Example #1
0
File: bm3d.c Project: yxliang/BM3D
// performs a check, whether two given blocks are similar
double get_block_distance (block_t* ref_block, block_t* cmp_block, int const sigma, double const th_2d) {
	int const bs = ref_block->block_size;
	double ref_mat[bs][bs];
	double cmp_mat[bs][bs];
	double sub_mat[bs][bs];
	double distance = 0.0;

	// subtract 128 for DCT transformation
	shift_values (bs, ref_block, ref_mat);
	shift_values (bs, cmp_block, cmp_mat);

	// perform DCT on reference block by two matrix multiplications
	dct_2d (bs, ref_mat);

	// perform DCT on compare block by two matrix multiplications
	dct_2d (bs, cmp_mat);

	// perform thresholding on reference block
	hard_threshold_2d (bs, ref_mat, th_2d, sigma);

	// perform thresholding on compare block
	hard_threshold_2d (bs, cmp_mat, th_2d, sigma);

	// subtract compare block from reference block
	subtract_blocks (bs, ref_mat, cmp_mat, sub_mat);

	// perform L2 norm on the difference of the two matrices
	distance = l2_norm(bs, sub_mat) / (double)bs;

	return distance;
}
Example #2
0
void Utility::l2_normalize(std::vector<float>& v){
	float norm = l2_norm(v);
	if(norm == 0.f){
		std::cerr << "0 norm" << std::endl;
		exit(1);
	}
	std::for_each(v.begin(), v.end(), [&](float& v){v /= norm;});
}
bool CVertexRingElement::_updateRotationMatrixSolidOrShell(const int isshell, const Vector3d* vertexpos)
{
	const double ERRTOL = 1e-4;
	double3x3 A;
	int rank, dim=3;
	m_quat0 = m_quat;	//save last quat, also use it as the initial guess
	m_R0 = m_R;

	//asemble the matrix
	const int strideP = sizeof(CVertexRingNode);
	const int strideQ = sizeof(Vector3d);
	const int strideW = sizeof(CVertexRingNode);
	const double *P = &m_pVertexRingNode[0].m_lpos0.x;
	const double *Q = &vertexpos[0].x;
	const double *Weight = &m_pVertexRingNode[0].m_weight;
	_computeLeastSquareMatrix(m_nv, P, strideP, Q, strideQ, Weight, strideW, A);
	//test the sign of delta
	const double delta = A.Det();
	if (delta>=0){
		//polar_decomp(dim, ERRTOL, A.x, m_R.x, rank);
		//return true;

		double Sxx=A.x[0], Sxy=A.x[1], Sxz=A.x[2];
		double Syx=A.x[3], Syy=A.x[4], Syz=A.x[5];
		double Szx=A.x[6], Szy=A.x[7], Szz=A.x[8];
		Matrix2d m;
		m.x[0][0]=Sxx + Syy + Szz, m.x[0][1]=Syz - Szy, m.x[0][2]=Szx - Sxz, m.x[0][3]=Sxy - Syx;
		m.x[1][0]=m.x[0][1], m.x[1][1]=Sxx - Syy - Szz, m.x[1][2]=Sxy + Syx, m.x[1][3]=Szx + Sxz;
		m.x[2][0]=m.x[0][2], m.x[2][1]=m.x[1][2]; m.x[2][2]= - Sxx + Syy - Szz, m.x[2][3]= Syz + Szy;
		m.x[3][0]=m.x[0][3], m.x[3][1]=m.x[1][3], m.x[3][2]=m.x[2][3], m.x[3][3]= - Sxx - Syy + Szz;
		const double ERRTOL = 1e-8;
		double eigenvalue;
		Vector4d quat, guess(m_quat.w, m_quat.x, m_quat.y, m_quat.z);		
		const bool r = RayleighQuotientIteration(m, guess, ERRTOL, quat, eigenvalue);
		m_quat.x=quat[1], m_quat.y=quat[2], m_quat.z=quat[3], m_quat.w=quat[0]; 
		Quaternion *pquat = (Quaternion*)&m_quat.x;
		typedef double M33[3][3];
		pquat->getRotationMatrix(*((M33*)&m_R.x));
		return r;
	}
	//if solid, use lazzy approach to do nothing, since we don't know the axis to flip
	if (!isshell){
		return false;
	}

	//compute relfection of the shell vertices using vertex normal
	bool r = true;
	const double MATRIXDIST = 1.0;
	Vector3d norm = m_normal;
	_computeReflectedLeastSquareMatrix(m_nv, P, strideP, Q, strideQ, Weight, strideW, norm, A);
	polar_decomp(dim, ERRTOL, A.x, m_R.x, rank);
	const double l2dist = l2_norm(m_R, m_R0);
	if (l2dist>=MATRIXDIST) r=false;
	return r;
}
void
recognize_glyph_one (contours gl, int& level, string& best, double& best_rec) {
  array<tree>   disc1;
  array<double> cont1;
  invariants (gl, 1, disc1, cont1);
  array<tree>   disc2;
  array<double> cont2;
  invariants (gl, 2, disc2, cont2);

  best= "";
  best_rec= -100.0;
  for (int i=0; i<N(learned_names); i++)
    if (N(learned_glyphs[i]) == N(gl) && disc1 == learned_disc1[i]) {
      string        name= learned_names[i];
      array<double> cont= learned_cont1[i];
      double        dist= l2_norm (cont - cont1) / sqrt (N(cont1));
      double        rec = 1.0 - dist;
      if (rec > best_rec) { best_rec= rec; best= name; }
      //cout << name << ": " << 100.0 * rec << "%\n";
    }
  if (best != "") {
    //cout << "disc= " << disc1 << "\n";
    //cout << "cont= " << cont1 << "\n";
    level= 1;
    return;
  }

  for (int i=0; i<N(learned_names); i++)
    if (N(learned_glyphs[i]) == N(gl) && disc2 == learned_disc2[i]) {
      string        name= learned_names[i];
      array<double> cont= learned_cont2[i];
      double        dist= l2_norm (cont - cont2) / sqrt (N(cont2));
      double        rec = 1.0 - dist;
      if (rec > best_rec) { best_rec= rec; best= name; }
      //cout << name << ": " << 100.0 * rec << "%\n";
    }
  level= 2;
}
Example #5
0
int main(int argc, char **args) {
	int res = ERR_SUCCESS;

