Example #1
0
/**
 * i40e_ptp_init - Initialize the 1588 support after device probe or reset
 * @pf: Board private structure
 *
 * This function sets device up for 1588 support. The first time it is run, it
 * will create a PHC clock device. It does not create a clock device if one
 * already exists. It also reconfigures the device after a reset.
 **/
void i40e_ptp_init(struct i40e_pf *pf)
{
	struct net_device *netdev = pf->vsi[pf->lan_vsi]->netdev;
	struct i40e_hw *hw = &pf->hw;
	u32 pf_id;
	long err;

	/* Only one PF is assigned to control 1588 logic per port. Do not
	 * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID
	 */
	pf_id = (rd32(hw, I40E_PRTTSYN_CTL0) & I40E_PRTTSYN_CTL0_PF_ID_MASK) >>
		I40E_PRTTSYN_CTL0_PF_ID_SHIFT;
	if (hw->pf_id != pf_id) {
		pf->flags &= ~I40E_FLAG_PTP;
		dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n",
			 __func__,
			 netdev->name);
		return;
	}

	/* we have to initialize the lock first, since we can't control
	 * when the user will enter the PHC device entry points
	 */
	spin_lock_init(&pf->tmreg_lock);

	/* ensure we have a clock device */
	err = i40e_ptp_create_clock(pf);
	if (err) {
		pf->ptp_clock = NULL;
		dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n",
			__func__);
	} else {
		struct timespec64 ts;
		u32 regval;

		dev_info(&pf->pdev->dev, "%s: added PHC on %s\n", __func__,
			 netdev->name);
		pf->flags |= I40E_FLAG_PTP;

		/* Ensure the clocks are running. */
		regval = rd32(hw, I40E_PRTTSYN_CTL0);
		regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK;
		wr32(hw, I40E_PRTTSYN_CTL0, regval);
		regval = rd32(hw, I40E_PRTTSYN_CTL1);
		regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
		wr32(hw, I40E_PRTTSYN_CTL1, regval);

		/* Set the increment value per clock tick. */
		i40e_ptp_set_increment(pf);

		/* reset timestamping mode */
		i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config);

		/* Set the clock value. */
		ts = ktime_to_timespec64(ktime_get_real());
		i40e_ptp_settime(&pf->ptp_caps, &ts);
	}
}
Example #2
0
File: lib.c Project: Anjali05/linux
/*
 * Convert ktime to rtc_time
 */
struct rtc_time rtc_ktime_to_tm(ktime_t kt)
{
	struct timespec64 ts;
	struct rtc_time ret;

	ts = ktime_to_timespec64(kt);
	/* Round up any ns */
	if (ts.tv_nsec)
		ts.tv_sec++;
	rtc_time64_to_tm(ts.tv_sec, &ret);
	return ret;
}
Example #3
0
/**
 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
 * @adapter: Board private structure.
 *
 * This function handles the reset work required to re-enable the PTP device.
 **/
void igb_ptp_reset(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned long flags;

	/* reset the tstamp_config */
	igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);

	spin_lock_irqsave(&adapter->tmreg_lock, flags);

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* Dial the nominal frequency. */
		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
		break;
	case e1000_82580:
	case e1000_i354:
	case e1000_i350:
	case e1000_i210:
	case e1000_i211:
		wr32(E1000_TSAUXC, 0x0);
		wr32(E1000_TSSDP, 0x0);
		wr32(E1000_TSIM,
		     TSYNC_INTERRUPTS |
		     (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
		wr32(E1000_IMS, E1000_IMS_TS);
		break;
	default:
		/* No work to do. */
		goto out;
	}

	/* Re-initialize the timer. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
		struct timespec64 ts = ktime_to_timespec64(ktime_get_real());

		igb_ptp_write_i210(adapter, &ts);
	} else {
		timecounter_init(&adapter->tc, &adapter->cc,
				 ktime_to_ns(ktime_get_real()));
	}
out:
	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);

	wrfl();

	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
		schedule_delayed_work(&adapter->ptp_overflow_work,
				      IGB_SYSTIM_OVERFLOW_PERIOD);
}
Example #4
0
/**
 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
 * @adapter: Board private structure.
 *
 * This function handles the reset work required to re-enable the PTP device.
 **/
void igb_ptp_reset(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	unsigned long flags;

	if (!(adapter->flags & IGB_FLAG_PTP))
		return;

