/** Purpose ------- CLATRD reduces NB rows and columns of a complex Hermitian matrix A to Hermitian tridiagonal form by an orthogonal similarity transformation Q' * A * Q, and returns the matrices V and W which are needed to apply the transformation to the unreduced part of A. If UPLO = MagmaUpper, CLATRD reduces the last NB rows and columns of a matrix, of which the upper triangle is supplied; if UPLO = MagmaLower, CLATRD reduces the first NB rows and columns of a matrix, of which the lower triangle is supplied. This is an auxiliary routine called by CHETRD. Arguments --------- @param[in] uplo magma_uplo_t Specifies whether the upper or lower triangular part of the Hermitian matrix A is stored: - = MagmaUpper: Upper triangular - = MagmaLower: Lower triangular @param[in] n INTEGER The order of the matrix A. @param[in] nb INTEGER The number of rows and columns to be reduced. @param[in,out] A COMPLEX array, dimension (LDA,N) On entry, the Hermitian matrix A. If UPLO = MagmaUpper, the leading n-by-n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = MagmaLower, the leading n-by-n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit: - if UPLO = MagmaUpper, the last NB columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of A; the elements above the diagonal with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors; - if UPLO = MagmaLower, the first NB columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of A; the elements below the diagonal with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors. See Further Details. @param[in] lda INTEGER The leading dimension of the array A. LDA >= (1,N). @param[out] e COMPLEX array, dimension (N-1) If UPLO = MagmaUpper, E(n-nb:n-1) contains the superdiagonal elements of the last NB columns of the reduced matrix; if UPLO = MagmaLower, E(1:nb) contains the subdiagonal elements of the first NB columns of the reduced matrix. @param[out] tau COMPLEX array, dimension (N-1) The scalar factors of the elementary reflectors, stored in TAU(n-nb:n-1) if UPLO = MagmaUpper, and in TAU(1:nb) if UPLO = MagmaLower. See Further Details. @param[out] W COMPLEX array, dimension (LDW,NB) The n-by-nb matrix W required to update the unreduced part of A. @param[in] ldw INTEGER The leading dimension of the array W. LDW >= max(1,N). @param dA TODO: dimension (ldda, n)? @param ldda TODO: ldda >= n? @param dW TODO: dimension (lddw, ??) @param lddw TODO: lddw >= n ?? @param[in] queue magma_queue_t Queue to execute in. Further Details --------------- If UPLO = MagmaUpper, the matrix Q is represented as a product of elementary reflectors Q = H(n) H(n-1) . . . H(n-nb+1). Each H(i) has the form H(i) = I - tau * v * v' where tau is a complex scalar, and v is a complex vector with v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i), and tau in TAU(i-1). If UPLO = MagmaLower, the matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(nb). Each H(i) has the form H(i) = I - tau * v * v' where tau is a complex scalar, and v is a complex vector with v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), and tau in TAU(i). The elements of the vectors v together form the n-by-nb matrix V which is needed, with W, to apply the transformation to the unreduced part of the matrix, using a Hermitian rank-2k update of the form: A := A - V*W' - W*V'. The contents of A on exit are illustrated by the following examples with n = 5 and nb = 2: if UPLO = MagmaUpper: if UPLO = MagmaLower: ( a a a v4 v5 ) ( d ) ( a a v4 v5 ) ( 1 d ) ( a 1 v5 ) ( v1 1 a ) ( d 1 ) ( v1 v2 a a ) ( d ) ( v1 v2 a a a ) where d denotes a diagonal element of the reduced matrix, a denotes an element of the original matrix that is unchanged, and vi denotes an element of the vector defining H(i). @ingroup magma_cheev_aux ********************************************************************/ extern "C" magma_int_t magma_clatrd( magma_uplo_t uplo, magma_int_t n, magma_int_t nb, magmaFloatComplex *A, magma_int_t lda, float *e, magmaFloatComplex *tau, magmaFloatComplex *W, magma_int_t ldw, magmaFloatComplex *work, magma_int_t lwork, magmaFloatComplex_ptr dA, magma_int_t ldda, magmaFloatComplex_ptr dW, magma_int_t lddw, magma_queue_t queue ) { #define A(i_, j_) (A + (i_) + (j_)*lda) #define W(i_, j_) (W + (i_) + (j_)*ldw) #define dA(i_, j_) (dA + (i_) + (j_)*ldda) #define dW(i_, j_) (dW + (i_) + (j_)*lddw) /* Constants */ const magmaFloatComplex c_neg_one = MAGMA_C_NEG_ONE; const magmaFloatComplex c_one = MAGMA_C_ONE; const magmaFloatComplex c_zero = MAGMA_C_ZERO; const magma_int_t ione = 1; /* Local variables */ magmaFloatComplex alpha, value; magma_int_t i, i_n, i_1, iw; /* Check arguments */ magma_int_t info = 0; if ( uplo != MagmaLower && uplo != MagmaUpper ) { info = -1; } else if ( n < 0 ) { info = -2; } else if ( nb < 1 ) { info = -3; } else if ( lda < max(1,n) ) { info = -5; } else if ( ldw < max(1,n) ) { info = -9; } else if ( ldda < max(1,n) ) { info = -11; } else if ( lddw < max(1,n) ) { info = -13; } if (info != 0) { magma_xerbla( __func__, -(info) ); return info; } /* Quick return if possible */ if (n == 0) { return info; } if (uplo == MagmaUpper) { /* Reduce last NB columns of upper triangle */ for (i = n-1; i >= n - nb; --i) { i_1 = i + 1; i_n = n - i - 1; iw = i - n + nb; if (i < n-1) { /* Update A(1:i,i) */ #ifdef COMPLEX lapackf77_clacgv( &i_n, W(i, iw+1), &ldw ); #endif blasf77_cgemv( "No transpose", &i_1, &i_n, &c_neg_one, A(0, i+1), &lda, W(i, iw+1), &ldw, &c_one, A(0, i), &ione ); #ifdef COMPLEX lapackf77_clacgv( &i_n, W(i, iw+1), &ldw ); lapackf77_clacgv( &i_n, A(i, i+1), &lda ); #endif blasf77_cgemv( "No transpose", &i_1, &i_n, &c_neg_one, W(0, iw+1), &ldw, A(i, i+1), &lda, &c_one, A(0, i), &ione ); #ifdef COMPLEX lapackf77_clacgv( &i_n, A(i, i+1), &lda ); #endif } if (i > 0) { /* Generate elementary reflector H(i) to annihilate A(1:i-2,i) */ alpha = *A(i-1, i); lapackf77_clarfg( &i, &alpha, A(0, i), &ione, &tau[i - 1] ); e[i-1] = MAGMA_C_REAL( alpha ); *A(i-1,i) = MAGMA_C_ONE; /* Compute W(1:i-1,i) */ // 1. Send the block reflector A(0:n-i-1,i) to the GPU magma_csetvector( i, A(0, i), 1, dA(0, i), 1, queue ); magma_chemv( MagmaUpper, i, c_one, dA(0, 0), ldda, dA(0, i), ione, c_zero, dW(0, iw), ione, queue ); // 2. Start putting the result back (asynchronously) magma_cgetmatrix_async( i, 1, dW(0, iw), lddw, W(0, iw), ldw, queue ); if (i < n-1) { blasf77_cgemv( MagmaConjTransStr, &i, &i_n, &c_one, W(0, iw+1), &ldw, A(0, i), &ione, &c_zero, W(i+1, iw), &ione ); } // 3. Here is where we need it // TODO find the right place magma_queue_sync( queue ); if (i < n-1) { blasf77_cgemv( "No transpose", &i, &i_n, &c_neg_one, A(0, i+1), &lda, W(i+1, iw), &ione, &c_one, W(0, iw), &ione ); blasf77_cgemv( MagmaConjTransStr, &i, &i_n, &c_one, A(0, i+1), &lda, A(0, i), &ione, &c_zero, W(i+1, iw), &ione ); blasf77_cgemv( "No transpose", &i, &i_n, &c_neg_one, W(0, iw+1), &ldw, W(i+1, iw), &ione, &c_one, W(0, iw), &ione ); } blasf77_cscal( &i, &tau[i - 1], W(0, iw), &ione ); value = magma_cblas_cdotc( i, W(0,iw), ione, A(0,i), ione ); alpha = tau[i - 1] * -0.5f * value; blasf77_caxpy( &i, &alpha, A(0, i), &ione, W(0, iw), &ione ); } } } else { /* Reduce first NB columns of lower triangle */ for (i = 0; i < nb; ++i) { /* Update A(i:n,i) */ i_n = n - i; #ifdef COMPLEX lapackf77_clacgv( &i, W(i, 0), &ldw ); #endif blasf77_cgemv( "No transpose", &i_n, &i, &c_neg_one, A(i, 0), &lda, W(i, 0), &ldw, &c_one, A(i, i), &ione ); #ifdef COMPLEX lapackf77_clacgv( &i, W(i, 0), &ldw ); lapackf77_clacgv( &i, A(i, 0), &lda ); #endif blasf77_cgemv( "No transpose", &i_n, &i, &c_neg_one, W(i, 0), &ldw, A(i, 0), &lda, &c_one, A(i, i), &ione ); #ifdef COMPLEX lapackf77_clacgv( &i, A(i, 0), &lda ); #endif if (i < n-1) { /* Generate elementary reflector H(i) to annihilate A(i+2:n,i) */ i_n = n - i - 1; alpha = *A(i+1, i); lapackf77_clarfg( &i_n, &alpha, A(min(i+2,n-1), i), &ione, &tau[i] ); e[i] = MAGMA_C_REAL( alpha ); *A(i+1,i) = MAGMA_C_ONE; /* Compute W(i+1:n,i) */ // 1. Send the block reflector A(i+1:n,i) to the GPU magma_csetvector( i_n, A(i+1, i), 1, dA(i+1, i), 1, queue ); magma_chemv( MagmaLower, i_n, c_one, dA(i+1, i+1), ldda, dA(i+1, i), ione, c_zero, dW(i+1, i), ione, queue ); // 2. Start putting the result back (asynchronously) magma_cgetmatrix_async( i_n, 1, dW(i+1, i), lddw, W(i+1, i), ldw, queue ); blasf77_cgemv( MagmaConjTransStr, &i_n, &i, &c_one, W(i+1, 0), &ldw, A(i+1, i), &ione, &c_zero, W(0, i), &ione ); blasf77_cgemv( "No transpose", &i_n, &i, &c_neg_one, A(i+1, 0), &lda, W(0, i), &ione, &c_zero, work, &ione ); blasf77_cgemv( MagmaConjTransStr, &i_n, &i, &c_one, A(i+1, 0), &lda, A(i+1, i), &ione, &c_zero, W(0, i), &ione ); // 3. Here is where we need it magma_queue_sync( queue ); if (i != 0) blasf77_caxpy( &i_n, &c_one, work, &ione, W(i+1, i), &ione ); blasf77_cgemv( "No transpose", &i_n, &i, &c_neg_one, W(i+1, 0), &ldw, W(0, i), &ione, &c_one, W(i+1, i), &ione ); blasf77_cscal( &i_n, &tau[i], W(i+1,i), &ione ); value = magma_cblas_cdotc( i_n, W(i+1,i), ione, A(i+1,i), ione ); alpha = tau[i] * -0.5f * value; blasf77_caxpy( &i_n, &alpha, A(i+1, i), &ione, W(i+1,i), &ione ); } } } return info; } /* magma_clatrd */