#ifdef WITH_PETSC
	PetscInitialize(&argc, &args, (char *) PETSC_NULL, PETSC_NULL);
#endif
	set_verbose(false);

	if (argc < 2) error("Not enough parameters");

	H1ShapesetLobattoHex shapeset;

	printf("* Loading mesh '%s'\n", args[1]);
	Mesh mesh;
	Mesh3DReader mesh_loader;
	if (!mesh_loader.load(args[1], &mesh)) error("Loading mesh file '%s'\n", args[1]);

	printf("* Setup space #1\n");
	H1Space space1(&mesh, &shapeset);
	space1.set_bc_types(bc_types);

	order3_t o1(2, 2, 2);
	printf("  - Setting uniform order to (%d, %d, %d)\n", o1.x, o1.y, o1.z);
	space1.set_uniform_order(o1);

	printf("* Setup space #2\n");
	H1Space space2(&mesh, &shapeset);
	space2.set_bc_types(bc_types);

	order3_t o2(4, 4, 4);
	printf("  - Setting uniform order to (%d, %d, %d)\n", o2.x, o2.y, o2.z);
	space2.set_uniform_order(o2);

	int ndofs = 0;
	ndofs += space1.assign_dofs();
	ndofs += space2.assign_dofs(ndofs);
	printf("  - Number of DOFs: %d\n", ndofs);

	printf("* Calculating a solution\n");

#if defined WITH_UMFPACK
	UMFPackMatrix mat;
	UMFPackVector rhs;
	UMFPackLinearSolver solver(&mat, &rhs);
#elif defined WITH_PARDISO
	PardisoMatrix mat;
	PardisoVector rhs;
	PardisoLinearSolver solver(&mat, &rhs);
#elif defined WITH_PETSC
	PetscMatrix mat;
	PetscVector rhs;
	PetscLinearSolver solver(&mat, &rhs);
#elif defined WITH_MUMPS
	MumpsMatrix mat;
	MumpsVector rhs;
	MumpsSolver solver(&mat, &rhs);
#endif

	WeakForm wf(2);
	wf.add_matrix_form(0, 0, bilinear_form_1<double, scalar>, bilinear_form_1<ord_t, ord_t>, SYM);
	wf.add_vector_form(0, linear_form_1<double, scalar>, linear_form_1<ord_t, ord_t>);

	wf.add_matrix_form(1, 1, bilinear_form_2<double, scalar>, bilinear_form_2<ord_t, ord_t>, SYM);
	wf.add_vector_form(1, linear_form_2<double, scalar>, linear_form_2<ord_t, ord_t>);

	LinearProblem lp(&wf, Tuple<Space *>(&space1, &space2));

	// assemble stiffness matrix
	Timer assemble_timer("Assembling stiffness matrix");
	assemble_timer.start();
	lp.assemble(&mat, &rhs);
	assemble_timer.stop();

	// solve the stiffness matrix
	Timer solve_timer("Solving stiffness matrix");
	solve_timer.start();
	bool solved = solver.solve();
	solve_timer.stop();

	// output the measured values
	printf("%s: %s (%lf secs)\n", assemble_timer.get_name(), assemble_timer.get_human_time(), assemble_timer.get_seconds());
	printf("%s: %s (%lf secs)\n", solve_timer.get_name(), solve_timer.get_human_time(), solve_timer.get_seconds());

	if (solved) {
		// solution 1
		Solution sln1(&mesh);
		sln1.set_coeff_vector(&space1, solver.get_solution());

		ExactSolution esln1(&mesh, exact_sln_fn_1);
		// norm
		double h1_sln_norm1 = h1_norm(&sln1);
		double h1_err_norm1 = h1_error(&sln1, &esln1);

		printf(" - H1 solution norm:   % le\n", h1_sln_norm1);
		printf(" - H1 error norm:      % le\n", h1_err_norm1);

		double l2_sln_norm1 = l2_norm(&sln1);
		double l2_err_norm1 = l2_error(&sln1, &esln1);
		printf(" - L2 solution norm:   % le\n", l2_sln_norm1);
		printf(" - L2 error norm:      % le\n", l2_err_norm1);

		if (h1_err_norm1 > EPS || l2_err_norm1 > EPS) {
			// calculated solution is not enough precise
			res = ERR_FAILURE;
		}

		// solution 2
		Solution sln2(&mesh);
		sln2.set_coeff_vector(&space2, solver.get_solution());

		ExactSolution esln2(&mesh, exact_sln_fn_2);
		// norm
		double h1_sln_norm2 = h1_norm(&sln2);
		double h1_err_norm2 = h1_error(&sln2, &esln2);

		printf(" - H1 solution norm:   % le\n", h1_sln_norm2);
		printf(" - H1 error norm:      % le\n", h1_err_norm2);

		double l2_sln_norm2 = l2_norm(&sln2);
		double l2_err_norm2 = l2_error(&sln2, &esln2);
		printf(" - L2 solution norm:   % le\n", l2_sln_norm2);
		printf(" - L2 error norm:      % le\n", l2_err_norm2);

		if (h1_err_norm2 > EPS || l2_err_norm2 > EPS) {
			// calculated solution is not enough precise
			res = ERR_FAILURE;
		}

#ifdef OUTPUT_DIR
		// output
		const char *of_name = OUTPUT_DIR "/solution.pos";
		FILE *ofile = fopen(of_name, "w");
		if (ofile != NULL) {
			GmshOutputEngine output(ofile);
			output.out(&sln1, "Uh_1");
			output.out(&esln1, "U1");
			output.out(&sln2, "Uh_2");
			output.out(&esln2, "U2");

			fclose(ofile);
		}
		else {
			warning("Can not open '%s' for writing.", of_name);
		}
#endif
	}

#ifdef WITH_PETSC
	mat.free();
	rhs.free();
	PetscFinalize();
#endif

	TRACE_END;

	return res;
}
Example #6
0
int main(int argc, char **args) {
	int res = ERR_SUCCESS;