	/* reset the tstamp_config */
	igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);

	spin_lock_irqsave(&adapter->tmreg_lock, flags);

	switch (adapter->hw.mac.type) {
	case e1000_82576:
		/* Dial the nominal frequency. */
		E1000_WRITE_REG(hw, E1000_TIMINCA, INCPERIOD_82576 |
						   INCVALUE_82576);
		break;
	case e1000_82580:
	case e1000_i350:
	case e1000_i354:
	case e1000_i210:
	case e1000_i211:
		E1000_WRITE_REG(hw, E1000_TSAUXC, 0x0);
		E1000_WRITE_REG(hw, E1000_TSSDP, 0x0);
		E1000_WRITE_REG(hw, E1000_TSIM, TSYNC_INTERRUPTS);
		E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_TS);
		break;
	default:
		/* No work to do. */
		goto out;
	}

	/* Re-initialize the timer. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
		struct timespec64 ts64 = ktime_to_timespec64(ktime_get_real());

		igb_ptp_write_i210(adapter, &ts64);
	} else {
		timecounter_init(&adapter->tc, &adapter->cc,
				 ktime_to_ns(ktime_get_real()));
	}
out:
	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
}
Example #5
0
/**
 * i40e_ptp_create_clock - Create PTP clock device for userspace
 * @pf: Board private structure
 *
 * This function creates a new PTP clock device. It only creates one if we
 * don't already have one, so it is safe to call. Will return error if it
 * can't create one, but success if we already have a device. Should be used
 * by i40e_ptp_init to create clock initially, and prevent global resets from
 * creating new clock devices.
 **/
static long i40e_ptp_create_clock(struct i40e_pf *pf)
{
	/* no need to create a clock device if we already have one */
	if (!IS_ERR_OR_NULL(pf->ptp_clock))
		return 0;

	strlcpy(pf->ptp_caps.name, i40e_driver_name,
		sizeof(pf->ptp_caps.name) - 1);
	pf->ptp_caps.owner = THIS_MODULE;
	pf->ptp_caps.max_adj = 999999999;
	pf->ptp_caps.n_ext_ts = 0;
	pf->ptp_caps.pps = 0;
	pf->ptp_caps.adjfreq = i40e_ptp_adjfreq;
	pf->ptp_caps.adjtime = i40e_ptp_adjtime;
	pf->ptp_caps.gettimex64 = i40e_ptp_gettimex;
	pf->ptp_caps.settime64 = i40e_ptp_settime;
	pf->ptp_caps.enable = i40e_ptp_feature_enable;

	/* Attempt to register the clock before enabling the hardware. */
	pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev);
	if (IS_ERR(pf->ptp_clock))
		return PTR_ERR(pf->ptp_clock);

	/* clear the hwtstamp settings here during clock create, instead of
	 * during regular init, so that we can maintain settings across a
	 * reset or suspend.
	 */
	pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
	pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF;

	/* Set the previous "reset" time to the current Kernel clock time */
	pf->ptp_prev_hw_time = ktime_to_timespec64(ktime_get_real());
	pf->ptp_reset_start = ktime_get();

	return 0;
}
Example #6
0
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
{
	struct restart_block *restart;

	hrtimer_init_sleeper(t, current);

	do {
		set_current_state(TASK_INTERRUPTIBLE);
		hrtimer_start_expires(&t->timer, mode);

		if (likely(t->task))
			freezable_schedule();

		hrtimer_cancel(&t->timer);
		mode = HRTIMER_MODE_ABS;

	} while (t->task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);

	if (!t->task)
		return 0;

	restart = &current->restart_block;
	if (restart->nanosleep.type != TT_NONE) {
		ktime_t rem = hrtimer_expires_remaining(&t->timer);
		struct timespec64 rmt;

		if (rem <= 0)
			return 0;
		rmt = ktime_to_timespec64(rem);

		return nanosleep_copyout(restart, &rmt);
	}
	return -ERESTART_RESTARTBLOCK;
}
Example #7
0
long ptp_ioctl(struct posix_clock *pc, unsigned int cmd, unsigned long arg)
{
	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
	struct ptp_sys_offset_extended *extoff = NULL;
	struct ptp_sys_offset_precise precise_offset;
	struct system_device_crosststamp xtstamp;
	struct ptp_clock_info *ops = ptp->info;
	struct ptp_sys_offset *sysoff = NULL;
	struct ptp_system_timestamp sts;
	struct ptp_clock_request req;
	struct ptp_clock_caps caps;
	struct ptp_clock_time *pct;
	unsigned int i, pin_index;
	struct ptp_pin_desc pd;
	struct timespec64 ts;
	int enable, err = 0;