/** Purpose ------- CLATRD2 reduces NB rows and columns of a complex Hermitian matrix A to Hermitian tridiagonal form by an orthogonal similarity transformation Q' * A * Q, and returns the matrices V and W which are needed to apply the transformation to the unreduced part of A. If UPLO = MagmaUpper, CLATRD reduces the last NB rows and columns of a matrix, of which the upper triangle is supplied; if UPLO = MagmaLower, CLATRD reduces the first NB rows and columns of a matrix, of which the lower triangle is supplied. This is an auxiliary routine called by CHETRD2_GPU. It uses an accelerated HEMV that needs extra memory. Arguments --------- @param[in] uplo magma_uplo_t Specifies whether the upper or lower triangular part of the Hermitian matrix A is stored: - = MagmaUpper: Upper triangular - = MagmaLower: Lower triangular @param[in] n INTEGER The order of the matrix A. @param[in] nb INTEGER The number of rows and columns to be reduced. @param[in,out] A COMPLEX array, dimension (LDA,N) On entry, the Hermitian matrix A. If UPLO = MagmaUpper, the leading n-by-n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = MagmaLower, the leading n-by-n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit: - if UPLO = MagmaUpper, the last NB columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of A; the elements above the diagonal with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors; - if UPLO = MagmaLower, the first NB columns have been reduced to tridiagonal form, with the diagonal elements overwriting the diagonal elements of A; the elements below the diagonal with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors. See Further Details. @param[in] lda INTEGER The leading dimension of the array A. LDA >= (1,N). @param[out] e COMPLEX array, dimension (N-1) If UPLO = MagmaUpper, E(n-nb:n-1) contains the superdiagonal elements of the last NB columns of the reduced matrix; if UPLO = MagmaLower, E(1:nb) contains the subdiagonal elements of the first NB columns of the reduced matrix. @param[out] tau COMPLEX array, dimension (N-1) The scalar factors of the elementary reflectors, stored in TAU(n-nb:n-1) if UPLO = MagmaUpper, and in TAU(1:nb) if UPLO = MagmaLower. See Further Details. @param[out] W COMPLEX array, dimension (LDW,NB) The n-by-nb matrix W required to update the unreduced part of A. @param[in] ldw INTEGER The leading dimension of the array W. LDW >= max(1,N). Further Details --------------- If UPLO = MagmaUpper, the matrix Q is represented as a product of elementary reflectors Q = H(n) H(n-1) . . . H(n-nb+1). Each H(i) has the form H(i) = I - tau * v * v' where tau is a complex scalar, and v is a complex vector with v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i), and tau in TAU(i-1). If UPLO = MagmaLower, the matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(nb). Each H(i) has the form H(i) = I - tau * v * v' where tau is a complex scalar, and v is a complex vector with v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i), and tau in TAU(i). The elements of the vectors v together form the n-by-nb matrix V which is needed, with W, to apply the transformation to the unreduced part of the matrix, using a Hermitian rank-2k update of the form: A := A - V*W' - W*V'. The contents of A on exit are illustrated by the following examples with n = 5 and nb = 2: if UPLO = MagmaUpper: if UPLO = MagmaLower: ( a a a v4 v5 ) ( d ) ( a a v4 v5 ) ( 1 d ) ( a 1 v5 ) ( v1 1 a ) ( d 1 ) ( v1 v2 a a ) ( d ) ( v1 v2 a a a ) where d denotes a diagonal element of the reduced matrix, a denotes an element of the original matrix that is unchanged, and vi denotes an element of the vector defining H(i). @ingroup magma_cheev_aux ********************************************************************/ extern "C" magma_int_t magma_clatrd2(magma_uplo_t uplo, magma_int_t n, magma_int_t nb, magmaFloatComplex *A, magma_int_t lda, float *e, magmaFloatComplex *tau, magmaFloatComplex *W, magma_int_t ldw, magmaFloatComplex *dA, magma_int_t ldda, magmaFloatComplex *dW, magma_int_t lddw, magmaFloatComplex *dwork, magma_int_t ldwork) { #define A(i, j) (A + (j)*lda + (i)) #define W(i, j) (W + (j)*ldw + (i)) #define dA(i, j) (dA + (j)*ldda + (i)) #define dW(i, j) (dW + (j)*lddw + (i)) magma_int_t i; magmaFloatComplex c_neg_one = MAGMA_C_NEG_ONE; magmaFloatComplex c_one = MAGMA_C_ONE; magmaFloatComplex c_zero = MAGMA_C_ZERO; magmaFloatComplex value = MAGMA_C_ZERO; magma_int_t ione = 1; magma_int_t i_n, i_1, iw; magmaFloatComplex alpha; magmaFloatComplex *f; if (n <= 0) { return 0; } magma_queue_t stream; magma_queue_create( &stream ); magma_cmalloc_cpu( &f, n ); assert( f != NULL ); // TODO return error, or allocate outside clatrd if (uplo == MagmaUpper) { /* Reduce last NB columns of upper triangle */ for (i = n-1; i >= n - nb; --i) { i_1 = i + 1; i_n = n - i - 1; iw = i - n + nb; if (i < n-1) { /* Update A(1:i,i) */ #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_clacgv(&i_n, W(i, iw+1), &ldw); #endif blasf77_cgemv("No transpose", &i_1, &i_n, &c_neg_one, A(0, i+1), &lda, W(i, iw+1), &ldw, &c_one, A(0, i), &ione); #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_clacgv(&i_n, W(i, iw+1), &ldw); lapackf77_clacgv(&i_n, A(i, i+1), &ldw); #endif blasf77_cgemv("No transpose", &i_1, &i_n, &c_neg_one, W(0, iw+1), &ldw, A(i, i+1), &lda, &c_one, A(0, i), &ione); #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_clacgv(&i_n, A(i, i+1), &ldw); #endif } if (i > 0) { /* Generate elementary reflector H(i) to annihilate A(1:i-2,i) */ alpha = *A(i-1, i); lapackf77_clarfg(&i, &alpha, A(0, i), &ione, &tau[i - 1]); e[i-1] = MAGMA_C_REAL( alpha ); *A(i-1,i) = MAGMA_C_MAKE( 1, 0 ); /* Compute W(1:i-1,i) */ // 1. Send the block reflector A(0:n-i-1,i) to the GPU magma_csetvector( i, A(0, i), 1, dA(0, i), 1 ); //#if (GPUSHMEM < 200) //magma_chemv(MagmaUpper, i, c_one, dA(0, 0), ldda, // dA(0, i), ione, c_zero, dW(0, iw), ione); //#else magmablas_chemv_work(MagmaUpper, i, c_one, dA(0, 0), ldda, dA(0, i), ione, c_zero, dW(0, iw), ione, dwork, ldwork); //#endif // 2. Start putting the result back (asynchronously) magma_cgetmatrix_async( i, 1, dW(0, iw), lddw, W(0, iw) /*test*/, ldw, stream ); if (i < n-1) { blasf77_cgemv(MagmaConjTransStr, &i, &i_n, &c_one, W(0, iw+1), &ldw, A(0, i), &ione, &c_zero, W(i+1, iw), &ione); } // 3. Here is where we need it // TODO find the right place magma_queue_sync( stream ); if (i < n-1) { blasf77_cgemv("No transpose", &i, &i_n, &c_neg_one, A(0, i+1), &lda, W(i+1, iw), &ione, &c_one, W(0, iw), &ione); blasf77_cgemv(MagmaConjTransStr, &i, &i_n, &c_one, A(0, i+1), &lda, A(0, i), &ione, &c_zero, W(i+1, iw), &ione); blasf77_cgemv("No transpose", &i, &i_n, &c_neg_one, W(0, iw+1), &ldw, W(i+1, iw), &ione, &c_one, W(0, iw), &ione); } blasf77_cscal(&i, &tau[i - 1], W(0, iw), &ione); #if defined(PRECISION_z) || defined(PRECISION_c) cblas_cdotc_sub( i, W(0,iw), ione, A(0,i), ione, &value ); #else value = cblas_cdotc( i, W(0,iw), ione, A(0,i), ione ); #endif alpha = tau[i - 1] * -0.5f * value; blasf77_caxpy(&i, &alpha, A(0, i), &ione, W(0, iw), &ione); } } } else { /* Reduce first NB columns of lower triangle */ for (i = 0; i < nb; ++i) { /* Update A(i:n,i) */ i_n = n - i; #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_clacgv(&i, W(i, 0), &ldw); #endif blasf77_cgemv("No transpose", &i_n, &i, &c_neg_one, A(i, 0), &lda, W(i, 0), &ldw, &c_one, A(i, i), &ione); #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_clacgv(&i, W(i, 0), &ldw); lapackf77_clacgv(&i, A(i, 0), &lda); #endif blasf77_cgemv("No transpose", &i_n, &i, &c_neg_one, W(i, 0), &ldw, A(i, 0), &lda, &c_one, A(i, i), &ione); #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_clacgv(&i, A(i, 0), &lda); #endif if (i < n-1) { /* Generate elementary reflector H(i) to annihilate A(i+2:n,i) */ i_n = n - i - 1; alpha = *A(i+1, i); lapackf77_clarfg(&i_n, &alpha, A(min(i+2,n-1), i), &ione, &tau[i]); e[i] = MAGMA_C_REAL( alpha ); *A(i+1,i) = MAGMA_C_MAKE( 1, 0 ); /* Compute W(i+1:n,i) */ // 1. Send the block reflector A(i+1:n,i) to the GPU magma_csetvector( i_n, A(i+1, i), 1, dA(i+1, i), 1 ); //#if (GPUSHMEM < 200) //magma_chemv(MagmaLower, i_n, c_one, dA(i+1, i+1), ldda, dA(i+1, i), ione, c_zero, // dW(i+1, i), ione); //#else magmablas_chemv_work(MagmaLower, i_n, c_one, dA(i+1, i+1), ldda, dA(i+1, i), ione, c_zero, dW(i+1, i), ione, dwork, ldwork); //#endif // 2. Start putting the result back (asynchronously) magma_cgetmatrix_async( i_n, 1, dW(i+1, i), lddw, W(i+1, i), ldw, stream ); blasf77_cgemv(MagmaConjTransStr, &i_n, &i, &c_one, W(i+1, 0), &ldw, A(i+1, i), &ione, &c_zero, W(0, i), &ione); blasf77_cgemv("No transpose", &i_n, &i, &c_neg_one, A(i+1, 0), &lda, W(0, i), &ione, &c_zero, f, &ione); blasf77_cgemv(MagmaConjTransStr, &i_n, &i, &c_one, A(i+1, 0), &lda, A(i+1, i), &ione, &c_zero, W(0, i), &ione); // 3. Here is where we need it magma_queue_sync( stream ); if (i != 0) blasf77_caxpy(&i_n, &c_one, f, &ione, W(i+1, i), &ione); blasf77_cgemv("No transpose", &i_n, &i, &c_neg_one, W(i+1, 0), &ldw, W(0, i), &ione, &c_one, W(i+1, i), &ione); blasf77_cscal(&i_n, &tau[i], W(i+1,i), &ione); #if defined(PRECISION_z) || defined(PRECISION_c) cblas_cdotc_sub( i_n, W(i+1,i), ione, A(i+1,i), ione, &value ); #else value = cblas_cdotc( i_n, W(i+1,i), ione, A(i+1,i), ione ); #endif alpha = tau[i] * -0.5f * value; blasf77_caxpy(&i_n, &alpha, A(i+1, i), &ione, W(i+1,i), &ione); } } } magma_free_cpu(f); magma_queue_destroy( stream ); return 0; } /* magma_clatrd */