#ifdef WITH_PETSC
	PetscInitialize(&argc, &args, (char *) PETSC_NULL, PETSC_NULL);
#endif
	set_verbose(false);

	TRACE_START("trace.txt");
	DEBUG_OUTPUT_ON;
	SET_VERBOSE_LEVEL(0);

	if (argc < 5) error("Not enough parameters");

	sscanf(args[2], "%d", &m);
	sscanf(args[3], "%d", &n);
	sscanf(args[4], "%d", &o);

	printf("* Loading mesh '%s'\n", args[1]);
	Mesh mesh;
	Mesh3DReader mloader;
	if (!mloader.load(args[1], &mesh)) error("Loading mesh file '%s'\n", args[1]);

	H1ShapesetLobattoHex shapeset;
	printf("* Setting the space up\n");
	H1Space space(&mesh, &shapeset);
	space.set_bc_types(bc_types);

	int mx = maxn(4, m, n, o, 4);
	order3_t order(mx, mx, mx);
//	order3_t order(1, 1, 1);
//	order3_t order(m, n, o);
	printf("  - Setting uniform order to (%d, %d, %d)\n", mx, mx, mx);
	space.set_uniform_order(order);

	int ndofs = space.assign_dofs();
	printf("  - Number of DOFs: %d\n", ndofs);

	printf("* Calculating a solution\n");

#if defined WITH_UMFPACK
	UMFPackMatrix mat;
	UMFPackVector rhs;
	UMFPackLinearSolver solver(&mat, &rhs);
#elif defined WITH_PARDISO
	PardisoMatrix mat;
	PardisoVector rhs;
	PardisoLinearSolver solver(&mat, &rhs);
#elif defined WITH_PETSC
	PetscMatrix mat;
	PetscVector rhs;
	PetscLinearSolver solver(&mat, &rhs);
#elif defined WITH_MUMPS
	MumpsMatrix mat;
	MumpsVector rhs;
	MumpsSolver solver(&mat, &rhs);
#endif

	WeakForm wf;
	wf.add_matrix_form(bilinear_form<double, scalar>, bilinear_form<ord_t, ord_t>, SYM);
	wf.add_vector_form(linear_form<double, scalar>, linear_form<ord_t, ord_t>);
	wf.add_vector_form_surf(linear_form_surf<double, scalar>, linear_form_surf<ord_t, ord_t>);

	LinearProblem lp(&wf, &space);

	// assemble stiffness matrix
	printf("  - assembling...\n"); fflush(stdout);
	Timer assemble_timer;
	assemble_timer.start();
	lp.assemble(&mat, &rhs);
	assemble_timer.stop();
	printf("%s (%lf secs)\n", assemble_timer.get_human_time(), assemble_timer.get_seconds());

	// solve the stiffness matrix
	printf("  - solving... "); fflush(stdout);
	Timer solve_timer;
	solve_timer.start();
	bool solved = solver.solve();
	solve_timer.stop();
	printf("%s (%lf secs)\n", solve_timer.get_human_time(), solve_timer.get_seconds());

//	mat.dump(stdout, "a");
//	rhs.dump(stdout, "b");

	if (solved) {
		Solution sln(&mesh);
		sln.set_coeff_vector(&space, solver.get_solution());

//		printf("* Solution:\n");
//		double *s = solver.get_solution();
//		for (int i = 1; i <= ndofs; i++) {
//			printf(" x[% 3d] = % lf\n", i, s[i]);
//		}

		ExactSolution ex_sln(&mesh, exact_solution);
		// norm
		double h1_sln_norm = h1_norm(&sln);
		double h1_err_norm = h1_error(&sln, &ex_sln);
		printf(" - H1 solution norm:   % le\n", h1_sln_norm);
		printf(" - H1 error norm:      % le\n", h1_err_norm);

		double l2_sln_norm = l2_norm(&sln);
		double l2_err_norm = l2_error(&sln, &ex_sln);
		printf(" - L2 solution norm:   % le\n", l2_sln_norm);
		printf(" - L2 error norm:      % le\n", l2_err_norm);

		if (h1_err_norm > EPS || l2_err_norm > EPS) {
			// calculated solution is not enough precise
			res = ERR_FAILURE;
		}

#if 0 //def OUTPUT_DIR
		printf("* Output\n");
		// output
		const char *of_name = OUTPUT_DIR "/solution.pos";
		FILE *ofile = fopen(of_name, "w");
		if (ofile != NULL) {
			ExactSolution ex_sln(&mesh, exact_solution);
			DiffFilter eh(&sln, &ex_sln);
//			DiffFilter eh_dx(&mesh, &sln, &ex_sln, FN_DX, FN_DX);
//			DiffFilter eh_dy(&mesh, &sln, &ex_sln, FN_DY, FN_DY);
//			DiffFilter eh_dz(&mesh, &sln, &ex_sln, FN_DZ, FN_DZ);

			GmshOutputEngine output(ofile);
			output.out(&sln, "Uh");
//			output.out(&sln, "Uh dx", FN_DX_0);
//			output.out(&sln, "Uh dy", FN_DY_0);
//			output.out(&sln, "Uh dz", FN_DZ_0);
			output.out(&eh, "Eh");
//			output.out(&eh_dx, "Eh dx");
//			output.out(&eh_dy, "Eh dy");
//			output.out(&eh_dz, "Eh dz");
			output.out(&ex_sln, "U");
//			output.out(&ex_sln, "U dx", FN_DX_0);
//			output.out(&ex_sln, "U dy", FN_DY_0);
//			output.out(&ex_sln, "U dz", FN_DZ_0);

			fclose(ofile);
		}
		else {
			warning("Can not open '%s' for writing.", of_name);
		}
#endif
	}
	else
		res = ERR_FAILURE;

#ifdef WITH_PETSC
	mat.free();
	rhs.free();
	PetscFinalize();
#endif

	TRACE_END;

	return res;
}
Example #7
0
int main(int argc, char **args)
{
	int res = ERR_SUCCESS;

#ifdef WITH_PETSC
	PetscInitialize(&argc, &args, (char *) PETSC_NULL, PETSC_NULL);
#endif

	if (argc < 2) error("Not enough parameters.");

	printf("* Loading mesh '%s'\n", args[1]);
	Mesh mesh1;
	H3DReader mesh_loader;
	if (!mesh_loader.load(args[1], &mesh1)) error("Loading mesh file '%s'\n", args[1]);