	switch (cmd) {

	case PTP_CLOCK_GETCAPS:
		memset(&caps, 0, sizeof(caps));
		caps.max_adj = ptp->info->max_adj;
		caps.n_alarm = ptp->info->n_alarm;
		caps.n_ext_ts = ptp->info->n_ext_ts;
		caps.n_per_out = ptp->info->n_per_out;
		caps.pps = ptp->info->pps;
		caps.n_pins = ptp->info->n_pins;
		caps.cross_timestamping = ptp->info->getcrosststamp != NULL;
		if (copy_to_user((void __user *)arg, &caps, sizeof(caps)))
			err = -EFAULT;
		break;

	case PTP_EXTTS_REQUEST:
		if (copy_from_user(&req.extts, (void __user *)arg,
				   sizeof(req.extts))) {
			err = -EFAULT;
			break;
		}
		if (req.extts.index >= ops->n_ext_ts) {
			err = -EINVAL;
			break;
		}
		req.type = PTP_CLK_REQ_EXTTS;
		enable = req.extts.flags & PTP_ENABLE_FEATURE ? 1 : 0;
		err = ops->enable(ops, &req, enable);
		break;

	case PTP_PEROUT_REQUEST:
		if (copy_from_user(&req.perout, (void __user *)arg,
				   sizeof(req.perout))) {
			err = -EFAULT;
			break;
		}
		if (req.perout.index >= ops->n_per_out) {
			err = -EINVAL;
			break;
		}
		req.type = PTP_CLK_REQ_PEROUT;
		enable = req.perout.period.sec || req.perout.period.nsec;
		err = ops->enable(ops, &req, enable);
		break;

	case PTP_ENABLE_PPS:
		if (!capable(CAP_SYS_TIME))
			return -EPERM;
		req.type = PTP_CLK_REQ_PPS;
		enable = arg ? 1 : 0;
		err = ops->enable(ops, &req, enable);
		break;

	case PTP_SYS_OFFSET_PRECISE:
		if (!ptp->info->getcrosststamp) {
			err = -EOPNOTSUPP;
			break;
		}
		err = ptp->info->getcrosststamp(ptp->info, &xtstamp);
		if (err)
			break;

		memset(&precise_offset, 0, sizeof(precise_offset));
		ts = ktime_to_timespec64(xtstamp.device);
		precise_offset.device.sec = ts.tv_sec;
		precise_offset.device.nsec = ts.tv_nsec;
		ts = ktime_to_timespec64(xtstamp.sys_realtime);
		precise_offset.sys_realtime.sec = ts.tv_sec;
		precise_offset.sys_realtime.nsec = ts.tv_nsec;
		ts = ktime_to_timespec64(xtstamp.sys_monoraw);
		precise_offset.sys_monoraw.sec = ts.tv_sec;
		precise_offset.sys_monoraw.nsec = ts.tv_nsec;
		if (copy_to_user((void __user *)arg, &precise_offset,
				 sizeof(precise_offset)))
			err = -EFAULT;
		break;

	case PTP_SYS_OFFSET_EXTENDED:
		if (!ptp->info->gettimex64) {
			err = -EOPNOTSUPP;
			break;
		}
		extoff = memdup_user((void __user *)arg, sizeof(*extoff));
		if (IS_ERR(extoff)) {
			err = PTR_ERR(extoff);
			extoff = NULL;
			break;
		}
		if (extoff->n_samples > PTP_MAX_SAMPLES
		    || extoff->rsv[0] || extoff->rsv[1] || extoff->rsv[2]) {
			err = -EINVAL;
			break;
		}
		for (i = 0; i < extoff->n_samples; i++) {
			err = ptp->info->gettimex64(ptp->info, &ts, &sts);
			if (err)
				goto out;
			extoff->ts[i][0].sec = sts.pre_ts.tv_sec;
			extoff->ts[i][0].nsec = sts.pre_ts.tv_nsec;
			extoff->ts[i][1].sec = ts.tv_sec;
			extoff->ts[i][1].nsec = ts.tv_nsec;
			extoff->ts[i][2].sec = sts.post_ts.tv_sec;
			extoff->ts[i][2].nsec = sts.post_ts.tv_nsec;
		}
		if (copy_to_user((void __user *)arg, extoff, sizeof(*extoff)))
			err = -EFAULT;
		break;