/** Purpose ------- CLABRD reduces the first NB rows and columns of a complex general m by n matrix A to upper or lower bidiagonal form by an orthogonal transformation Q' * A * P, and returns the matrices X and Y which are needed to apply the transformation to the unreduced part of A. If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower bidiagonal form. This is an auxiliary routine called by CGEBRD. Arguments --------- @param[in] m INTEGER The number of rows in the matrix A. @param[in] n INTEGER The number of columns in the matrix A. @param[in] nb INTEGER The number of leading rows and columns of A to be reduced. @param[in,out] A COMPLEX array, dimension (LDA,N) On entry, the m by n general matrix to be reduced. On exit, the first NB rows and columns of the matrix are overwritten; the rest of the array is unchanged. If m >= n, elements on and below the diagonal in the first NB columns, with the array TAUQ, represent the orthogonal matrix Q as a product of elementary reflectors; and elements above the diagonal in the first NB rows, with the array TAUP, represent the orthogonal matrix P as a product of elementary reflectors. \n If m < n, elements below the diagonal in the first NB columns, with the array TAUQ, represent the orthogonal matrix Q as a product of elementary reflectors, and elements on and above the diagonal in the first NB rows, with the array TAUP, represent the orthogonal matrix P as a product of elementary reflectors. See Further Details. @param[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,M). @param[in,out] dA COMPLEX array, dimension (LDDA,N) Copy of A on GPU. @param[in] ldda INTEGER The leading dimension of the array dA. LDDA >= max(1,M). @param[out] d COMPLEX array, dimension (NB) The diagonal elements of the first NB rows and columns of the reduced matrix. D(i) = A(i,i). @param[out] e COMPLEX array, dimension (NB) The off-diagonal elements of the first NB rows and columns of the reduced matrix. @param[out] tauq COMPLEX array dimension (NB) The scalar factors of the elementary reflectors which represent the orthogonal matrix Q. See Further Details. @param[out] taup COMPLEX array, dimension (NB) The scalar factors of the elementary reflectors which represent the orthogonal matrix P. See Further Details. @param[out] X COMPLEX array, dimension (LDX,NB) The m-by-nb matrix X required to update the unreduced part of A. @param[in] ldx INTEGER The leading dimension of the array X. LDX >= M. @param[out] dX COMPLEX array, dimension (LDDX,NB) Copy of X on GPU. @param[in] lddx INTEGER The leading dimension of the array dX. LDDX >= M. @param[out] Y COMPLEX array, dimension (LDY,NB) The n-by-nb matrix Y required to update the unreduced part of A. @param[in] ldy INTEGER The leading dimension of the array Y. LDY >= N. @param[out] dY COMPLEX array, dimension (LDDY,NB) Copy of Y on GPU. @param[in] lddy INTEGER The leading dimension of the array dY. LDDY >= N. Further Details --------------- The matrices Q and P are represented as products of elementary reflectors: Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb) Each H(i) and G(i) has the form: H(i) = I - tauq * v * v' and G(i) = I - taup * u * u' where tauq and taup are complex scalars, and v and u are complex vectors. If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). The elements of the vectors v and u together form the m-by-nb matrix V and the nb-by-n matrix U' which are needed, with X and Y, to apply the transformation to the unreduced part of the matrix, using a block update of the form: A := A - V*Y' - X*U'. The contents of A on exit are illustrated by the following examples with nb = 2: @verbatim m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): ( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 ) ( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 ) ( v1 v2 a a a ) ( v1 1 a a a a ) ( v1 v2 a a a ) ( v1 v2 a a a a ) ( v1 v2 a a a ) ( v1 v2 a a a a ) ( v1 v2 a a a ) @endverbatim where a denotes an element of the original matrix which is unchanged, vi denotes an element of the vector defining H(i), and ui an element of the vector defining G(i). @ingroup magma_cgesvd_aux ********************************************************************/ extern "C" magma_int_t magma_clabrd_gpu( magma_int_t m, magma_int_t n, magma_int_t nb, magmaFloatComplex *A, magma_int_t lda, magmaFloatComplex_ptr dA, magma_int_t ldda, float *d, float *e, magmaFloatComplex *tauq, magmaFloatComplex *taup, magmaFloatComplex *X, magma_int_t ldx, magmaFloatComplex_ptr dX, magma_int_t lddx, magmaFloatComplex *Y, magma_int_t ldy, magmaFloatComplex_ptr dY, magma_int_t lddy) { #define A(i_,j_) (A + (i_) + (j_)*lda) #define X(i_,j_) (X + (i_) + (j_)*ldx) #define Y(i_,j_) (Y + (i_) + (j_)*ldy) #define dA(i_,j_) (dA + (i_) + (j_)*ldda) #define dY(i_,j_) (dY + (i_) + (j_)*lddy) #define dX(i_,j_) (dX + (i_) + (j_)*lddx) magmaFloatComplex c_neg_one = MAGMA_C_NEG_ONE; magmaFloatComplex c_one = MAGMA_C_ONE; magmaFloatComplex c_zero = MAGMA_C_ZERO; magma_int_t ione = 1; magma_int_t i__2, i__3; magma_int_t i; magmaFloatComplex alpha; A -= 1 + lda; X -= 1 + ldx; dX -= 1 + lddx; Y -= 1 + ldy; dY -= 1 + lddy; --d; --e; --tauq; --taup; /* Quick return if possible */ magma_int_t info = 0; if (m <= 0 || n <= 0) { return info; } magmaFloatComplex *f; magma_queue_t stream; magma_queue_create( &stream ); magma_cmalloc_cpu( &f, max(n,m) ); if ( f == NULL ) { info = MAGMA_ERR_HOST_ALLOC; return info; } if (m >= n) { /* Reduce to upper bidiagonal form */ for (i = 1; i <= nb; ++i) { /* Update A(i:m,i) */ i__2 = m - i + 1; i__3 = i - 1; #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_clacgv( &i__3, Y(i,1), &ldy ); #endif blasf77_cgemv( "No transpose", &i__2, &i__3, &c_neg_one, A(i,1), &lda, Y(i,1), &ldy, &c_one, A(i,i), &ione ); #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_clacgv( &i__3, Y(i,1), &ldy ); #endif blasf77_cgemv( "No transpose", &i__2, &i__3, &c_neg_one, X(i,1), &ldx, A(1,i), &ione, &c_one, A(i,i), &ione ); /* Generate reflection Q(i) to annihilate A(i+1:m,i) */ alpha = *A(i,i); i__2 = m - i + 1; i__3 = i + 1; lapackf77_clarfg( &i__2, &alpha, A(min(i__3,m),i), &ione, &tauq[i] ); d[i] = MAGMA_C_REAL( alpha ); if (i < n) { *A(i,i) = c_one; /* Compute Y(i+1:n,i) */ i__2 = m - i + 1; i__3 = n - i; // 1. Send the block reflector A(i+1:m,i) to the GPU ------ magma_csetvector( i__2, A(i,i), 1, dA(i-1,i-1), 1 ); // 2. Multiply --------------------------------------------- magma_cgemv( MagmaConjTrans, i__2, i__3, c_one, dA(i-1,i), ldda, dA(i-1,i-1), ione, c_zero, dY(i+1,i), ione ); // 3. Put the result back ---------------------------------- magma_cgetmatrix_async( i__3, 1, dY(i+1,i), lddy, Y(i+1,i), ldy, stream ); i__2 = m - i + 1; i__3 = i - 1; blasf77_cgemv( MagmaConjTransStr, &i__2, &i__3, &c_one, A(i,1), &lda, A(i,i), &ione, &c_zero, Y(1,i), &ione ); i__2 = n - i; i__3 = i - 1; blasf77_cgemv( "N", &i__2, &i__3, &c_neg_one, Y(i+1,1), &ldy, Y(1,i), &ione, &c_zero, f, &ione ); i__2 = m - i + 1; i__3 = i - 1; blasf77_cgemv( MagmaConjTransStr, &i__2, &i__3, &c_one, X(i,1), &ldx, A(i,i), &ione, &c_zero, Y(1,i), &ione ); // 4. Sync to make sure the result is back ---------------- magma_queue_sync( stream ); if (i__3 != 0) { i__2 = n - i; blasf77_caxpy( &i__2, &c_one, f, &ione, Y(i+1,i), &ione ); } i__2 = i - 1; i__3 = n - i; blasf77_cgemv( MagmaConjTransStr, &i__2, &i__3, &c_neg_one, A(1,i+1), &lda, Y(1,i), &ione, &c_one, Y(i+1,i), &ione ); i__2 = n - i; blasf77_cscal( &i__2, &tauq[i], Y(i+1,i), &ione ); /* Update A(i,i+1:n) */ i__2 = n - i; #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_clacgv( &i__2, A(i,i+1), &lda ); lapackf77_clacgv( &i, A(i,1), &lda ); #endif blasf77_cgemv( "No transpose", &i__2, &i, &c_neg_one, Y(i+1,1), &ldy, A(i,1), &lda, &c_one, A(i,i+1), &lda ); i__2 = i - 1; i__3 = n - i; #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_clacgv( &i, A(i,1), &lda ); lapackf77_clacgv( &i__2, X(i,1), &ldx ); #endif blasf77_cgemv( MagmaConjTransStr, &i__2, &i__3, &c_neg_one, A(1,i+1), &lda, X(i,1), &ldx, &c_one, A(i,i+1), &lda ); #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_clacgv( &i__2, X(i,1), &ldx ); #endif /* Generate reflection P(i) to annihilate A(i,i+2:n) */ i__2 = n - i; i__3 = i + 2; alpha = *A(i,i+1); lapackf77_clarfg( &i__2, &alpha, A(i,min(i__3,n)), &lda, &taup[i] ); e[i] = MAGMA_C_REAL( alpha ); *A(i,i+1) = c_one; /* Compute X(i+1:m,i) */ i__2 = m - i; i__3 = n - i; // 1. Send the block reflector A(i+1:m,i) to the GPU ------ magma_csetvector( i__3, A(i,i+1), lda, dA(i-1,i), ldda ); // 2. Multiply --------------------------------------------- //magma_ccopy( i__3, dA(i-1,i), ldda, dY(1,1), 1 ); magma_cgemv( MagmaNoTrans, i__2, i__3, c_one, dA(i,i), ldda, dA(i-1,i), ldda, //dY(1,1), 1, c_zero, dX(i+1,i), ione ); // 3. Put the result back ---------------------------------- magma_cgetmatrix_async( i__2, 1, dX(i+1,i), lddx, X(i+1,i), ldx, stream ); i__2 = n - i; blasf77_cgemv( MagmaConjTransStr, &i__2, &i, &c_one, Y(i+1,1), &ldy, A(i,i+1), &lda, &c_zero, X(1,i), &ione ); i__2 = m - i; blasf77_cgemv( "N", &i__2, &i, &c_neg_one, A(i+1,1), &lda, X(1,i), &ione, &c_zero, f, &ione ); i__2 = i - 1; i__3 = n - i; blasf77_cgemv( "N", &i__2, &i__3, &c_one, A(1,i+1), &lda, A(i,i+1), &lda, &c_zero, X(1,i), &ione ); // 4. Sync to make sure the result is back ---------------- magma_queue_sync( stream ); if (i != 0) { i__2 = m - i; blasf77_caxpy( &i__2, &c_one, f, &ione, X(i+1,i), &ione ); } i__2 = m - i; i__3 = i - 1; blasf77_cgemv( "No transpose", &i__2, &i__3, &c_neg_one, X(i+1,1), &ldx, X(1,i), &ione, &c_one, X(i+1,i), &ione ); i__2 = m - i; blasf77_cscal( &i__2, &taup[i], X(i+1,i), &ione ); #if defined(PRECISION_z) || defined(PRECISION_c) i__2 = n - i; lapackf77_clacgv( &i__2, A(i,i+1), &lda ); // 4. Send the block reflector A(i+1:m,i) to the GPU after CLACGV() magma_csetvector( i__2, A(i,i+1), lda, dA(i-1,i), ldda ); #endif } } } else { /* Reduce to lower bidiagonal form */ for (i = 1; i <= nb; ++i) { /* Update A(i,i:n) */ i__2 = n - i + 1; i__3 = i - 