[RLIMIT_STACK] = vm_initial_limit_stack;
	limit0.pl_rlimit[RLIMIT_DATA] = vm_initial_limit_data;
	limit0.pl_rlimit[RLIMIT_CORE] = vm_initial_limit_core;
	limit0.pl_refcnt = 1;

	kernproc->p_stats = &pstats0;
	kernproc->p_sigacts = &sigacts0;

	/*
	 * Charge root for two  processes: init and mach_init.
	 */
	bsd_init_kprintf("calling chgproccnt\n");
	(void)chgproccnt(0, 1);

	/*
	 *	Allocate a kernel submap for pageable memory
	 *	for temporary copying (execve()).
	 */
	{
		vm_offset_t	minimum;

		bsd_init_kprintf("calling kmem_suballoc\n");
		ret = kmem_suballoc(kernel_map,
				&minimum,
				(vm_size_t)bsd_pageable_map_size,
				TRUE,
				VM_FLAGS_ANYWHERE,
				&bsd_pageable_map);
		if (ret != KERN_SUCCESS) 
			panic("bsd_init: Failed to allocate bsd pageable map");
	}

	/*
	 * Initialize buffers and hash links for buffers
	 *
	 * SIDE EFFECT: Starts a thread for bcleanbuf_thread(), so must
	 *		happen after a credential has been associated with
	 *		the kernel task.
	 */
	bsd_init_kprintf("calling bsd_bufferinit\n");
	bsd_bufferinit();

	/* Initialize the execve() semaphore */
	bsd_init_kprintf("calling semaphore_create\n");

	if (ret != KERN_SUCCESS)
		panic("bsd_init: Failed to create execve semaphore");

	/*
	 * Initialize the calendar.
	 */
	bsd_init_kprintf("calling IOKitInitializeTime\n");
	IOKitInitializeTime();

	if (turn_on_log_leaks && !new_nkdbufs)
		new_nkdbufs = 200000;
	start_kern_tracing(new_nkdbufs);
	if (turn_on_log_leaks)
		log_leaks = 1;

	bsd_init_kprintf("calling ubc_init\n");
	ubc_init();

	/* Initialize the file systems. */
	bsd_init_kprintf("calling vfsinit\n");
	vfsinit();

#if SOCKETS
	/* Initialize per-CPU cache allocator */
	mcache_init();

	/* Initialize mbuf's. */
	bsd_init_kprintf("calling mbinit\n");
	mbinit();
	net_str_id_init(); /* for mbuf tags */
#endif /* SOCKETS */

	/*
	 * Initializes security event auditing.
	 * XXX: Should/could this occur later?
	 */
#if CONFIG_AUDIT
	bsd_init_kprintf("calling audit_init\n");
 	audit_init();  
#endif

	/* Initialize kqueues */
	bsd_init_kprintf("calling knote_init\n");
	knote_init();

	/* Initialize for async IO */
	bsd_init_kprintf("calling aio_init\n");
	aio_init();

	/* Initialize pipes */
	bsd_init_kprintf("calling pipeinit\n");
	pipeinit();

	/* Initialize SysV shm subsystem locks; the subsystem proper is
	 * initialized through a sysctl.
	 */
#if SYSV_SHM
	bsd_init_kprintf("calling sysv_shm_lock_init\n");
	sysv_shm_lock_init();
#endif
#if SYSV_SEM
	bsd_init_kprintf("calling sysv_sem_lock_init\n");
	sysv_sem_lock_init();
#endif
#if SYSV_MSG
	bsd_init_kprintf("sysv_msg_lock_init\n");
	sysv_msg_lock_init();
#endif
	bsd_init_kprintf("calling pshm_lock_init\n");
	pshm_lock_init();
	bsd_init_kprintf("calling psem_lock_init\n");
	psem_lock_init();

	pthread_init();
	/* POSIX Shm and Sem */
	bsd_init_kprintf("calling pshm_cache_init\n");
	pshm_cache_init();
	bsd_init_kprintf("calling psem_cache_init\n");
	psem_cache_init();
	bsd_init_kprintf("calling time_zone_slock_init\n");
	time_zone_slock_init();