	case PTP_SYS_OFFSET:
		sysoff = memdup_user((void __user *)arg, sizeof(*sysoff));
		if (IS_ERR(sysoff)) {
			err = PTR_ERR(sysoff);
			sysoff = NULL;
			break;
		}
		if (sysoff->n_samples > PTP_MAX_SAMPLES) {
			err = -EINVAL;
			break;
		}
		pct = &sysoff->ts[0];
		for (i = 0; i < sysoff->n_samples; i++) {
			ktime_get_real_ts64(&ts);
			pct->sec = ts.tv_sec;
			pct->nsec = ts.tv_nsec;
			pct++;
			if (ops->gettimex64)
				err = ops->gettimex64(ops, &ts, NULL);
			else
				err = ops->gettime64(ops, &ts);
			if (err)
				goto out;
			pct->sec = ts.tv_sec;
			pct->nsec = ts.tv_nsec;
			pct++;
		}
		ktime_get_real_ts64(&ts);
		pct->sec = ts.tv_sec;
		pct->nsec = ts.tv_nsec;
		if (copy_to_user((void __user *)arg, sysoff, sizeof(*sysoff)))
			err = -EFAULT;
		break;

	case PTP_PIN_GETFUNC:
		if (copy_from_user(&pd, (void __user *)arg, sizeof(pd))) {
			err = -EFAULT;
			break;
		}
		pin_index = pd.index;
		if (pin_index >= ops->n_pins) {
			err = -EINVAL;
			break;
		}
		pin_index = array_index_nospec(pin_index, ops->n_pins);
		if (mutex_lock_interruptible(&ptp->pincfg_mux))
			return -ERESTARTSYS;
		pd = ops->pin_config[pin_index];
		mutex_unlock(&ptp->pincfg_mux);
		if (!err && copy_to_user((void __user *)arg, &pd, sizeof(pd)))
			err = -EFAULT;
		break;

	case PTP_PIN_SETFUNC:
		if (copy_from_user(&pd, (void __user *)arg, sizeof(pd))) {
			err = -EFAULT;
			break;
		}
		pin_index = pd.index;
		if (pin_index >= ops->n_pins) {
			err = -EINVAL;
			break;
		}
		pin_index = array_index_nospec(pin_index, ops->n_pins);
		if (mutex_lock_interruptible(&ptp->pincfg_mux))
			return -ERESTARTSYS;
		err = ptp_set_pinfunc(ptp, pin_index, pd.func, pd.chan);
		mutex_unlock(&ptp->pincfg_mux);
		break;

	default:
		err = -ENOTTY;
		break;
	}

out:
	kfree(extoff);
	kfree(sysoff);
	return err;
}
Example #8
0
/* This is an inline function, we don't really care about a long
 * list of arguments */
static inline int
__build_packet_message(struct nfnl_log_net *log,
			struct nfulnl_instance *inst,
			const struct sk_buff *skb,
			unsigned int data_len,
			u_int8_t pf,
			unsigned int hooknum,
			const struct net_device *indev,
			const struct net_device *outdev,
			const char *prefix, unsigned int plen,
			const struct nfnl_ct_hook *nfnl_ct,
			struct nf_conn *ct, enum ip_conntrack_info ctinfo)
{
	struct nfulnl_msg_packet_hdr pmsg;
	struct nlmsghdr *nlh;
	struct nfgenmsg *nfmsg;
	sk_buff_data_t old_tail = inst->skb->tail;
	struct sock *sk;
	const unsigned char *hwhdrp;

	nlh = nlmsg_put(inst->skb, 0, 0,
			nfnl_msg_type(NFNL_SUBSYS_ULOG, NFULNL_MSG_PACKET),
			sizeof(struct nfgenmsg), 0);
	if (!nlh)
		return -1;
	nfmsg = nlmsg_data(nlh);
	nfmsg->nfgen_family = pf;
	nfmsg->version = NFNETLINK_V0;
	nfmsg->res_id = htons(inst->group_num);