1; #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_clacgv( &i__2, A(i,i), &lda ); lapackf77_clacgv( &i__3, A(i,1), &lda ); #endif blasf77_cgemv( "No transpose", &i__2, &i__3, &c_neg_one, Y(i,1), &ldy, A(i,1), &lda, &c_one, A(i,i), &lda ); i__2 = i - 1; #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_clacgv( &i__3, A(i,1), &lda ); lapackf77_clacgv( &i__3, X(i,1), &ldx ); #endif i__3 = n - i + 1; blasf77_cgemv( MagmaConjTransStr, &i__2, &i__3, &c_neg_one, A(1,i), &lda, X(i,1), &ldx, &c_one, A(i,i), &lda ); #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_clacgv( &i__2, X(i,1), &ldx ); #endif /* Generate reflection P(i) to annihilate A(i,i+1:n) */ i__2 = n - i + 1; i__3 = i + 1; alpha = *A(i,i); lapackf77_clarfg( &i__2, &alpha, A(i,min(i__3,n)), &lda, &taup[i] ); d[i] = MAGMA_C_REAL( alpha ); if (i < m) { *A(i,i) = c_one; /* Compute X(i+1:m,i) */ i__2 = m - i; i__3 = n - i + 1; // 1. Send the block reflector A(i,i+1:n) to the GPU ------ magma_csetvector( i__3, A(i,i), lda, dA(i-1,i-1), ldda ); // 2. Multiply --------------------------------------------- //magma_ccopy( i__3, dA(i-1,i-1), ldda, dY(1,1), 1 ); magma_cgemv( MagmaNoTrans, i__2, i__3, c_one, dA(i,i-1), ldda, dA(i-1,i-1), ldda, //dY(1,1), 1, c_zero, dX(i+1,i), ione ); // 3. Put the result back ---------------------------------- magma_cgetmatrix_async( i__2, 1, dX(i+1,i), lddx, X(i+1,i), ldx, stream ); i__2 = n - i + 1; i__3 = i - 1; blasf77_cgemv( MagmaConjTransStr, &i__2, &i__3, &c_one, Y(i,1), &ldy, A(i,i), &lda, &c_zero, X(1,i), &ione ); i__2 = m - i; i__3 = i - 1; blasf77_cgemv( "No transpose", &i__2, &i__3, &c_neg_one, A(i+1,1), &lda, X(1,i), &ione, &c_zero, f, &ione ); i__2 = i - 1; i__3 = n - i + 1; blasf77_cgemv( "No transpose", &i__2, &i__3, &c_one, A(1,i), &lda, A(i,i), &lda, &c_zero, X(1,i), &ione ); // 4. Sync to make sure the result is back ---------------- magma_queue_sync( stream ); if (i__2 != 0) { i__3 = m - i; blasf77_caxpy( &i__3, &c_one, f, &ione, X(i+1,i), &ione ); } i__2 = m - i; i__3 = i - 1; blasf77_cgemv( "No transpose", &i__2, &i__3, &c_neg_one, X(i+1,1), &ldx, X(1,i), &ione, &c_one, X(i+1,i), &ione ); i__2 = m - i; blasf77_cscal( &i__2, &taup[i], X(i+1,i), &ione ); i__2 = n - i + 1; #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_clacgv( &i__2, A(i,i), &lda ); magma_csetvector( i__2, A(i,i), lda, dA(i-1,i-1), ldda ); #endif /* Update A(i+1:m,i) */ i__2 = m - i; i__3 = i - 1; #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_clacgv( &i__3, Y(i,1), &ldy ); #endif blasf77_cgemv( "No transpose", &i__2, &i__3, &c_neg_one, A(i+1,1), &lda, Y(i,1), &ldy, &c_one, A(i+1,i), &ione ); i__2 = m - i; #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_clacgv( &i__3, Y(i,1), &ldy ); #endif blasf77_cgemv( "No transpose", &i__2, &i, &c_neg_one, X(i+1,1), &ldx, A(1,i), &ione, &c_one, A(i+1,i), &ione ); /* Generate reflection Q(i) to annihilate A(i+2:m,i) */ i__2 = m - i; i__3 = i + 2; alpha = *A(i+1,i); lapackf77_clarfg( &i__2, &alpha, A(min(i__3,m),i), &ione, &tauq[i] ); e[i] = MAGMA_C_REAL( alpha ); *A(i+1,i) = c_one; /* Compute Y(i+1:n,i) */ i__2 = m - i; i__3 = n - i; // 1. Send the block reflector A(i+1:m,i) to the GPU ------ magma_csetvector( i__2, A(i+1,i), 1, dA(i,i-1), 1 ); // 2. Multiply --------------------------------------------- magma_cgemv( MagmaConjTrans, i__2, i__3, c_one, dA(i,i), ldda, dA(i,i-1), ione, c_zero, dY(i+1,i), ione ); // 3. Put the result back ---------------------------------- magma_cgetmatrix_async( i__3, 1, dY(i+1,i), lddy, Y(i+1,i), ldy, stream ); i__2 = m - i; i__3 = i - 1; blasf77_cgemv( MagmaConjTransStr, &i__2, &i__3, &c_one, A(i+1,1), &lda, A(i+1,i), &ione, &c_zero, Y(1,i), &ione ); i__2 = n - i; i__3 = i - 1; blasf77_cgemv( "No transpose", &i__2, &i__3, &c_neg_one, Y(i+1,1), &ldy, Y(1,i), &ione, &c_zero, f, &ione ); i__2 = m - i; blasf77_cgemv( MagmaConjTransStr, &i__2, &i, &c_one, X(i+1,1), &ldx, A(i+1,i), &ione, &c_zero, Y(1,i), &ione ); // 4. Sync to make sure the result is back ---------------- magma_queue_sync( stream ); if (i__3 != 0) { i__2 = n - i; blasf77_caxpy( &i__2, &c_one, f, &ione, Y(i+1,i), &ione ); } i__2 = n - i; blasf77_cgemv( MagmaConjTransStr, &i, &i__2, &c_neg_one, A(1,i+1), &lda, Y(1,i), &ione, &c_one, Y(i+1,i), &ione ); i__2 = n - i; blasf77_cscal( &i__2, &tauq[i], Y(i+1,i), &ione ); } #if defined(PRECISION_z) || defined(PRECISION_c) else { i__2 = n - i + 1; lapackf77_clacgv( &i__2, A(i,i), &lda ); magma_csetvector( i__2, A(i,i), lda, dA(i-1,i-1), ldda ); } #endif } } magma_queue_destroy( stream ); magma_free_cpu( f ); return info; } /* magma_clabrd_gpu */
/** Purpose ------- CLAHR2 reduces the first NB columns of a complex general n-BY-(n-k+1) matrix A so that elements below the k-th subdiagonal are zero. The reduction is performed by an orthogonal similarity transformation Q' * A * Q. The routine returns the matrices V and T which determine Q as a block reflector I - V*T*V', and also the matrix Y = A * V. (Note this is different than LAPACK, which computes Y = A * V * T.) This is an auxiliary routine called by CGEHRD. Arguments --------- @param[in] n INTEGER The order of the matrix A. @param[in] k INTEGER The offset for the reduction. Elements below the k-th subdiagonal in the first NB columns are reduced to zero. K < N. @param[in] nb INTEGER The number of columns to be reduced. @param[in,out] dA COMPLEX array on the GPU, dimension (LDDA,N-K+1) On entry, the n-by-(n-k+1) general matrix A. On exit, the elements in rows K:N of the first NB columns are overwritten with the matrix Y. @param[in] ldda INTEGER The leading dimension of the array dA. LDDA >= max(1,N). @param[out] dV COMPLEX array on the GPU, dimension (LDDV, NB) On exit this n-by-nb array contains the Householder vectors of the transformation. @param[in] lddv INTEGER The leading dimension of the array dV. LDDV >= max(1,N). @param[in,out] A COMPLEX array, dimension (LDA,N-K+1) On entry, the n-by-(n-k+1) general matrix A. On exit, the elements on and above the k-th subdiagonal in the first NB columns are overwritten with the corresponding elements of the reduced matrix; the elements below the k-th subdiagonal, with the array TAU, represent the matrix Q as a product of elementary reflectors. The other columns of A are unchanged. See Further Details. @param[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,N). @param[out] tau COMPLEX array, dimension (NB) The scalar factors of the elementary reflectors. See Further Details. @param[out] T COMPLEX array, dimension (LDT,NB) The upper triangular matrix T. @param[in] ldt INTEGER The leading dimension of the array T. LDT >= NB. @param[out] Y COMPLEX array, dimension (LDY,NB) The n-by-nb matrix Y. @param[in] ldy INTEGER The leading dimension of the array Y. LDY >= N. Further Details --------------- The matrix Q is represented as a product of nb elementary reflectors Q = H(1) H(2) . . . H(nb). Each H(i) has the form H(i) = I - tau * v * v' where tau is a complex scalar, and v is a complex vector with v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in A(i+k+1:n,i), and tau in TAU(i). The elements of the vectors v together form the (n-k+1)-by-nb matrix V which is needed, with T and Y, to apply the transformation to the unreduced part of the matrix, using an update of the form: A := (I - V*T*V') * (A - Y*T*V'). The contents of A on exit are illustrated by the following example with n = 7, k = 3 and nb = 2: @verbatim ( a a a a a ) ( a a a a a ) ( a a a a a ) ( h h a a a ) ( v1 h a a a ) ( v1 v2 a a a ) ( v1 v2 a a a ) @endverbatim where "a" denotes an element of the original matrix A, h denotes a modified element of the upper Hessenberg matrix H, and vi denotes an element of the vector defining H(i). This implementation follows the hybrid algorithm and notations described in S. Tomov and J. Dongarra, "Accelerating the reduction to upper Hessenberg form through hybrid GPU-based computing," University of Tennessee Computer Science Technical Report, UT-CS-09-642 (also LAPACK Working Note 219), May 24, 2009. @ingroup magma_cgeev_aux ********************************************************************/ extern "C" magma_int_t magma_clahr2( magma_int_t n, magma_int_t k, magma_int_t nb, magmaFloatComplex_ptr dA, magma_int_t ldda, magmaFloatComplex_ptr dV, magma_int_t lddv, magmaFloatComplex *A, magma_int_t lda, magmaFloatComplex *tau, magmaFloatComplex *T, magma_int_t ldt, magmaFloatComplex *Y, magma_int_t ldy ) { #define A(i_,j_) ( A + (i_) + (j_)*lda) #define Y(i_,j_) ( Y + (i_) + (j_)*ldy) #define T(i_,j_) ( T + (i_) + (j_)*ldt) #define dA(i_,j_) (dA + (i_) + (j_)*ldda) #define dV(i_,j_) (dV + (i_) + (j_)*lddv) magmaFloatComplex c_zero = MAGMA_C_ZERO; magmaFloatComplex c_one = MAGMA_C_ONE; magmaFloatComplex c_neg_one = MAGMA_C_NEG_ONE; magma_int_t ione = 1; magma_int_t n_k_i_1, n_k; magmaFloatComplex scale; magma_int_t i; magmaFloatComplex ei = MAGMA_C_ZERO; magma_int_t info = 0; if (n < 0) { info = -1; } else if (k < 0 || k > n) { info = -2; } else if (nb < 1 || nb > n) { info = -3; } else if (ldda < max(1,n)) { info = -5; } else if (lddv < max(1,n)) { info = -7; } else if (lda < max(1,n)) { info = -9; } else if (ldt < max(1,nb)) { info = -12; } else if (ldy < max(1,n)) { info = -13; } if (info != 0) { magma_xerbla( __func__, -(info) ); return info; } // adjust from 1-based indexing k -= 1; if (n <= 1) return info; for (i = 0; i < nb; ++i) { n_k_i_1 = n - k - i - 1; n_k = n - k; if (i > 0) { // Update A(k:n-1,i); Update i-th column of A - Y * T * V' // This updates one more row than LAPACK does (row k), // making the block above the panel