#if defined RHS2

	Ord3 order(P_INIT_X, P_INIT_Y, P_INIT_Z);
	printf("  - Setting uniform order to (%d, %d, %d)\n", order.x, order.y, order.z);
	
	// Create an H1 space with default shapeset.
	printf("* Setting the space up\n");
	H1Space space(&mesh1, bc_types, essential_bc_values, order);

	int ndofs = space.assign_dofs();
	printf("  - Number of DOFs: %d\n", ndofs);

	printf("* Calculating a solution\n");

	// duplicate the mesh
	Mesh mesh2;
	mesh2.copy(mesh1);
	// do some changes
	mesh2.refine_all_elements(H3D_H3D_H3D_REFT_HEX_XYZ);
	mesh2.refine_all_elements(H3D_H3D_H3D_REFT_HEX_XYZ);

	Solution fsln(&mesh2);
	fsln.set_const(-6.0);
#else
	// duplicate the mesh
	Mesh mesh2;
	mesh2.copy(mesh1);

	Mesh mesh3;
	mesh3.copy(mesh1);

	// change meshes
	mesh1.refine_all_elements(H3D_REFT_HEX_X);
	mesh2.refine_all_elements(H3D_REFT_HEX_Y);
	mesh3.refine_all_elements(H3D_REFT_HEX_Z);

	printf("* Setup spaces\n");
	Ord3 o1(2, 2, 2);
	printf("  - Setting uniform order to (%d, %d, %d)\n", o1.x, o1.y, o1.z);
	H1Space space1(&mesh1, bc_types_1, essential_bc_values_1, o1);

	Ord3 o2(2, 2, 2);
	printf("  - Setting uniform order to (%d, %d, %d)\n", o2.x, o2.y, o2.z);
	H1Space space2(&mesh2, bc_types_2, essential_bc_values_2, o2);

	Ord3 o3(1, 1, 1);
	printf("  - Setting uniform order to (%d, %d, %d)\n", o3.x, o3.y, o3.z);
	H1Space space3(&mesh3, bc_types_3, essential_bc_values_3, o3);

	int ndofs = 0;
	ndofs += space1.assign_dofs();
	ndofs += space2.assign_dofs(ndofs);
	ndofs += space3.assign_dofs(ndofs);
	printf("  - Number of DOFs: %d\n", ndofs);
#endif

#if defined WITH_UMFPACK
	MatrixSolverType matrix_solver = SOLVER_UMFPACK; 
#elif defined WITH_PETSC
	MatrixSolverType matrix_solver = SOLVER_PETSC; 
#elif defined WITH_MUMPS
	MatrixSolverType matrix_solver = SOLVER_MUMPS; 
#endif

#ifdef RHS2
	WeakForm wf;
	wf.add_matrix_form(bilinear_form<double, scalar>, bilinear_form<Ord, Ord>, HERMES_SYM);
	wf.add_vector_form(linear_form<double, scalar>, linear_form<Ord, Ord>, HERMES_ANY_INT, &fsln);

	// Initialize discrete problem.
	bool is_linear = true;
	DiscreteProblem dp(&wf, &space, is_linear);
#elif defined SYS3
	WeakForm wf(3);
	wf.add_matrix_form(0, 0, biform_1_1<double, scalar>, biform_1_1<Ord, Ord>, HERMES_SYM);
	wf.add_matrix_form(0, 1, biform_1_2<double, scalar>, biform_1_2<Ord, Ord>, HERMES_NONSYM);
	wf.add_vector_form(0, liform_1<double, scalar>, liform_1<Ord, Ord>);

	wf.add_matrix_form(1, 1, biform_2_2<double, scalar>, biform_2_2<Ord, Ord>, HERMES_SYM);
	wf.add_matrix_form(1, 2, biform_2_3<double, scalar>, biform_2_3<Ord, Ord>, HERMES_NONSYM);
	wf.add_vector_form(1, liform_2<double, scalar>, liform_2<Ord, Ord>);

	wf.add_matrix_form(2, 2, biform_3_3<double, scalar>, biform_3_3<Ord, Ord>, HERMES_SYM);

	// Initialize discrete problem.
	bool is_linear = true;
	DiscreteProblem dp(&wf, Hermes::vector<Space *>(&space1, &space2, &space3), is_linear);
#endif
	// Time measurement.
	TimePeriod cpu_time;
	cpu_time.tick();
  
	// Set up the solver, matrix, and rhs according to the solver selection.
	SparseMatrix* matrix = create_matrix(matrix_solver);
	Vector* rhs = create_vector(matrix_solver);
	Solver* solver = create_linear_solver(matrix_solver, matrix, rhs);

	// Initialize the preconditioner in the case of SOLVER_AZTECOO.
	if (matrix_solver == SOLVER_AZTECOO) 
	{
		((AztecOOSolver*) solver)->set_solver(iterative_method);
		((AztecOOSolver*) solver)->set_precond(preconditioner);
		// Using default iteration parameters (see solver/aztecoo.h).
	}

	// Assemble stiffness matrix and load vector.
	dp.assemble(matrix, rhs);

	// Solve the linear system. If successful, obtain the solution.
	info("Solving the linear problem.");
	bool solved = solver->solve();

	// Time measurement.
	cpu_time.tick();
	// Print timing information.
	info("Solution and mesh with polynomial orders saved. Total running time: %g s", cpu_time.accumulated());

	// Time measurement.
	TimePeriod sln_time;
	sln_time.tick();

	if (solved) {
#ifdef RHS2
		// Solve the linear system. If successful, obtain the solution.
		info("Solving the linear problem.");
                Solution sln(&mesh1);
		Solution::vector_to_solution(solver->get_solution(), &space, &sln);

		// Set exact solution.
		ExactSolution ex_sln(&mesh1, exact_solution);