	memset(&pmsg, 0, sizeof(pmsg));
	pmsg.hw_protocol	= skb->protocol;
	pmsg.hook		= hooknum;

	if (nla_put(inst->skb, NFULA_PACKET_HDR, sizeof(pmsg), &pmsg))
		goto nla_put_failure;

	if (prefix &&
	    nla_put(inst->skb, NFULA_PREFIX, plen, prefix))
		goto nla_put_failure;

	if (indev) {
#if !IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
		if (nla_put_be32(inst->skb, NFULA_IFINDEX_INDEV,
				 htonl(indev->ifindex)))
			goto nla_put_failure;
#else
		if (pf == PF_BRIDGE) {
			/* Case 1: outdev is physical input device, we need to
			 * look for bridge group (when called from
			 * netfilter_bridge) */
			if (nla_put_be32(inst->skb, NFULA_IFINDEX_PHYSINDEV,
					 htonl(indev->ifindex)) ||
			/* this is the bridge group "brX" */
			/* rcu_read_lock()ed by nf_hook_thresh or
			 * nf_log_packet.
			 */
			    nla_put_be32(inst->skb, NFULA_IFINDEX_INDEV,
					 htonl(br_port_get_rcu(indev)->br->dev->ifindex)))
				goto nla_put_failure;
		} else {
			struct net_device *physindev;

			/* Case 2: indev is bridge group, we need to look for
			 * physical device (when called from ipv4) */
			if (nla_put_be32(inst->skb, NFULA_IFINDEX_INDEV,
					 htonl(indev->ifindex)))
				goto nla_put_failure;

			physindev = nf_bridge_get_physindev(skb);
			if (physindev &&
			    nla_put_be32(inst->skb, NFULA_IFINDEX_PHYSINDEV,
					 htonl(physindev->ifindex)))
				goto nla_put_failure;
		}
#endif
	}

	if (outdev) {
#if !IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
		if (nla_put_be32(inst->skb, NFULA_IFINDEX_OUTDEV,
				 htonl(outdev->ifindex)))
			goto nla_put_failure;
#else
		if (pf == PF_BRIDGE) {
			/* Case 1: outdev is physical output device, we need to
			 * look for bridge group (when called from
			 * netfilter_bridge) */
			if (nla_put_be32(inst->skb, NFULA_IFINDEX_PHYSOUTDEV,
					 htonl(outdev->ifindex)) ||
			/* this is the bridge group "brX" */
			/* rcu_read_lock()ed by nf_hook_thresh or
			 * nf_log_packet.
			 */
			    nla_put_be32(inst->skb, NFULA_IFINDEX_OUTDEV,
					 htonl(br_port_get_rcu(outdev)->br->dev->ifindex)))
				goto nla_put_failure;
		} else {
			struct net_device *physoutdev;

			/* Case 2: indev is a bridge group, we need to look
			 * for physical device (when called from ipv4) */
			if (nla_put_be32(inst->skb, NFULA_IFINDEX_OUTDEV,
					 htonl(outdev->ifindex)))
				goto nla_put_failure;

			physoutdev = nf_bridge_get_physoutdev(skb);
			if (physoutdev &&
			    nla_put_be32(inst->skb, NFULA_IFINDEX_PHYSOUTDEV,
					 htonl(physoutdev->ifindex)))
				goto nla_put_failure;
		}
#endif
	}

	if (skb->mark &&
	    nla_put_be32(inst->skb, NFULA_MARK, htonl(skb->mark)))
		goto nla_put_failure;

	if (indev && skb->dev &&
	    skb->mac_header != skb->network_header) {
		struct nfulnl_msg_packet_hw phw;
		int len;

		memset(&phw, 0, sizeof(phw));
		len = dev_parse_header(skb, phw.hw_addr);
		if (len > 0) {
			phw.hw_addrlen = htons(len);
			if (nla_put(inst->skb, NFULA_HWADDR, sizeof(phw), &phw))
				goto nla_put_failure;
		}
	}

	if (indev && skb_mac_header_was_set(skb)) {
		if (nla_put_be16(inst->skb, NFULA_HWTYPE, htons(skb->dev->type)) ||
		    nla_put_be16(inst->skb, NFULA_HWLEN,
				 htons(skb->dev->hard_header_len)))
			goto nla_put_failure;

		hwhdrp = skb_mac_header(skb);