an even multiple of nb. // Use last column of T as workspace, w. // w(0:i-1, nb-1) = VA(k+i, 0:i-1)' blasf77_ccopy( &i, A(k+i,0), &lda, T(0,nb-1), &ione ); #if defined(PRECISION_z) || defined(PRECISION_c) // If complex, conjugate row of V. lapackf77_clacgv(&i, T(0,nb-1), &ione); #endif // w = T(0:i-1, 0:i-1) * w blasf77_ctrmv( "Upper", "No trans", "No trans", &i, T(0,0), &ldt, T(0,nb-1), &ione ); // A(k:n-1, i) -= Y(k:n-1, 0:i-1) * w blasf77_cgemv( "No trans", &n_k, &i, &c_neg_one, Y(k,0), &ldy, T(0,nb-1), &ione, &c_one, A(k,i), &ione ); // Apply I - V * T' * V' to this column (call it b) from the // left, using the last column of T as workspace, w. // // Let V = ( V1 ) and b = ( b1 ) (first i-1 rows) // ( V2 ) ( b2 ) // where V1 is unit lower triangular // w := b1 = A(k+1:k+i, i) blasf77_ccopy( &i, A(k+1,i), &ione, T(0,nb-1), &ione ); // w := V1' * b1 = VA(k+1:k+i, 0:i-1)' * w blasf77_ctrmv( "Lower", "Conj", "Unit", &i, A(k+1,0), &lda, T(0,nb-1), &ione ); // w := w + V2'*b2 = w + VA(k+i+1:n-1, 0:i-1)' * A(k+i+1:n-1, i) blasf77_cgemv( "Conj", &n_k_i_1, &i, &c_one, A(k+i+1,0), &lda, A(k+i+1,i), &ione, &c_one, T(0,nb-1), &ione ); // w := T'*w = T(0:i-1, 0:i-1)' * w blasf77_ctrmv( "Upper", "Conj", "Non-unit", &i, T(0,0), &ldt, T(0,nb-1), &ione ); // b2 := b2 - V2*w = A(k+i+1:n-1, i) - VA(k+i+1:n-1, 0:i-1) * w blasf77_cgemv( "No trans", &n_k_i_1, &i, &c_neg_one, A(k+i+1,0), &lda, T(0,nb-1), &ione, &c_one, A(k+i+1,i), &ione ); // w := V1*w = VA(k+1:k+i, 0:i-1) * w blasf77_ctrmv( "Lower", "No trans", "Unit", &i, A(k+1,0), &lda, T(0,nb-1), &ione ); // b1 := b1 - w = A(k+1:k+i-1, i) - w blasf77_caxpy( &i, &c_neg_one, T(0,nb-1), &ione, A(k+1,i), &ione ); // Restore diagonal element, saved below during previous iteration *A(k+i,i-1) = ei; } // Generate the elementary reflector H(i) to annihilate A(k+i+1:n-1,i) lapackf77_clarfg( &n_k_i_1, A(k+i+1,i), A(k+i+2,i), &ione, &tau[i] ); // Save diagonal element and set to one, to simplify multiplying by V ei = *A(k+i+1,i); *A(k+i+1,i) = c_one; // dV(i+1:n-k-1, i) = VA(k+i+1:n-1, i) magma_csetvector( n_k_i_1, A(k+i+1,i), 1, dV(i+1,i), 1 ); // Compute Y(k+1:n,i) = A vi // dA(k:n-1, i) = dA(k:n-1, i+1:n-k-1) * dV(i+1:n-k-1, i) magma_cgemv( MagmaNoTrans, n_k, n_k_i_1, c_one, dA(k,i+1), ldda, dV(i+1,i), ione, c_zero, dA(k,i), ione ); // Compute T(0:i,i) = [ -tau T V' vi ] // [ tau ] // T(0:i-1, i) = -tau VA(k+i+1:n-1, 0:i-1)' VA(k+i+1:n-1, i) scale = MAGMA_C_NEGATE( tau[i]); blasf77_cgemv( "Conj", &n_k_i_1, &i, &scale, A(k+i+1,0), &lda, A(k+i+1,i), &ione, &c_zero, T(0,i), &ione ); // T(0:i-1, i) = T(0:i-1, 0:i-1) * T(0:i-1, i) blasf77_ctrmv( "Upper", "No trans", "Non-unit", &i, T(0,0), &ldt, T(0,i), &ione ); *T(i,i) = tau[i]; // Y(k:n-1, i) = dA(k:n-1, i) magma_cgetvector( n-k, dA(k,i), 1, Y(k,i), 1 ); } // Restore diagonal element *A(k+nb,nb-1) = ei; return info; } /* magma_clahr2 */
/** Purpose ------- CLAHR2 reduces the first NB columns of a complex general n-BY-(n-k+1) matrix A so that elements below the k-th subdiagonal are zero. The reduction is performed by an orthogonal similarity transformation Q' * A * Q. The routine returns the matrices V and T which determine Q as a block reflector I - V*T*V', and also the matrix Y = A * V. (Note this is different than LAPACK, which computes Y = A * V * T.) This is an auxiliary routine called by CGEHRD. Arguments --------- @param[in] n INTEGER The order of the matrix A. @param[in] k INTEGER The offset for the reduction. Elements below the k-th subdiagonal in the first NB columns are reduced to zero. K < N. @param[in] nb INTEGER The number of columns to be reduced. @param[in,out] A COMPLEX array, dimension (LDA,N-K+1) On entry, the n-by-(n-k+1) general matrix A. On exit, the elements on and above the k-th subdiagonal in the first NB columns are overwritten with the corresponding elements of the reduced matrix; the elements below the k-th subdiagonal, with the array TAU, represent the matrix Q as a product of elementary reflectors. The other columns of A are unchanged. See Further Details. @param[in] lda INTEGER The leading dimension of the array A. LDA >= max(1,N). @param[out] tau COMPLEX array, dimension (NB) The scalar factors of the elementary reflectors. See Further Details. @param[out] T COMPLEX array, dimension (LDT,NB) The upper triangular matrix T. @param[in] ldt INTEGER The leading dimension of the array T. LDT >= NB. @param[out] Y COMPLEX array, dimension (LDY,NB) The n-by-nb matrix Y. @param[in] ldy INTEGER The leading dimension of the array Y. LDY >= N. @param[in,out] data Structure with pointers to dA, dT, dV, dW, dY which are distributed across multiple GPUs. Further Details --------------- The matrix Q is represented as a product of nb elementary reflectors Q = H(1) H(2) . . . H(nb). Each H(i) has the form H(i) = I - tau * v * v' where tau is a complex scalar, and v is a complex vector with v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in A(i+k+1:n,i), and tau in TAU(i). The elements of the vectors v together form the (n-k+1)-by-nb matrix V which is needed, with T and Y, to apply the transformation to the unreduced part of the matrix, using an update of the form: A := (I - V*T*V') * (A - Y*T*V'). The contents of A on exit are illustrated by the following example with n = 7, k = 3 and nb = 2: @verbatim ( a a a a a ) ( a a a a a ) ( a a a a a ) ( h h a a a ) ( v1 h a a a ) ( v1 v2 a a a ) ( v1 v2 a a a ) @endverbatim where "a" denotes an element of the original matrix A, h denotes a modified element of the upper Hessenberg matrix H, and vi denotes an element of the vector defining H(i). This implementation follows the hybrid algorithm and notations described in S. Tomov and J. Dongarra, "Accelerating the reduction to upper Hessenberg form through hybrid GPU-based computing," University of Tennessee Computer Science Technical Report, UT-CS-09-642 (also LAPACK Working Note 219), May 24, 2009. @ingroup magma_cgeev_aux ********************************************************************/ extern "C" magma_int_t magma_clahr2_m( magma_int_t n, magma_int_t k, magma_int_t nb, magmaFloatComplex *A, magma_int_t lda, magmaFloatComplex *tau, magmaFloatComplex *T, magma_int_t ldt, magmaFloatComplex *Y, magma_int_t ldy, struct cgehrd_data *data ) { #define A( i, j ) ( A + (i) + (j)*lda) #define Y( i, j ) ( Y + (i) + (j)*ldy) #define T( i, j ) ( T + (i) + (j)*ldt) #define dA( d, i, j ) (data->A [d] + (i) + (j)*ldda) #define dTi( d ) (data->Ti[d]) #define dV( d, i, j ) (data->V [d] + (i) + (j)*ldv ) #define dVd( d, i, j ) (data->Vd[d] + (i) + (j)*ldvd) #define dY( d, i, j ) (data->Y [d] + (i) + (j)*ldda) magmaFloatComplex c_zero = MAGMA_C_ZERO; magmaFloatComplex c_one = MAGMA_C_ONE; magmaFloatComplex c_neg_one = MAGMA_C_NEG_ONE; magmaFloatComplex tmp; magma_int_t ngpu = data->ngpu; magma_int_t ldda = data->ldda; magma_int_t ldv = data->ldv; magma_int_t ldvd = data->ldvd; magma_int_t ione = 1; magma_int_t d, dki1, dn, nblocks, gblock, lblock, lgid; magma_int_t n_k_i_1, n_k; magmaFloatComplex scale; magma_int_t i; magmaFloatComplex ei = MAGMA_C_ZERO; magma_int_t info_data = 0; magma_int_t *info = &info_data; if (n < 0) { *info = -1; } else if (k < 0 || k >= n) { *info = -2; } else if (nb < 1 || nb > n) { *info = -3; } else if (lda < max(1,n)) { *info = -5; } else if (ldt < nb) { *info = -8; } else if (ldy < max(1,n)) { *info = -10; } if (*info != 0) { magma_xerbla( __func__, -(*info) ); return *info; } // adjust from 1-based indexing k -= 1; // Function Body if (n <= 1) return *info; magma_device_t orig_dev; magma_getdevice( &orig_dev ); magma_queue_t orig_stream; magmablasGetKernelStream( &orig_stream ); // zero out current top block of V on all GPUs for( d = 0; d < ngpu; ++d ) { magma_setdevice( d ); magmablasSetKernelStream( data->streams[d] ); magmablas_claset( MagmaFull, nb, nb, c_zero, c_zero, dV(d,k,0), ldv ); } // set all Y=0 lapackf77_claset( "Full", &n, &nb, &c_zero, &c_zero, Y, &ldy ); for (i = 0; i < nb; ++i) { n_k_i_1 = n - k - i - 1; n_k = n - k; if (i > 0) { // Finish applying I - V * T * V' on right tmp = MAGMA_C_NEGATE( tau[i-1] ); blasf77_caxpy( &n_k, &tmp, Y(k,i-1), &ione, A(k,i), &ione ); // Apply I - V * T' * V' to this column (call it b) from the // left, using the last column of T as workspace, w. // // Let V = ( V1 ) and b = ( b1 ) (first i-1 rows) // ( V2 ) ( b2 ) // where V1 is unit lower triangular // w := b1 = A(k+1:k+i, i) blasf77_ccopy( &i, A(k+1,i), &ione, T(0,nb-1), &ione ); // w := V1' * b1 = VA(k+1:k+i, 0:i-1)' * w blasf77_ctrmv( "Lower", "Conj", "Unit", &i, A(k+1,0), &lda, T(0,nb-1), &ione ); // w := w + V2'*b2 = w + VA(k+i+1:n-1, 0:i-1)' * A(k+i+1:n-1, i) blasf77_cgemv( "Conj", &n_k_i_1, &i, &c_one, A(k+i+1,0), &lda, A(k+i+1,i), &ione, &c_one, T(0,nb-1), &ione ); // w := T'*w = T(0:i-1, 0:i-1)' * w blasf77_ctrmv( "Upper", "Conj", "Non-unit", &i, T(0,0), &ldt, T(0,nb-1), &ione ); // b2 := b2 - V2*w = A(k+i+1:n-1, i) - VA(k+i+1:n-1, 0:i-1) * w blasf77_cgemv( "No trans", &n_k_i_1, &i, &c_neg_one, A(k+i+1,0), &lda, T(0,nb-1), &ione, &c_one, A(k+i+1,i), &ione ); // w := V1*w = VA(k+1:k+i, 0:i-1) * w blasf77_ctrmv( "Lower", "No trans", "Unit", &i, A(k+1,0), &lda, T(0,nb-1), &ione ); // b1 := b1 - w = A(k+1:k+i-1, i) - w blasf77_caxpy( &i, &c_neg_one, T(0,nb-1), &ione, A(k+1,i), &ione ); // Restore diagonal element, saved below during previous iteration *A(k+i,i-1) = ei; } // Generate the elementary reflector H(i) to annihilate A(k+i+1:n-1,i) lapackf77_clarfg( &n_k_i_1, A(k+i+1,i), A(k+i+2,i), &ione, &tau[i] ); // Save diagonal element and set to one, to simplify multiplying by V