		// Norm.
		double h1_sln_norm = h1_norm(&sln);
		double h1_err_norm = h1_error(&sln, &ex_sln);
		printf("  - H1 solution norm:   % le\n", h1_sln_norm);
		printf("  - H1 error norm:      % le\n", h1_err_norm);

		double l2_sln_norm = l2_norm(&sln);
		double l2_err_norm = l2_error(&sln, &ex_sln);
		printf("  - L2 solution norm:   % le\n", l2_sln_norm);
		printf("  - L2 error norm:      % le\n", l2_err_norm);

		if (h1_err_norm > EPS || l2_err_norm > EPS) {
			// Calculated solution is not enough precise.
			res = ERR_FAILURE;
		}
#elif defined SYS3
		// Solution 1.
		Solution sln1(&mesh1);
		Solution sln2(&mesh2);
		Solution sln3(&mesh3);

		Solution::vector_to_solution(solver->get_solution(), &space1, &sln1);
		Solution::vector_to_solution(solver->get_solution(), &space2, &sln2);
		Solution::vector_to_solution(solver->get_solution(), &space3, &sln3);

		ExactSolution esln1(&mesh1, exact_sln_fn_1);
		ExactSolution esln2(&mesh2, exact_sln_fn_2);
		ExactSolution esln3(&mesh3, exact_sln_fn_3);

		// Norm.
		double h1_err_norm1 = h1_error(&sln1, &esln1);
		double h1_err_norm2 = h1_error(&sln2, &esln2);
		double h1_err_norm3 = h1_error(&sln3, &esln3);

		double l2_err_norm1 = l2_error(&sln1, &esln1);
		double l2_err_norm2 = l2_error(&sln2, &esln2);
		double l2_err_norm3 = l2_error(&sln3, &esln3);

		printf("  - H1 error norm:      % le\n", h1_err_norm1);
		printf("  - L2 error norm:      % le\n", l2_err_norm1);
		if (h1_err_norm1 > EPS || l2_err_norm1 > EPS) {
			// Calculated solution is not enough precise.
			res = ERR_FAILURE;
		}

		printf("  - H1 error norm:      % le\n", h1_err_norm2);
		printf("  - L2 error norm:      % le\n", l2_err_norm2);
		if (h1_err_norm2 > EPS || l2_err_norm2 > EPS) {
			// Calculated solution is not enough precise.
			res = ERR_FAILURE;
		}

		printf("  - H1 error norm:      % le\n", h1_err_norm3);
		printf("  - L2 error norm:      % le\n", l2_err_norm3);
		if (h1_err_norm3 > EPS || l2_err_norm3 > EPS) {
			// Calculated solution is not enough precise.
			res = ERR_FAILURE;
		}
#endif

#ifdef RHS2
		out_fn_vtk(&sln, "solution");
#elif defined SYS3
		out_fn_vtk(&sln1, "sln1");
		out_fn_vtk(&sln2, "sln2");
		out_fn_vtk(&sln3, "sln3");
#endif
	}
	else
		res = ERR_FAILURE;

	// Print timing information.
	info("Solution and mesh with polynomial orders saved. Total running time: %g s", sln_time.accumulated());

	// Clean up.
	delete matrix;
	delete rhs;
	delete solver;

	return res;
}
Example #8
0
int main(int argc, char **argv) {
	int res = ERR_SUCCESS;

#ifdef WITH_PETSC
	PetscInitialize(&argc, &argv, (char *) PETSC_NULL, PETSC_NULL);
#endif
	set_verbose(false);

	if (argc < 5) error("Not enough parameters.");

	H1ShapesetLobattoHex shapeset;

	printf("* Loading mesh '%s'\n", argv[1]);
	Mesh mesh;
	Mesh3DReader mloader;
	if (!mloader.load(argv[1], &mesh)) error("Loading mesh file '%s'\n", argv[1]);

	printf("* Setting the space up\n");
	H1Space space(&mesh, &shapeset);
	space.set_bc_types(bc_types);
	space.set_essential_bc_values(essential_bc_values);

	int o[3] = { 0, 0, 0 };
	sscanf(argv[2], "%d", o + 0);
	sscanf(argv[3], "%d", o + 1);
	sscanf(argv[4], "%d", o + 2);
	order3_t order(o[0], o[1], o[2]);
	printf("  - Setting uniform order to (%d, %d, %d)\n", order.x, order.y, order.z);
	space.set_uniform_order(order);

	WeakForm wf;
	wf.add_matrix_form(bilinear_form<double, scalar>, bilinear_form<ord_t, ord_t>, SYM, ANY);
	wf.add_vector_form(linear_form<double, scalar>, linear_form<ord_t, ord_t>, ANY);

	LinearProblem lp(&wf);
	lp.set_space(&space);

	bool done = false;
	int iter = 0;
	do {
		Timer assemble_timer("Assembling stiffness matrix");
		Timer solve_timer("Solving stiffness matrix");

		printf("\n=== Iter #%d ================================================================\n", iter);

		printf("\nSolution\n");

#if defined WITH_UMFPACK
		UMFPackMatrix mat;
		UMFPackVector rhs;
		UMFPackLinearSolver solver(&mat, &rhs);
#elif defined WITH_PARDISO
		PardisoMatrix mat;
		PardisoVector rhs;
		PardisoLinearSolver solver(&mat, &rhs);
#elif defined WITH_PETSC
		PetscMatrix mat;
		PetscVector rhs;
		PetscLinearSolver solver(&mat, &rhs);
#elif defined WITH_MUMPS
		MumpsMatrix mat;
		MumpsVector rhs;
		MumpsSolver solver(&mat, &rhs);
#endif

		int ndofs = space.assign_dofs();
		printf("  - Number of DOFs: %d\n", ndofs);

		// assemble stiffness matrix
		printf("  - Assembling... "); fflush(stdout);
		assemble_timer.reset();
		assemble_timer.start();
		lp.assemble(&mat, &rhs);
		assemble_timer.stop();
		printf("done in %s (%lf secs)\n", assemble_timer.get_human_time(), assemble_timer.get_seconds());

		// solve the stiffness matrix
		printf("  - Solving... "); fflush(stdout);
		solve_timer.reset();
		solve_timer.start();
		bool solved = solver.solve();
		solve_timer.stop();
		if (solved)
			printf("done in %s (%lf secs)\n", solve_timer.get_human_time(), solve_timer.get_seconds());
		else {
			res = ERR_FAILURE;
			printf("failed\n");
			break;
		}

		printf("Reference solution\n");