	/* Stack snapshot facility lock */
	stackshot_lock_init();
	/*
	 * Initialize protocols.  Block reception of incoming packets
	 * until everything is ready.
	 */
	bsd_init_kprintf("calling sysctl_register_fixed\n");
	sysctl_register_fixed(); 
	bsd_init_kprintf("calling sysctl_mib_init\n");
	sysctl_mib_init();
#if NETWORKING
	bsd_init_kprintf("calling dlil_init\n");
	dlil_init();
	bsd_init_kprintf("calling proto_kpi_init\n");
	proto_kpi_init();
#endif /* NETWORKING */
#if SOCKETS
	bsd_init_kprintf("calling socketinit\n");
	socketinit();
	bsd_init_kprintf("calling domaininit\n");
	domaininit();
#endif /* SOCKETS */

	kernproc->p_fd->fd_cdir = NULL;
	kernproc->p_fd->fd_rdir = NULL;

#if CONFIG_EMBEDDED
	/* Initialize kernel memory status notifications */
	bsd_init_kprintf("calling kern_memorystatus_init\n");
	kern_memorystatus_init();
#endif

#ifdef GPROF
	/* Initialize kernel profiling. */
	kmstartup();
#endif

	/* kick off timeout driven events by calling first time */
	thread_wakeup(&lbolt);
	timeout(lightning_bolt, 0, hz);

	bsd_init_kprintf("calling bsd_autoconf\n");
	bsd_autoconf();

#if CONFIG_DTRACE
	dtrace_postinit();
#endif

	/*
	 * We attach the loopback interface *way* down here to ensure
	 * it happens after autoconf(), otherwise it becomes the
	 * "primary" interface.
	 */
#include <loop.h>
#if NLOOP > 0
	bsd_init_kprintf("calling loopattach\n");
	loopattach();			/* XXX */
#endif

#if PFLOG
	/* Initialize packet filter log interface */
	pfloginit();
#endif /* PFLOG */

#if NETHER > 0
	/* Register the built-in dlil ethernet interface family */
	bsd_init_kprintf("calling ether_family_init\n");
	ether_family_init();
#endif /* ETHER */

#if NETWORKING
	/* Call any kext code that wants to run just after network init */
	bsd_init_kprintf("calling net_init_run\n");
	net_init_run();
	
	/* register user tunnel kernel control handler */
	utun_register_control();
#endif /* NETWORKING */

	bsd_init_kprintf("calling vnode_pager_bootstrap\n");
	vnode_pager_bootstrap();
#if 0
	/* XXX Hack for early debug stop */
	printf("\nabout to sleep for 10 seconds\n");
	IOSleep( 10 * 1000 );
	/* Debugger("hello"); */
#endif

	bsd_init_kprintf("calling inittodr\n");
	inittodr(0);

#if CONFIG_EMBEDDED
	{
		/* print out early VM statistics */
		kern_return_t kr1;
		vm_statistics_data_t stat;
		mach_msg_type_number_t count;

		count = HOST_VM_INFO_COUNT;
		kr1 = host_statistics(host_self(),
				      HOST_VM_INFO,
				      (host_info_t)&stat,
				      &count);
		kprintf("Mach Virtual Memory Statistics (page size of 4096) bytes\n"
			"Pages free:\t\t\t%u.\n"
			"Pages active:\t\t\t%u.\n"
			"Pages inactive:\t\t\t%u.\n"
			"Pages wired down:\t\t%u.\n"
			"\"Translation faults\":\t\t%u.\n"
			"Pages copy-on-write:\t\t%u.\n"
			"Pages zero filled:\t\t%u.\n"
			"Pages reactivated:\t\t%u.\n"
			"Pageins:\t\t\t%u.\n"
			"Pageouts:\t\t\t%u.\n"
			"Object cache: %u hits of %u lookups (%d%% hit rate)\n",

			stat.free_count,
			stat.active_count,
			stat.inactive_count,
			stat.wire_count,
			stat.faults,
			stat.cow_faults,
			stat.zero_fill_count,
			stat.reactivations,
			stat.pageins,
			stat.pageouts,
			stat.hits,
			stat.lookups,
			(stat.hits == 0) ? 100 :
			                   ((stat.lookups * 100) / stat.hits));
	}
#endif /* CONFIG_EMBEDDED */
	