ei = *A(k+i+1,i); *A(k+i+1,i) = c_one; // compute yi = A vi = sum_g A{d} vi{d} nblocks = (n-1) / nb / ngpu + 1; for( d = 0; d < ngpu; ++d ) { magma_setdevice( d ); magmablasSetKernelStream( data->streams[d] ); // dV(k+i+1:n-1, i) = VA(k+i:n, i) magma_csetvector_async( n_k_i_1, A(k+i+1,i), 1, dV(d, k+i+1, i), 1, data->streams[d] ); // copy column of dV -> dVd, using block cyclic distribution. // This assumes V and Vd have been padded so that // a 2D matrix copy doesn't access them out-of-bounds gblock = k / nb; lblock = gblock / ngpu; lgid = gblock % ngpu; if ( d < lgid ) { lblock += 1; } // treat V as (nb*ngpu) x nblock matrix, and Vd as nb x nblock matrix magmablas_clacpy( MagmaFull, nb, nblocks-lblock, dV (d, d*nb + lblock*nb*ngpu, i), nb*ngpu, dVd(d, 0 + lblock*nb, i), nb ); // convert global indices (k) to local indices (dk) magma_indices_1D_bcyclic( nb, ngpu, d, k+i+1, n, &dki1, &dn ); // dY(k:n, i) = dA(k:n, k+i+1:n) * dV(k+i+1:n, i) // skip if matrix is empty // each GPU copies to different temporary vector in Y, // which are summed in separate loop below if ( dn-dki1 > 0 ) { magma_cgemv( MagmaNoTrans, n-k, dn-dki1, c_one, dA (d, k, dki1), ldda, dVd(d, dki1, i), 1, c_zero, dY (d, k, i), 1 ); // copy vector to host, storing in column nb+d of Y // as temporary space (Y has >= nb+ngpu columns) magma_cgetvector_async( n-k, dY(d, k, i), 1, Y(k, nb+d), 1, data->streams[d] ); } } // while GPU is doing above Ag*v... // Compute T(0:i,i) = [ -tau T V' vi ] // [ tau ] // T(0:i-1, i) = -tau VA(k+i+1:n-1, 0:i-1)' VA(k+i+1:n-1, i) scale = MAGMA_C_NEGATE( tau[i] ); blasf77_cgemv( "Conj", &n_k_i_1, &i, &scale, A(k+i+1,0), &lda, A(k+i+1,i), &ione, &c_zero, T(0,i), &ione ); // T(0:i-1, i) = T(0:i-1, 0:i-1) * T(0:i-1, i) blasf77_ctrmv( "Upper", "No trans", "Non-unit", &i, T(0,0), &ldt, T(0,i), &ione ); *T(i,i) = tau[i]; // apply reflectors to next column, A(i+1), on right only. // one axpy will be required to finish this, in the next iteration above if ( i > 0 && i+1 < nb ) { // Update next column, A(k:n,i+1), applying Q on right. // One axpy will be required to finish this, in the next iteration // above, after yi is computed. // This updates one more row than LAPACK does (row k), // making block above panel an even multiple of nb. // Use last column of T as workspace, w. magma_int_t i1 = i+1; // If complex, conjugate row of V, and undo afterwards #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_clacgv( &i1, A(k+i1,0), &lda ); #endif // w = T(0:i, 0:i+1) * VA(k+i+1, 0:i+1)' // T is now rectangular, so we use gemv instead of trmv as in lapack. blasf77_cgemv( "No trans", &i, &i1, &c_one, T(0,0), &ldt, A(k+i1,0), &lda, &c_zero, T(0,nb-1), &ione ); #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_clacgv( &i1, A(k+i1,0), &lda ); #endif // A(k:n, i+1) -= Y(k:n, 0:i) * w blasf77_cgemv( "No trans", &n_k, &i, &c_neg_one, Y(k,0), &ldy, T(0,nb-1), &ione, &c_one, A(k,i1), &ione ); } // yi = sum_g yi{d} for( d = 0; d < ngpu; ++d ) { magma_setdevice( d ); magma_queue_sync( data->streams[d] ); magma_indices_1D_bcyclic( nb, ngpu, d, k+i+1, n, &dki1, &dn ); if ( dn-dki1 > 0 ) { // yi = yi + yi{d} blasf77_caxpy( &n_k, &c_one, Y(k,nb+d), &ione, Y(k,i), &ione ); } } } // Restore diagonal element *A(k+nb,nb-1) = ei; // compute Y = Am V = sum_g Am{d} V{d} --- top part, Y(0:k-1,:) for( d = 0; d < ngpu; ++d ) { magma_setdevice( d ); magmablasSetKernelStream( data->streams[d] ); // convert global indices (k) to local indices (dk) magma_indices_1D_bcyclic( nb, ngpu, d, k+1, n, &dki1, &dn ); // dY(0:k, :) = dA(0:k, k+i+1:n-1) * dV(k+i+1:n-1, :) // skip if matrix is empty // each GPU copies to different temporary block in Y, // which are summed in separate loop below if ( dn-dki1 > 0 ) { magma_cgemm( MagmaNoTrans, MagmaNoTrans, k, nb, dn-dki1, c_one, dA (d, 0, dki1), ldda, dVd(d, dki1, 0), ldvd, c_zero, dY (d, 0, 0), ldda ); // copy result to host, storing in columns [nb + nb*d : nb + nb*(d+1)] of Y // as temporary space (Y has nb + nb*ngpu columns) magma_cgetmatrix_async( k, nb, dY(d, 0, 0), ldda, Y(0,nb+nb*d), ldy, data->streams[d] ); } } // Y = sum_g Y{d} for( d = 0; d < ngpu; ++d ) { magma_setdevice( d ); magma_queue_sync( 0 ); magma_indices_1D_bcyclic( nb, ngpu, d, k+1, n, &dki1, &dn ); if ( dn-dki1 > 0 ) { // Y = Y + Am V for( i = 0; i < nb; ++i ) { blasf77_caxpy( &k, &c_one, Y(0,nb+nb*d+i), &ione, Y(0,i), &ione ); } } } // copy Y and T matrices to GPUs for( d = 0; d < ngpu; ++d ) { magma_setdevice( d ); magma_csetmatrix_async( n, nb, Y, ldy, dY(d, 0, 0), ldda, data->streams[d] ); magma_csetmatrix_async( nb, nb, T, nb, dTi(d), nb, data->streams[d] ); } magma_setdevice( orig_dev ); magmablasSetKernelStream( orig_stream ); return *info; } /* magma_clahr2 */
extern "C" magma_int_t magma_clahr2( magma_int_t n, magma_int_t k, magma_int_t nb, magmaFloatComplex *dA, magmaFloatComplex *dV, magmaFloatComplex *A, magma_int_t lda, magmaFloatComplex *tau, magmaFloatComplex *T, magma_int_t ldt, magmaFloatComplex *Y, magma_int_t ldy ) { /* -- MAGMA (version 1.4.1) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver December 2013 Purpose ======= CLAHR2 reduces the first NB columns of a complex general n-BY-(n-k+1) matrix A so that elements below the k-th subdiagonal are zero. The reduction is performed by an orthogonal similarity transformation Q' * A * Q. The routine returns the matrices V and T which determine Q as a block reflector I - V*T*V', and also the matrix Y = A * V. (Note this is different than LAPACK, which computes Y = A * V * T.) This is an auxiliary routine called by CGEHRD. Arguments ========= N (input) INTEGER The order of the matrix A. K (input) INTEGER The offset for the reduction. Elements below the k-th subdiagonal in the first NB columns are reduced to zero. K < N. NB (input) INTEGER The number of columns to be reduced. dA (input/output) COMPLEX array on the GPU, dimension (LDA,N-K+1) On entry, the n-by-(n-k+1) general matrix A. On exit, the elements in rows K:N of the first NB columns are overwritten with the matrix Y. DV (output) COMPLEX array on the GPU, dimension (N, NB) On exit this contains the Householder vectors of the transformation. A (input/output) COMPLEX array, dimension (LDA,N-K+1) On entry, the n-by-(n-k+1) general matrix A. On exit, the elements on and above the k-th subdiagonal in the first NB columns are overwritten with the corresponding elements of the reduced matrix; the elements below the k-th subdiagonal, with the array TAU, represent the matrix Q as a product of elementary reflectors. The other columns of A are unchanged. See Further Details. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). TAU (output) COMPLEX array, dimension (NB) The scalar factors of the elementary reflectors. See Further Details. T (output) COMPLEX array, dimension (LDT,NB) The upper triangular matrix T. LDT (input) INTEGER The leading dimension of the array T. LDT >= NB. Y (output) COMPLEX array, dimension (LDY,NB) The n-by-nb matrix Y. LDY (input) INTEGER The leading dimension of the array Y. LDY >= N. Further Details =============== The matrix Q is represented as a product of nb elementary reflectors Q = H(1) H(2) . . . H(nb). Each H(i) has the form H(i) = I - tau * v * v' where tau is a complex scalar, and v is a complex vector with v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in A(i+k+1:n,i), and tau in TAU(i). The elements of the vectors v together form the (n-k+1)-by-nb matrix V which is needed, with T and Y, to apply the transformation to the unreduced part of the matrix, using an update of the form: A := (I - V*T*V') * (A - Y*T*V'). The contents of A on exit are illustrated by the following example with n = 7, k = 3 and nb = 2: ( a a a a a ) ( a a a a a ) ( a a a a a ) ( h h a a a ) ( v1 h a a a ) ( v1 v2 a a a ) ( v1 v2 a a a ) where "a" denotes an element of the original matrix A, h denotes a modified element of the upper Hessenberg matrix H, and vi denotes an element of the vector defining H(i). This implementation follows the hybrid algorithm and notations described in S. Tomov and J. Dongarra, "Accelerating the reduction to upper Hessenberg form through hybrid GPU-based computing," University of Tennessee Computer Science Technical Report, UT-CS-09-642 (also LAPACK Working Note 219), May 24, 2009. ===================================================================== */ #define A( i, j ) ( A + (i) + (j)*lda) #define Y( i, j ) ( Y + (i) + (j)*ldy) #define T( i, j ) ( T + (i) + (j)*ldt) #define dA( i, j ) (dA + (i) + (j)*ldda) #define dV( i, j ) (dV + (i) + (j)*ldda) magmaFloatComplex c_zero = MAGMA_C_ZERO; magmaFloatComplex c_one = MAGMA_C_ONE; magmaFloatComplex c_neg_one = MAGMA_C_NEG_ONE; magma_int_t ldda = lda; magma_int_t ione = 1; magma_int_t n_k_i_1, n_k; magmaFloatComplex scale; magma_int_t i; magmaFloatComplex ei = MAGMA_C_ZERO; // adjust from 1-based indexing k -= 1; // Function Body if (n <= 1) return 0; for (i = 0; i < nb; ++i) { n_k_i_1 = n - k - i - 1; n_k = n - k; if (i > 0) { // Update A(k:n-1,i); Update i-th column of A - Y * T * V' // This updates one more row than LAPACK does (row k), // making the block above the panel an even multiple of nb. // Use last column of T as workspace, w. // w(0:i-1, nb-1) = VA(k+i, 0:i-1)' blasf77_ccopy( &i, A(k+i,0), &lda, T(0,nb-1), &ione ); #if defined(PRECISION_z) || defined(PRECISION_c) // If complex, conjugate row of V. lapackf77_clacgv(&i, T(0,nb-1), &ione); #endif // w = T(0:i-1, 0:i-1) * w blasf77_ctrmv( "Upper", "No trans", "No trans", &i, T(0,0), &ldt, T(0,nb-1), &ione ); // A(k:n-1, i) -= Y(k:n-1, 0:i-1) * w