#if defined WITH_UMFPACK
		UMFPackLinearSolver rsolver(&mat, &rhs);
#elif defined WITH_PARDISO
		PardisoLinearSolver rsolver(&mat, &rhs);
#elif defined WITH_PETSC
		PetscLinearSolver rsolver(&mat, &rhs);
#elif defined WITH_MUMPS
		MumpsSolver rsolver(&mat, &rhs);
#endif

		Mesh rmesh;
		rmesh.copy(mesh);
		rmesh.refine_all_elements(H3D_H3D_H3D_REFT_HEX_XYZ);

		Space *rspace = space.dup(&rmesh);
		rspace->copy_orders(space, 1);

		LinearProblem rlp(&wf);
		rlp.set_space(rspace);

		int rndofs = rspace->assign_dofs();
		printf("  - Number of DOFs: %d\n", rndofs);

		printf("  - Assembling... "); fflush(stdout);
		assemble_timer.reset();
		assemble_timer.start();
		rlp.assemble(&mat, &rhs);
		assemble_timer.stop();
		printf("done in %s (%lf secs)\n", assemble_timer.get_human_time(), assemble_timer.get_seconds());

		printf("  - Solving... "); fflush(stdout);
		solve_timer.reset();
		solve_timer.start();
		bool rsolved = rsolver.solve();
		solve_timer.stop();
		if (rsolved)
			printf("done in %s (%lf secs)\n", solve_timer.get_human_time(), solve_timer.get_seconds());
		else {
			res = ERR_FAILURE;
			printf("failed\n");
			break;
		}

		Solution sln(&mesh);
		sln.set_coeff_vector(&space, solver.get_solution());

		Solution rsln(&rmesh);
		rsln.set_coeff_vector(rspace, rsolver.get_solution());

		printf("Adaptivity:\n");
		H1Adapt hp(&space);
		double tol = hp.calc_error(&sln, &rsln) * 100;
		printf("  - tolerance: "); fflush(stdout);
		printf("% lf\n", tol);
		if (tol < TOLERANCE) {
			printf("\nDone\n");
			ExactSolution ex_sln(&mesh, exact_solution);
			// norm
			double h1_sln_norm = h1_norm(&sln);
			double h1_err_norm = h1_error(&sln, &ex_sln);
			printf("  - H1 solution norm:   % le\n", h1_sln_norm);
			printf("  - H1 error norm:      % le\n", h1_err_norm);

			double l2_sln_norm = l2_norm(&sln);
			double l2_err_norm = l2_error(&sln, &ex_sln);
			printf("  - L2 solution norm:   % le\n", l2_sln_norm);
			printf("  - L2 error norm:      % le\n", l2_err_norm);

			if (h1_err_norm > EPS || l2_err_norm > EPS) {
				// calculated solution is not enough precise
				res = ERR_FAILURE;
			}

			break;
		}

		Timer t("");
		printf("  - adapting... "); fflush(stdout);
		t.start();
		hp.adapt(THRESHOLD);
		t.stop();
		printf("done in %lf secs (refined %d element(s))\n", t.get_seconds(), hp.get_num_refined_elements());

		iter++;
	} while (!done);


#ifdef WITH_PETSC
	PetscFinalize();
#endif

	return res;
}
Example #9
0
int main(int argc, char **args) {
	int res = ERR_SUCCESS;


#ifdef WITH_PETSC
	PetscInitialize(NULL, NULL, (char *) PETSC_NULL, PETSC_NULL);
#endif
	set_verbose(false);

	TRACE_START("trace.txt");
	DEBUG_OUTPUT_ON;
	SET_VERBOSE_LEVEL(0);

	try {
		for (int i = 0; i < 48; i++) {
			for (int j = 0; j < 48; j++) {
//		int i = 5; {
//		int j = 0; {
				printf("Config: %d, %d ", i, j);

				Mesh mesh;

				for (Word_t k = 0; k < countof(vtcs); k++)
					mesh.add_vertex(vtcs[k].x, vtcs[k].y, vtcs[k].z);
				Word_t h1[] = {
						hexs[0][i][0] + 1, hexs[0][i][1] + 1, hexs[0][i][2] + 1, hexs[0][i][3] + 1,
						hexs[0][i][4] + 1, hexs[0][i][5] + 1, hexs[0][i][6] + 1, hexs[0][i][7] + 1 };
				mesh.add_hex(h1);
				Word_t h2[] = {
						hexs[1][j][0] + 1, hexs[1][j][1] + 1, hexs[1][j][2] + 1, hexs[1][j][3] + 1,
						hexs[1][j][4] + 1, hexs[1][j][5] + 1, hexs[1][j][6] + 1, hexs[1][j][7] + 1 };
				mesh.add_hex(h2);
				// bc
				for (Word_t k = 0; k < countof(bnd); k++) {
					Word_t facet_idxs[Quad::NUM_VERTICES] = { bnd[k][0] + 1, bnd[k][1] + 1, bnd[k][2] + 1, bnd[k][3] + 1 };
					mesh.add_quad_boundary(facet_idxs, bnd[k][4]);
				}

				mesh.ugh();
//				mesh.dump();

//				Element *hx[] = { mesh.elements[1], mesh.elements[2] };
//				printf("[%d, %d]\n", hx[0]->get_face_orientation(1), hx[1]->get_face_orientation(2));

//				Word_t fidx[4];
//				hx[1]->get_face_vertices(2, fidx);
//				printf("FI: %d, %d, %d, %d\n", fidx[0], fidx[1], fidx[2], fidx[3]);
				printf("\n");

#ifdef OUTPUT_DIR
				BEGIN_BLOCK
					// output the mesh
					const char *of_name = OUTPUT_DIR "/ref.msh";
					FILE *ofile = fopen(of_name, "w");
					if (ofile != NULL) {
						GmshOutputEngine output(ofile);
						output.out(&mesh);
						fclose(ofile);
					}
					else {
						warning("Can not open '%s' for writing.", of_name);
					}
				END_BLOCK
#endif

				H1ShapesetLobattoHex shapeset;