	/* Mount the root file system. */
	while( TRUE) {
		int err;

		bsd_init_kprintf("calling setconf\n");
		setconf();

		bsd_init_kprintf("vfs_mountroot\n");
		if (0 == (err = vfs_mountroot()))
			break;
		rootdevice[0] = '\0';
#if NFSCLIENT
		if (mountroot == netboot_mountroot) {
			PE_display_icon( 0, "noroot");  /* XXX a netboot-specific icon would be nicer */
			vc_progress_set(FALSE, 0);
			for (i=1; 1; i*=2) {
				printf("bsd_init: failed to mount network root, error %d, %s\n",
					err, PE_boot_args());
				printf("We are hanging here...\n");
				IOSleep(i*60*1000);
			}
			/*NOTREACHED*/
		}
#endif
		printf("cannot mount root, errno = %d\n", err);
		boothowto |= RB_ASKNAME;
	}

	IOSecureBSDRoot(rootdevice);

	context.vc_thread = current_thread();
	context.vc_ucred = kernproc->p_ucred;
	mountlist.tqh_first->mnt_flag |= MNT_ROOTFS;

	bsd_init_kprintf("calling VFS_ROOT\n");
	/* Get the vnode for '/'.  Set fdp->fd_fd.fd_cdir to reference it. */
	if (VFS_ROOT(mountlist.tqh_first, &rootvnode, &context))
		panic("bsd_init: cannot find root vnode: %s", PE_boot_args());
	rootvnode->v_flag |= VROOT;
	(void)vnode_ref(rootvnode);
	(void)vnode_put(rootvnode);
	filedesc0.fd_cdir = rootvnode;

#if NFSCLIENT
	if (mountroot == netboot_mountroot) {
		int err;
		/* post mount setup */
		if ((err = netboot_setup()) != 0) {
			PE_display_icon( 0, "noroot");  /* XXX a netboot-specific icon would be nicer */
			vc_progress_set(FALSE, 0);
			for (i=1; 1; i*=2) {
				printf("bsd_init: NetBoot could not find root, error %d: %s\n",
					err, PE_boot_args());
				printf("We are hanging here...\n");
				IOSleep(i*60*1000);
			}
			/*NOTREACHED*/
		}
	}
#endif
	

#if CONFIG_IMAGEBOOT
	/*
	 * See if a system disk image is present. If so, mount it and
	 * switch the root vnode to point to it
	 */ 
  
	if(imageboot_needed()) {
		int err;

		/* An image was found */
		if((err = imageboot_setup())) {
			/*
			 * this is not fatal. Keep trying to root
			 * off the original media
			 */
			printf("%s: imageboot could not find root, %d\n",
				__FUNCTION__, err);
		}
	}
#endif /* CONFIG_IMAGEBOOT */
  
	/* set initial time; all other resource data is  already zero'ed */
	microtime(&kernproc->p_start);
	kernproc->p_stats->p_start = kernproc->p_start;	/* for compat */

#if DEVFS
	{
	    char mounthere[] = "/dev";	/* !const because of internal casting */

	    bsd_init_kprintf("calling devfs_kernel_mount\n");
	    devfs_kernel_mount(mounthere);
	}
#endif /* DEVFS */
	
	/* Initialize signal state for process 0. */
	bsd_init_kprintf("calling siginit\n");
	siginit(kernproc);

	bsd_init_kprintf("calling bsd_utaskbootstrap\n");
	bsd_utaskbootstrap();

#if defined(__LP64__)
	kernproc->p_flag |= P_LP64;
	printf("Kernel is LP64\n");
#endif
#if __i386__ || __x86_64__
	/* this should be done after the root filesystem is mounted */
	error = set_archhandler(kernproc, CPU_TYPE_POWERPC);
	// 10/30/08 - gab: <rdar://problem/6324501>
	// if default 'translate' can't be found, see if the understudy is available
	if (ENOENT == error) {
		strlcpy(exec_archhandler_ppc.path, kRosettaStandIn_str, MAXPATHLEN);
		error = set_archhandler(kernproc, CPU_TYPE_POWERPC);
	}
	if (error) /* XXX make more generic */
		exec_archhandler_ppc.path[0] = 0;
#endif	

	bsd_init_kprintf("calling mountroot_post_hook\n");

	/* invoke post-root-mount hook */
	if (mountroot_post_hook != NULL)
		mountroot_post_hook();

#if 0 /* not yet */
	consider_zone_gc(FALSE);
#endif

	bsd_init_kprintf("done\n");
}