blasf77_cgemv( "No trans", &n_k, &i, &c_neg_one, Y(k,0), &ldy, T(0,nb-1), &ione, &c_one, A(k,i), &ione ); // Apply I - V * T' * V' to this column (call it b) from the // left, using the last column of T as workspace, w. // // Let V = ( V1 ) and b = ( b1 ) (first i-1 rows) // ( V2 ) ( b2 ) // where V1 is unit lower triangular // w := b1 = A(k+1:k+i, i) blasf77_ccopy( &i, A(k+1,i), &ione, T(0,nb-1), &ione ); // w := V1' * b1 = VA(k+1:k+i, 0:i-1)' * w blasf77_ctrmv( "Lower", "Conj", "Unit", &i, A(k+1,0), &lda, T(0,nb-1), &ione ); // w := w + V2'*b2 = w + VA(k+i+1:n-1, 0:i-1)' * A(k+i+1:n-1, i) blasf77_cgemv( "Conj", &n_k_i_1, &i, &c_one, A(k+i+1,0), &lda, A(k+i+1,i), &ione, &c_one, T(0,nb-1), &ione ); // w := T'*w = T(0:i-1, 0:i-1)' * w blasf77_ctrmv( "Upper", "Conj", "Non-unit", &i, T(0,0), &ldt, T(0,nb-1), &ione ); // b2 := b2 - V2*w = A(k+i+1:n-1, i) - VA(k+i+1:n-1, 0:i-1) * w blasf77_cgemv( "No trans", &n_k_i_1, &i, &c_neg_one, A(k+i+1,0), &lda, T(0,nb-1), &ione, &c_one, A(k+i+1,i), &ione ); // w := V1*w = VA(k+1:k+i, 0:i-1) * w blasf77_ctrmv( "Lower", "No trans", "Unit", &i, A(k+1,0), &lda, T(0,nb-1), &ione ); // b1 := b1 - w = A(k+1:k+i-1, i) - w blasf77_caxpy( &i, &c_neg_one, T(0,nb-1), &ione, A(k+1,i), &ione ); // Restore diagonal element, saved below during previous iteration *A(k+i,i-1) = ei; } // Generate the elementary reflector H(i) to annihilate A(k+i+1:n-1,i) lapackf77_clarfg( &n_k_i_1, A(k+i+1,i), A(k+i+2,i), &ione, &tau[i] ); // Save diagonal element and set to one, to simplify multiplying by V ei = *A(k+i+1,i); *A(k+i+1,i) = c_one; // dV(i+1:n-k-1, i) = VA(k+i+1:n-1, i) magma_csetvector( n_k_i_1, A(k+i+1,i), 1, dV(i+1,i), 1 ); // Compute Y(k+1:n,i) = A vi // dA(k:n-1, i) = dA(k:n-1, i+1:n-k-1) * dV(i+1:n-k-1, i) magma_cgemv( MagmaNoTrans, n_k, n_k_i_1, c_one, dA(k,i+1), ldda, dV(i+1,i), ione, c_zero, dA(k,i), ione ); // Compute T(0:i,i) = [ -tau T V' vi ] // [ tau ] // T(0:i-1, i) = -tau VA(k+i+1:n-1, 0:i-1)' VA(k+i+1:n-1, i) scale = MAGMA_C_NEGATE( tau[i]); blasf77_cgemv( "Conj", &n_k_i_1, &i, &scale, A(k+i+1,0), &lda, A(k+i+1,i), &ione, &c_zero, T(0,i), &ione ); // T(0:i-1, i) = T(0:i-1, 0:i-1) * T(0:i-1, i) blasf77_ctrmv( "Upper", "No trans", "Non-unit", &i, T(0,0), &ldt, T(0,i), &ione ); *T(i,i) = tau[i]; // Y(k:n-1, i) = dA(k:n-1, i) magma_cgetvector( n-k, dA(k,i), 1, Y(k,i), 1 ); } // Restore diagonal element *A(k+nb,nb-1) = ei; return 0; } // magma_clahr2
magma_err_t magma_clabrd_gpu( magma_int_t m, magma_int_t n, magma_int_t nb, magmaFloatComplex *a, magma_int_t lda, magmaFloatComplex_ptr da, size_t da_offset, magma_int_t ldda, float *d, float *e, magmaFloatComplex *tauq, magmaFloatComplex *taup, magmaFloatComplex *x, magma_int_t ldx, magmaFloatComplex_ptr dx, size_t dx_offset, magma_int_t lddx, magmaFloatComplex *y, magma_int_t ldy, magmaFloatComplex_ptr dy, size_t dy_offset, magma_int_t lddy, magma_queue_t queue ) { /* -- MAGMA (version 1.1.0) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver @date January 2014 Purpose ======= CLABRD reduces the first NB rows and columns of a complex general m by n matrix A to upper or lower bidiagonal form by an orthogonal transformation Q' * A * P, and returns the matrices X and Y which are needed to apply the transformation to the unreduced part of A. If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower bidiagonal form. This is an auxiliary routine called by SGEBRD Arguments ========= M (input) INTEGER The number of rows in the matrix A. N (input) INTEGER The number of columns in the matrix A. NB (input) INTEGER The number of leading rows and columns of A to be reduced. A (input/output) COMPLEX array, dimension (LDA,N) On entry, the m by n general matrix to be reduced. On exit, the first NB rows and columns of the matrix are overwritten; the rest of the array is unchanged. If m >= n, elements on and below the diagonal in the first NB columns, with the array TAUQ, represent the orthogonal matrix Q as a product of elementary reflectors; and elements above the diagonal in the first NB rows, with the array TAUP, represent the orthogonal matrix P as a product of elementary reflectors. If m < n, elements below the diagonal in the first NB columns, with the array TAUQ, represent the orthogonal matrix Q as a product of elementary reflectors, and elements on and above the diagonal in the first NB rows, with the array TAUP, represent the orthogonal matrix P as a product of elementary reflectors. See Further Details. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,M). D (output) COMPLEX array, dimension (NB) The diagonal elements of the first NB rows and columns of the reduced matrix. D(i) = A(i,i). E (output) COMPLEX array, dimension (NB) The off-diagonal elements of the first NB rows and columns of the reduced matrix. TAUQ (output) COMPLEX array dimension (NB) The scalar factors of the elementary reflectors which represent the orthogonal matrix Q. See Further Details. TAUP (output) COMPLEX array, dimension (NB) The scalar factors of the elementary reflectors which represent the orthogonal matrix P. See Further Details. X (output) COMPLEX array, dimension (LDX,NB) The m-by-nb matrix X required to update the unreduced part of A. LDX (input) INTEGER The leading dimension of the array X. LDX >= M. Y (output) COMPLEX array, dimension (LDY,NB) The n-by-nb matrix Y required to update the unreduced part of A. LDY (input) INTEGER The leading dimension of the array Y. LDY >= N. Further Details =============== The matrices Q and P are represented as products of elementary reflectors: Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb) Each H(i) and G(i) has the form: H(i) = I - tauq * v * v' and G(i) = I - taup * u * u' where tauq and taup are complex scalars, and v and u are complex vectors. If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). The elements of the vectors v and u together form the m-by-nb matrix V and the nb-by-n matrix U' which are needed, with X and Y, to apply the transformation to the unreduced part of the matrix, using a block update of the form: A := A - V*Y' - X*U'. The contents of A on exit are illustrated by the following examples with nb = 2: m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): ( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 ) ( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 ) ( v1 v2 a a a ) ( v1 1 a a a a ) ( v1 v2 a a a ) ( v1 v2 a a a a ) ( v1 v2 a a a ) ( v1 v2 a a a a ) ( v1 v2 a a a ) where a denotes an element of the original matrix which is unchanged, vi denotes an element of the vector defining H(i), and ui an element of the vector defining G(i). ===================================================================== */ magmaFloatComplex c_neg_one = MAGMA_C_NEG_ONE; magmaFloatComplex c_one = MAGMA_C_ONE; magmaFloatComplex c_zero = MAGMA_C_ZERO; magma_int_t c__1 = 1; magma_int_t a_dim1, a_offset, x_dim1, x_offset, y_dim1, y_offset, i__2, i__3; magma_int_t i__; magmaFloatComplex alpha; a_dim1 = lda; a_offset = 1 + a_dim1; a -= a_offset; --d; --e; --tauq; --taup; x_dim1 = ldx; x_offset = 1 + x_dim1; x -= x_offset; dx_offset -= 1 + lddx; y_dim1 = ldy; y_offset = 1 + y_dim1; y -= y_offset; dy_offset -= 1 + lddy; if (m <= 0 || n <= 0) { return 0; } magmaFloatComplex *f; magma_cmalloc_cpu( &f, max(n,m) ); magma_event_t event = NULL; if (m >= n) { /* Reduce to upper bidiagonal form */ for (i__ = 1; i__ <= nb; ++i__) { /* Update A(i:m,i) */ i__2 = m - i__ + 1; i__3 = i__ - 1; #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_clacgv( &i__3, &y[i__+y_dim1], &ldy ); #endif blasf77_cgemv("No transpose", &i__2, &i__3, &c_neg_one, &a[i__ + a_dim1], &lda, &y[i__+y_dim1], &ldy, &c_one, &a[i__ + i__ * a_dim1], &c__1); #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_clacgv( &i__3, &y[i__+y_dim1], &ldy ); #endif blasf77_cgemv("No transpose", &i__2, &i__3, &c_neg_one, &x[i__ + x_dim1], &ldx, &a[i__*a_dim1+1], &c__1, &c_one, &a[i__+i__*a_dim1], &c__1); /* Generate reflection Q(i) to annihilate A(i+1:m,i) */ alpha = a[i__ + i__ * a_dim1]; i__2 = m - i__ + 1; i__3 = i__ + 1; lapackf77_clarfg(&i__2, &alpha, &a[min(i__3,m) + i__ * a_dim1], &c__1, &tauq[i__]); d[i__] = MAGMA_C_REAL( alpha ); if (i__ < n) { a[i__ + i__ * a_dim1] = c_one; /* Compute Y(i+1:n,i) */ i__2 = m - i__ + 1; i__3 = n - i__; // 1. Send the block reflector A(i+1:m,i) to the GPU ------ magma_csetvector( i__2, a + i__ + i__ * a_dim1, 0, 1, da, da_offset + (i__-1)+(i__-1)* (ldda), 1, queue ); // 2. Multiply --------------------------------------------- magma_cgemv(MagmaConjTrans, i__2, i__3, c_one, da, da_offset + (i__-1) + ((i__-1) + 1) * (ldda), ldda, da, da_offset + (i__-1) + (i__-1) * (ldda), c__1, c_zero, dy, dy_offset + i__ + 1 + i__ * y_dim1, c__1, queue ); // 3. Put the result back ---------------------------------- magma_cgetmatrix_async( i__3, 1, dy, dy_offset + i__+1+i__*y_dim1, y_dim1, y+i__+1+i__*y_dim1, 0, y_dim1, queue, &event ); i__2 = m - i__ + 1; i__3 = i__ - 1; blasf77_cgemv(MagmaConjTransStr, &i__2, &i__3, &c_one, &a[i__ + a_dim1], &lda, &a[i__ + i__ * a_dim1], &c__1, &c_zero, &y[i__ * y_dim1 + 1], &c__1); i__2 = n - i__; i__3 = i__ - 1; blasf77_cgemv("N", &i__2, &i__3, &c_neg_one, &y[i__ + 1 +y_dim1], &ldy, &y[i__ * y_dim1 + 1], &c__1, &c_zero, f, &c__1); i__2 = m - i__ + 1; i__3 = i__ - 1; blasf77_cgemv(MagmaConjTransStr, &i__2, &i__3, &c_one, &x[i__ + x_dim1], &ldx, &a[i__ + i__ * a_dim1], &c__1, &c_zero, &y[i__ * y_dim1 + 1], &c__1); // 4. Synch to make sure the result is back ---------------- magma_event_sync( event ); if (i__3!