//				printf("* Setting the space up\n");
				H1Space space(&mesh, &shapeset);
				space.set_bc_types(bc_types);
				space.set_essential_bc_values(essential_bc_values);

#ifdef XM_YN_ZO
				order3_t ord(4, 4, 4);
#elif defined XM_YN_ZO_2
				order3_t ord(4, 4, 4);
#elif defined X2_Y2_Z2
				order3_t ord(2, 2, 2);
#endif
//				printf("  - Setting uniform order to (%d, %d, %d)\n", dir_x, dir_y, dir_z);
				space.set_uniform_order(ord);

				space.assign_dofs();

//				printf("* Calculating a solution\n");

#if defined WITH_UMFPACK
				UMFPackMatrix mat;
				UMFPackVector rhs;
				UMFPackLinearSolver solver(&mat, &rhs);
#elif defined WITH_PARDISO
				PardisoLinearSolver solver;
#elif defined WITH_PETSC
				PetscMatrix mat;
				PetscVector rhs;
				PetscLinearSolver solver(&mat, &rhs);
#elif defined WITH_MUMPS
				MumpsMatrix mat;
				MumpsVector rhs;
				MumpsSolver solver(&mat, &rhs);
#endif

				WeakForm wf;
#ifdef DIRICHLET
				wf.add_matrix_form(bilinear_form<double, scalar>, bilinear_form<ord_t, ord_t>, SYM);
				wf.add_vector_form(linear_form<double, scalar>, linear_form<ord_t, ord_t>);
#elif defined NEWTON
				wf.add_matrix_form(bilinear_form<double, scalar>, bilinear_form<ord_t, ord_t>, SYM);
				wf.add_matrix_form_surf(bilinear_form_surf<double, scalar>, bilinear_form_surf<ord_t, ord_t>);
				wf.add_vector_form(linear_form<double, scalar>, linear_form<ord_t, ord_t>);
				wf.add_vector_form_surf(linear_form_surf<double, scalar>, linear_form_surf<ord_t, ord_t>);
#endif

				LinProblem lp(&wf);
				lp.set_space(&space);

				// assemble stiffness matrix
				lp.assemble(&mat, &rhs);

				// solve the stiffness matrix
				bool solved = solver.solve();
				if (!solved) throw ERR_FAILURE;

//				{
//					char file_name[1024];
//					sprintf(file_name, "%s/matrix-%d-%d", OUTPUT_DIR, i, j);
//					FILE *file = fopen(file_name, "w");
//					if (file != NULL) {
//						solver.dump_matrix(file, "A");
//						solver.dump_rhs(file, "b");
//
//						fclose(file);
//					}
//				}

				Solution sln(&mesh);
				sln.set_fe_solution(&space, solver.get_solution());

				ExactSolution exsln(&mesh, exact_solution);
				// norm
				double h1_sln_norm = h1_norm(&sln);
				double h1_err_norm = h1_error(&sln, &exsln);
				printf(" - H1 solution norm:   % le\n", h1_sln_norm);
				printf(" - H1 error norm:      % le\n", h1_err_norm);

				double l2_sln_norm = l2_norm(&sln);
				double l2_err_norm = l2_error(&sln, &exsln);
				printf(" - L2 solution norm:   % le\n", l2_sln_norm);
				printf(" - L2 error norm:      % le\n", l2_err_norm);

				assert(h1_sln_norm > 0 && h1_err_norm > 0);
				assert(l2_sln_norm > 0 && l2_err_norm > 0);

//				// out fn
//				char fname[4096];
//				sprintf(fname, "%s/cfg-%d-%d.pos", OUTPUT_DIR, i, j);
//				FILE *fnf = fopen(fname, "w");
//				assert(fnf != NULL);
//				GmshOutputEngine out(fnf);
//				char var[64];
//				sprintf(var, "%d_%d", i, j);
//				out.out(&sln, var);
//				fclose(fnf);
//
//				char mfname[4096];
//				sprintf(mfname, "%s/mesh-%d-%d.ref", OUTPUT_DIR, i, j);
//				FILE *mfnf = fopen(mfname, "w");
//				assert(mfnf != NULL);
//				GmshOutputEngine outm(mfnf);
//				outm.out(&mesh);
//				fclose(mfnf);

				if (h1_err_norm > EPS || l2_err_norm > EPS) {
					// calculated solution is not enough precise
					printf("Solution is not precise enough.\n");
					throw ERR_FAILURE;
				}

				printf("Passed\n");
			}
		}
	}
	catch (int e) {
		res = e;
		printf("Failed\n");
	}

#ifdef WITH_PETSC
	PetscFinalize();
#endif

	TRACE_END;

	return res;
}
Example #10
0
void fem(size_t n, double errors[2], double (*fn_f)(double, double),
         double (*fn_g)(unsigned char, double, double),
         double (*fn_u)(double, double))
{
  mesh m;
  crs_matrix mat;
  double * u, * rhs;
  double local_stiffness[3][3];
  double local_load[3];
  size_t elem;

  /* 1. Allocate and generate mesh */
  get_mesh(&m, n);

#ifdef PRINT_DEBUG
  print_mesh(&m);
#endif

  /* 2. Allocate the linear system */
  init_matrix(&mat, &m);

  u = (double *) malloc(sizeof(double) * m.n_vertices);
  if (u == NULL) err_exit("Allocation of solution vector failed!");
  memset(u, 0, sizeof(double) * m.n_vertices);

  rhs = (double *) malloc(sizeof(double) * m.n_vertices);
  if (rhs == NULL)
    err_exit("Allocation of right hand side failed!");
  memset(rhs, 0, sizeof(double) * m.n_vertices);

  /* 3. Assemble the matrix */
  for (elem = 0; elem <  m.n_triangles; ++elem)
  {
    /* Compute local stiffness and load */
    get_local_stiffness(local_stiffness, &m, elem);
    get_local_load(local_load, &m, elem, fn_f);

#ifdef PRINT_DEBUG
    print_local_stiffness(local_stiffness);
    print_local_load(local_load);
#endif

    /* insert into global matrix and rhs */
    assemble_local2global_stiffness(local_stiffness, &mat, &m, elem);
    assemble_local2global_load(local_load, rhs, &m, elem);
  }