		if (skb->dev->type == ARPHRD_SIT)
			hwhdrp -= ETH_HLEN;

		if (hwhdrp >= skb->head &&
		    nla_put(inst->skb, NFULA_HWHEADER,
			    skb->dev->hard_header_len, hwhdrp))
			goto nla_put_failure;
	}

	if (skb->tstamp) {
		struct nfulnl_msg_packet_timestamp ts;
		struct timespec64 kts = ktime_to_timespec64(skb->tstamp);
		ts.sec = cpu_to_be64(kts.tv_sec);
		ts.usec = cpu_to_be64(kts.tv_nsec / NSEC_PER_USEC);

		if (nla_put(inst->skb, NFULA_TIMESTAMP, sizeof(ts), &ts))
			goto nla_put_failure;
	}

	/* UID */
	sk = skb->sk;
	if (sk && sk_fullsock(sk)) {
		read_lock_bh(&sk->sk_callback_lock);
		if (sk->sk_socket && sk->sk_socket->file) {
			struct file *file = sk->sk_socket->file;
			const struct cred *cred = file->f_cred;
			struct user_namespace *user_ns = inst->peer_user_ns;
			__be32 uid = htonl(from_kuid_munged(user_ns, cred->fsuid));
			__be32 gid = htonl(from_kgid_munged(user_ns, cred->fsgid));
			read_unlock_bh(&sk->sk_callback_lock);
			if (nla_put_be32(inst->skb, NFULA_UID, uid) ||
			    nla_put_be32(inst->skb, NFULA_GID, gid))
				goto nla_put_failure;
		} else
			read_unlock_bh(&sk->sk_callback_lock);
	}

	/* local sequence number */
	if ((inst->flags & NFULNL_CFG_F_SEQ) &&
	    nla_put_be32(inst->skb, NFULA_SEQ, htonl(inst->seq++)))
		goto nla_put_failure;

	/* global sequence number */
	if ((inst->flags & NFULNL_CFG_F_SEQ_GLOBAL) &&
	    nla_put_be32(inst->skb, NFULA_SEQ_GLOBAL,
			 htonl(atomic_inc_return(&log->global_seq))))
		goto nla_put_failure;

	if (ct && nfnl_ct->build(inst->skb, ct, ctinfo,
				 NFULA_CT, NFULA_CT_INFO) < 0)
		goto nla_put_failure;

	if (data_len) {
		struct nlattr *nla;
		int size = nla_attr_size(data_len);

		if (skb_tailroom(inst->skb) < nla_total_size(data_len))
			goto nla_put_failure;

		nla = skb_put(inst->skb, nla_total_size(data_len));
		nla->nla_type = NFULA_PAYLOAD;
		nla->nla_len = size;

		if (skb_copy_bits(skb, 0, nla_data(nla), data_len))
			BUG();
	}

	nlh->nlmsg_len = inst->skb->tail - old_tail;
	return 0;

nla_put_failure:
	PRINTR(KERN_ERR "nfnetlink_log: error creating log nlmsg\n");
	return -1;
}
Example #9
0
void igb_ptp_init(struct igb_adapter *adapter)
{
	struct e1000_hw *hw = &adapter->hw;
	struct net_device *netdev = adapter->netdev;
#ifdef HAVE_PTP_1588_CLOCK_PINS
	int i;
#endif /* HAVE_PTP_1588_CLOCK_PINS */

	switch (hw->mac.type) {
	case e1000_82576:
		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
		adapter->ptp_caps.owner = THIS_MODULE;
		adapter->ptp_caps.max_adj = 999999881;
		adapter->ptp_caps.n_ext_ts = 0;
		adapter->ptp_caps.pps = 0;
		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
#ifdef HAVE_PTP_CLOCK_INFO_GETTIME64
		adapter->ptp_caps.gettime64 = igb_ptp_gettime64_82576;
		adapter->ptp_caps.settime64 = igb_ptp_settime64_82576;
#else
		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
		adapter->ptp_caps.settime = igb_ptp_settime_82576;
#endif
		adapter->ptp_caps.enable = igb_ptp_feature_enable;
		adapter->cc.read = igb_ptp_read_82576;
		adapter->cc.mask = CLOCKSOURCE_MASK(64);
		adapter->cc.mult = 1;
		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
		/* Dial the nominal frequency. */
		E1000_WRITE_REG(hw, E1000_TIMINCA,
				INCPERIOD_82576 | INCVALUE_82576);
		break;
	case e1000_82580:
	case e1000_i350:
	case e1000_i354:
		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
		adapter->ptp_caps.owner = THIS_MODULE;
		adapter->ptp_caps.max_adj = 62499999;
		adapter->ptp_caps.n_ext_ts = 0;
		adapter->ptp_caps.pps = 0;
		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
#ifdef HAVE_PTP_CLOCK_INFO_GETTIME64
		adapter->ptp_caps.gettime64 = igb_ptp_gettime64_82576;
		adapter->ptp_caps.settime64 = igb_ptp_settime64_82576;
#else
		adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
		adapter->ptp_caps.settime = igb_ptp_settime_82576;
#endif
		adapter->ptp_caps.enable = igb_ptp_feature_enable;
		adapter->cc.read = igb_ptp_read_82580;
		adapter->cc.mask = CLOCKSOURCE_MASK(IGB_NBITS_82580);
		adapter->cc.mult = 1;
		adapter->cc.shift = 0;
		/* Enable the timer functions by clearing bit 31. */
		E1000_WRITE_REG(hw, E1000_TSAUXC, 0x0);
		break;
	case e1000_i210:
	case e1000_i211:
#ifdef HAVE_PTP_1588_CLOCK_PINS
		for (i = 0; i < IGB_N_SDP; i++) {
			struct ptp_pin_desc *ppd = &adapter->sdp_config[i];

			snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
			ppd->index = i;
			ppd->func = PTP_PF_NONE;
		}
#endif /* HAVE_PTP_1588_CLOCK_PINS */
		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
		adapter->ptp_caps.owner = THIS_MODULE;
		adapter->ptp_caps.max_adj = 62499999;
		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
#ifdef HAVE_PTP_1588_CLOCK_PINS
		adapter->ptp_caps.n_pins = IGB_N_SDP;
#endif /* HAVE_PTP_1588_CLOCK_PINS */
		adapter->ptp_caps.pps = 1;
#ifdef HAVE_PTP_1588_CLOCK_PINS
		adapter->ptp_caps.pin_config = adapter->sdp_config;
#endif /* HAVE_PTP_1588_CLOCK_PINS */
		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
#ifdef HAVE_PTP_CLOCK_INFO_GETTIME64
		adapter->ptp_caps.gettime64 = igb_ptp_gettime64_i210;
		adapter->ptp_caps.settime64 = igb_ptp_settime64_i210;
#else
		adapter->ptp_caps.gettime = igb_ptp_gettime_i210;
		adapter->ptp_caps.settime = igb_ptp_settime_i210;
#endif
		adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
#ifdef HAVE_PTP_1588_CLOCK_PINS
		adapter->ptp_caps.verify = igb_ptp_verify_pin;
#endif /* HAVE_PTP_1588_CLOCK_PINS */
		/* Enable the timer functions by clearing bit 31. */
		E1000_WRITE_REG(hw, E1000_TSAUXC, 0x0);
		break;
	default:
		adapter->ptp_clock = NULL;
		return;
	}

	E1000_WRITE_FLUSH(hw);

	spin_lock_init(&adapter->tmreg_lock);
	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);

	/* Initialize the clock and overflow work for devices that need it. */
	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
		struct timespec64 ts = ktime_to_timespec64(ktime_get_real());

		igb_ptp_settime64_i210(&adapter->ptp_caps, &ts);
	} else {
		timecounter_init(&adapter->tc, &adapter->cc,
				 ktime_to_ns(ktime_get_real()));

		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
				  igb_ptp_overflow_check_82576);

		schedule_delayed_work(&adapter->ptp_overflow_work,
				      IGB_SYSTIM_OVERFLOW_PERIOD);
	}

	/* Initialize the time sync interrupts for devices that support it. */
	if (hw->mac.type >= e1000_82580) {
		E1000_WRITE_REG(hw, E1000_TSIM, TSYNC_INTERRUPTS);
		E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_TS);
	}

	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;

	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
						&adapter->pdev->dev);
	if (IS_ERR(adapter->ptp_clock)) {
		adapter->ptp_clock = NULL;
		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
	} else {
		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
			 adapter->netdev->name);
		adapter->flags |= IGB_FLAG_PTP;
	}
}