#ifdef PRINT_DEBUG
  printf("Matrix after assembly:\n");
  print_matrix(&mat);
  printf("rhs after assembly:\n");
  for(size_t i = 0; i < m.n_vertices; ++i) {
      printf("%5.2f\n", rhs[i]);
  }
  printf("\n");
#endif

  /* 4. Apply boundary conditions */
  apply_dbc(&mat, rhs, &m, fn_g);

#ifdef PRINT_DEBUG
  printf("Matrix after application of BCs:\n");
  print_matrix(&mat);
  printf("rhs after application of BCs:\n");
  for(size_t i = 0; i < m.n_vertices; ++i) {
      printf("%5.2f\n", rhs[i]);
  }
  printf("\n");
#endif

  /* 5. Solve the linear system */
  solve(&mat, u, rhs);

  /* 6. Evaluate error */
  errors[0] = l2_norm(u, &m, fn_u);
  errors[1] = inf_norm(u, &m, fn_u);

  /* free allocated resources */
  free(u);
  free(rhs);
  rhs = NULL;
  free_matrix(&mat);
  free_mesh(&m);
}
Example #11
0
int main(int argc, char **argv) {
	int res = ERR_SUCCESS;

#ifdef WITH_PETSC
	PetscInitialize(&argc, &argv, (char *) PETSC_NULL, PETSC_NULL);
#endif
	set_verbose(false);

	if (argc < 3) error("Not enough parameters");

	printf("* Loading mesh '%s'\n", argv[1]);
	Mesh mesh;
	H3DReader mesh_loader;
	if (!mesh_loader.load(argv[1], &mesh)) error("Loading mesh file '%s'\n", argv[1]);

	int o;
	sscanf(argv[2], "%d", &o);
	printf("  - Setting uniform order to %d\n", o);

	printf("* Setting the space up\n");
	H1Space space(&mesh, bc_types, essential_bc_values, o);

	int ndofs = space.assign_dofs();
	printf("  - Number of DOFs: %d\n", ndofs);

	printf("* Calculating a solution\n");

#if defined WITH_UMFPACK
	UMFPackMatrix mat;
	UMFPackVector rhs;
	UMFPackLinearSolver solver(&mat, &rhs);
#elif defined WITH_PARDISO
	PardisoMatrix mat;
	PardisoVector rhs;
	PardisoLinearSolver solver(&mat, &rhs);
#elif defined WITH_PETSC
	PetscMatrix mat;
	PetscVector rhs;
	PetscLinearSolver solver(&mat, &rhs);
#elif defined WITH_MUMPS
	MumpsMatrix mat;
	MumpsVector rhs;
	MumpsSolver solver(&mat, &rhs);
#endif

	WeakForm wf;
	wf.add_matrix_form(bilinear_form<double, scalar>, bilinear_form<Ord, Ord>, SYM);
	wf.add_vector_form(linear_form<double, scalar>, linear_form<Ord, Ord>);

	DiscreteProblem dp(&wf, &space, true);

	// assemble stiffness matrix
	Timer assemble_timer("Assembling stiffness matrix");
	assemble_timer.start();
	dp.assemble(&mat, &rhs);
	assemble_timer.stop();

	// solve the stiffness matrix
	Timer solve_timer("Solving stiffness matrix");
	solve_timer.start();
	bool solved = solver.solve();
	solve_timer.stop();

	// output the measured values
	printf("%s: %s (%lf secs)\n", assemble_timer.get_name(), assemble_timer.get_human_time(), assemble_timer.get_seconds());
	printf("%s: %s (%lf secs)\n", solve_timer.get_name(), solve_timer.get_human_time(), solve_timer.get_seconds());

	if (solved) {
		Solution sln(&mesh);
		sln.set_coeff_vector(&space, solver.get_solution());

		ExactSolution ex_sln(&mesh, exact_solution);
		// norm
		double h1_sln_norm = h1_norm(&sln);
		double h1_err_norm = h1_error(&sln, &ex_sln);

		printf(" - H1 solution norm:   % le\n", h1_sln_norm);
		printf(" - H1 error norm:      % le\n", h1_err_norm);

		double l2_sln_norm = l2_norm(&sln);
		double l2_err_norm = l2_error(&sln, &ex_sln);
		printf(" - L2 solution norm:   % le\n", l2_sln_norm);
		printf(" - L2 error norm:      % le\n", l2_err_norm);

		if (h1_err_norm > EPS || l2_err_norm > EPS) {
			// calculated solution is not enough precise
			res = ERR_FAILURE;
		}

#if 0 //def OUTPUT_DIR
		// output
		const char *of_name = OUTPUT_DIR "/solution.pos";
		FILE *ofile = fopen(of_name, "w");
		if (ofile != NULL) {
			ExactSolution ex_sln(&mesh, exact_solution);
			DiffFilter eh(&sln, &ex_sln);
//			DiffFilter eh_dx(&mesh, &sln, &ex_sln, FN_DX, FN_DX);
//			DiffFilter eh_dy(&mesh, &sln, &ex_sln, FN_DY, FN_DY);
//			DiffFilter eh_dz(&mesh, &sln, &ex_sln, FN_DZ, FN_DZ);

			GmshOutputEngine output(ofile);
			output.out(&sln, "Uh");
//			output.out(&sln, "Uh dx", FN_DX_0);
//			output.out(&sln, "Uh dy", FN_DY_0);
//			output.out(&sln, "Uh dz", FN_DZ_0);
			output.out(&eh, "Eh");
//			output.out(&eh_dx, "Eh dx");
//			output.out(&eh_dy, "Eh dy");
//			output.out(&eh_dz, "Eh dz");
			output.out(&ex_sln, "U");
//			output.out(&ex_sln, "U dx", FN_DX_0);
//			output.out(&ex_sln, "U dy", FN_DY_0);
//			output.out(&ex_sln, "U dz", FN_DZ_0);

			fclose(ofile);
		}
		else {
			warning("Can not open '%s' for writing.", of_name);
		}
#endif
	}

#ifdef WITH_PETSC
	mat.free();
	rhs.free();
	PetscFinalize();
#endif

	TRACE_END;

	return res;
}