=0){ i__2 = n - i__; blasf77_caxpy(&i__2, &c_one, f,&c__1, &y[i__+1+i__*y_dim1],&c__1); } i__2 = i__ - 1; i__3 = n - i__; blasf77_cgemv(MagmaConjTransStr, &i__2, &i__3, &c_neg_one, &a[(i__ + 1) * a_dim1 + 1], &lda, &y[i__ * y_dim1 + 1], &c__1, &c_one, &y[i__ + 1 + i__ * y_dim1], &c__1); i__2 = n - i__; blasf77_cscal(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1); /* Update A(i,i+1:n) */ i__2 = n - i__; #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_clacgv( &i__2, &a[i__+(i__+1)*a_dim1], &lda ); lapackf77_clacgv( &i__, &a[i__+a_dim1], &lda ); #endif blasf77_cgemv("No transpose", &i__2, &i__, &c_neg_one, &y[i__ + 1 + y_dim1], &ldy, &a[i__ + a_dim1], &lda, &c_one, &a[i__ + (i__ + 1) * a_dim1], &lda); i__2 = i__ - 1; i__3 = n - i__; #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_clacgv( &i__, &a[i__+a_dim1], &lda ); lapackf77_clacgv( &i__2, &x[i__+x_dim1], &ldx ); #endif blasf77_cgemv(MagmaConjTransStr, &i__2, &i__3, &c_neg_one, &a[(i__ + 1) * a_dim1 + 1], &lda, &x[i__ + x_dim1], &ldx, &c_one, &a[ i__ + (i__ + 1) * a_dim1], &lda); #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_clacgv( &i__2, &x[i__+x_dim1], &ldx ); #endif /* Generate reflection P(i) to annihilate A(i,i+2:n) */ i__2 = n - i__; /* Computing MIN */ i__3 = i__ + 2; alpha = a[i__ + (i__ + 1) * a_dim1]; lapackf77_clarfg(&i__2, &alpha, &a[i__ + min( i__3,n) * a_dim1], &lda, &taup[i__]); e[i__] = MAGMA_C_REAL( alpha ); a[i__ + (i__ + 1) * a_dim1] = c_one; /* Compute X(i+1:m,i) */ i__2 = m - i__; i__3 = n - i__; // 1. Send the block reflector A(i+1:m,i) to the GPU ------ magma_csetvector( i__3, a + i__ + (i__ +1)* a_dim1, 0, lda, da, da_offset + (i__-1)+((i__-1)+1)*(ldda), ldda, queue ); // 2. Multiply --------------------------------------------- //magma_ccopy(i__3, da+(i__-1)+((i__-1)+1)*(ldda), ldda, // dy + 1 + lddy, 1); magma_cgemv(MagmaNoTrans, i__2, i__3, c_one, da, da_offset + (i__-1)+1+ ((i__-1)+1) * (ldda), ldda, da, da_offset + (i__-1) + ((i__-1)+1) * (ldda), ldda, //dy + 1 + lddy, 1, c_zero, dx, dx_offset + i__ + 1 + i__ * x_dim1, c__1, queue ); // 3. Put the result back ---------------------------------- magma_cgetmatrix_async( i__2, 1, dx, dx_offset + i__+1+i__*x_dim1, x_dim1, x+i__+1+i__*x_dim1, 0, x_dim1, queue, &event ); i__2 = n - i__; blasf77_cgemv(MagmaConjTransStr, &i__2, &i__, &c_one, &y[i__ + 1 + y_dim1], &ldy, &a[i__ + (i__ + 1) * a_dim1], &lda, &c_zero, &x[ i__ * x_dim1 + 1], &c__1); i__2 = m - i__; blasf77_cgemv("N", &i__2, &i__, &c_neg_one, &a[i__ + 1 + a_dim1], &lda, &x[i__ * x_dim1 + 1], &c__1, &c_zero, f, &c__1); i__2 = i__ - 1; i__3 = n - i__; blasf77_cgemv("N", &i__2, &i__3, &c_one, &a[(i__ + 1) * a_dim1 + 1], &lda, &a[i__ + (i__ + 1) * a_dim1], &lda, &c_zero, &x[i__ * x_dim1 + 1], &c__1); // 4. Synch to make sure the result is back ---------------- magma_event_sync( event ); if (i__!=0){ i__2 = m - i__; blasf77_caxpy(&i__2, &c_one, f,&c__1, &x[i__+1+i__*x_dim1],&c__1); } i__2 = m - i__; i__3 = i__ - 1; blasf77_cgemv("No transpose", &i__2, &i__3, &c_neg_one, &x[i__ + 1 + x_dim1], &ldx, &x[i__ * x_dim1 + 1], &c__1, &c_one, &x[ i__ + 1 + i__ * x_dim1], &c__1); i__2 = m - i__; blasf77_cscal(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1); #if defined(PRECISION_z) || defined(PRECISION_c) i__2 = n - i__; lapackf77_clacgv( &i__2, &a[i__+(i__+1)*a_dim1], &lda ); // 4. Send the block reflector A(i+1:m,i) to the GPU after CLACGV() magma_csetvector( i__2, a + i__ + (i__ +1)* a_dim1, 0, lda, da, da_offset + (i__-1)+((i__-1)+1)*(ldda), ldda, queue ); #endif } } } else { /* Reduce to lower bidiagonal form */ for (i__ = 1; i__ <= nb; ++i__) { /* Update A(i,i:n) */ i__2 = n - i__ + 1; i__3 = i__ - 1; #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_clacgv(&i__2, &a[i__ + i__ * a_dim1], &lda); lapackf77_clacgv(&i__3, &a[i__ + a_dim1], &lda); #endif blasf77_cgemv("No transpose", &i__2, &i__3, &c_neg_one, &y[i__ + y_dim1], &ldy, &a[i__ + a_dim1], &lda, &c_one, &a[i__ + i__ * a_dim1], &lda); i__2 = i__ - 1; #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_clacgv(&i__3, &a[i__ + a_dim1], &lda); lapackf77_clacgv(&i__3, &x[i__ + x_dim1], &ldx); #endif i__3 = n - i__ + 1; blasf77_cgemv(MagmaConjTransStr, &i__2, &i__3, &c_neg_one, &a[i__ * a_dim1 + 1], &lda, &x[i__ + x_dim1], &ldx, &c_one, &a[i__ + i__ * a_dim1], &lda); #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_clacgv(&i__2, &x[i__ + x_dim1], &ldx); #endif /* Generate reflection P(i) to annihilate A(i,i+1:n) */ i__2 = n - i__ + 1; /* Computing MIN */ i__3 = i__ + 1; alpha = a[i__ + i__ * a_dim1]; lapackf77_clarfg(&i__2, &alpha, &a[i__ + min(i__3,n) * a_dim1], &lda, &taup[i__]); d[i__] = MAGMA_C_REAL( alpha ); if (i__ < m) { a[i__ + i__ * a_dim1] = c_one; /* Compute X(i+1:m,i) */ i__2 = m - i__; i__3 = n - i__ + 1; // 1. Send the block reflector A(i,i+1:n) to the GPU ------ magma_csetvector( i__3, a + i__ + i__ * a_dim1, 0, lda, da, da_offset + (i__-1)+(i__-1)* (ldda), ldda, queue ); // 2. Multiply --------------------------------------------- //magma_ccopy(i__3, da+(i__-1)+(i__-1)*(ldda), ldda, // dy + 1 + lddy, 1); magma_cgemv(MagmaNoTrans, i__2, i__3, c_one, da, da_offset + (i__-1)+1 + (i__-1) * ldda, ldda, da, da_offset + (i__-1) + (i__-1) * ldda, ldda, // dy + 1 + lddy, 1, c_zero, dx, dx_offset + i__ + 1 + i__ * x_dim1, c__1, queue ); // 3. Put the result back ---------------------------------- magma_cgetmatrix_async( i__2, 1, dx, dx_offset + i__+1+i__*x_dim1, x_dim1, x+i__+1+i__*x_dim1, 0, x_dim1, queue, &event ); i__2 = n - i__ + 1; i__3 = i__ - 1; blasf77_cgemv(MagmaConjTransStr, &i__2, &i__3, &c_one, &y[i__ + y_dim1], &ldy, &a[i__ + i__ * a_dim1], &lda, &c_zero, &x[i__ * x_dim1 + 1], &c__1); i__2 = m - i__; i__3 = i__ - 1; blasf77_cgemv("No transpose", &i__2, &i__3, &c_neg_one, &a[i__ + 1 + a_dim1], &lda, &x[i__ * x_dim1 + 1], &c__1, &c_zero, f, &c__1); i__2 = i__ - 1; i__3 = n - i__ + 1; blasf77_cgemv("No transpose", &i__2, &i__3, &c_one, &a[i__ * a_dim1 + 1], &lda, &a[i__ + i__ * a_dim1], &lda, &c_zero, &x[i__ * x_dim1 + 1], &c__1); // 4. Synch to make sure the result is back ---------------- magma_event_sync( event ); if (i__2!=0){ i__3 = m - i__; blasf77_caxpy(&i__3, &c_one, f,&c__1, &x[i__+1+i__*x_dim1],&c__1); } i__2 = m - i__; i__3 = i__ - 1; blasf77_cgemv("No transpose", &i__2, &i__3, &c_neg_one, &x[i__ + 1 + x_dim1], &ldx, &x[i__ * x_dim1 + 1], &c__1, &c_one, &x[i__ + 1 + i__ * x_dim1], &c__1); i__2 = m - i__; blasf77_cscal(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1); i__2 = n - i__ + 1; #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_clacgv(&i__2, &a[i__ + i__ * a_dim1], &lda); magma_csetvector( i__2, a + i__ + (i__ )* a_dim1, 0, lda, da, da_offset + (i__-1)+ (i__-1)*(ldda), ldda, queue ); #endif /* Update A(i+1:m,i) */ i__2 = m - i__; i__3 = i__ - 1; #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_clacgv(&i__3, &y[i__ + y_dim1], &ldy); #endif blasf77_cgemv("No transpose", &i__2, &i__3, &c_neg_one, &a[i__ + 1 + a_dim1], &lda, &y[i__ + y_dim1], &ldy, &c_one, &a[i__ + 1 + i__ * a_dim1], &c__1); i__2 = m - i__; #if defined(PRECISION_z) || defined(PRECISION_c) lapackf77_clacgv(&i__3, &y[i__ + y_dim1], &ldy); #endif blasf77_cgemv("No transpose", &i__2, &i__, &c_neg_one, &x[i__ + 1 + x_dim1], &ldx, &a[i__ * a_dim1 + 1], &c__1, &c_one, &a[i__ + 1 + i__ * a_dim1], &c__1); /* Generate reflection Q(i) to annihilate A(i+2:m,i) */ i__2 = m - i__; i__3 = i__ + 2; alpha = a[i__ + 1 + i__ * a_dim1]; lapackf77_clarfg(&i__2, &alpha, &a[min(i__3,m) + i__ * a_dim1], &c__1, &tauq[i__]); e[i__] = MAGMA_C_REAL( alpha ); a[i__ + 1 + i__ * a_dim1] = c_one; /* Compute Y(i+1:n,i) */ i__2 = m - i__; i__3 = n - i__; // 1. Send the block reflector A(i+1:m,i) to the GPU ------ magma_csetvector( i__2, a + i__ +1+ i__ * a_dim1, 0, 1, da, da_offset + (i__-1)+1+ (i__-1)*(ldda), 1, queue ); // 2. Multiply --------------------------------------------- magma_cgemv(MagmaConjTrans, i__2, i__3, c_one, da, da_offset + (i__-1)+1+ ((i__-1)+1) * ldda, ldda, da, da_offset + (i__-1)+1+ (i__-1) * ldda, c__1, c_zero, dy, dy_offset + i__ + 1 + i__ * y_dim1, c__1, queue ); // 3. Put the result back ---------------------------------- magma_cgetmatrix_async( i__3, 1, dy, dy_offset + i__+1+i__*y_dim1, y_dim1, y+i__+1+i__*y_dim1, 0, y_dim1, queue, &event ); i__2 = m - i__; i__3 = i__ - 1; blasf77_cgemv(MagmaConjTransStr, &i__2, &i__3, &c_one, &a[i__ + 1 + a_dim1], &lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_zero, &y[ i__ * y_dim1 + 1], &c__1); i__2 = n - i__; i__3 = i__ - 1; blasf77_cgemv("No transpose", &i__2, &i__3, &c_neg_one, &y[i__ + 1 + y_dim1], &ldy, &y[i__ * y_dim1 + 1], &c__1, &c_zero, f, &c__1); i__2 = m - i__; blasf77_cgemv(MagmaConjTransStr, &i__2, &i__, &c_one, &x[i__ + 1 + x_dim1], &ldx, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_zero, &y[i__ * y_dim1 + 1], &c__1); // 4. Synch to make sure the result is back ---------------- magma_event_sync( event ); if (i__3!=0){ i__2 = n - i__; blasf77_caxpy(&i__2, &c_one, f,&c__1, &y[i__+1+i__*y_dim1],&c__1); } i__2 = n - i__; blasf77_cgemv(MagmaConjTransStr, &i__, &i__2, &c_neg_one, &a[(i__ + 1) * a_dim1 + 1], &lda, &y[i__ * y_dim1 + 1], &c__1, &c_one, &y[i__ + 1 + i__ * y_dim1], &c__1); i__2 = n - i__; blasf77_cscal(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1); #if defined(PRECISION_z) || defined(PRECISION_c) } else { i__2 = n - i__ + 1; lapackf77_clacgv(&i__2, &a[i__ + i__ * a_dim1], &lda); magma_csetvector( i__2, a + i__ + (i__ )* a_dim1, 0, lda, da, da_offset + (i__-1)+ (i__-1)*(ldda), ldda, queue ); #endif } } } magma_queue_sync( queue ); magma_free_cpu(f); return MAGMA_SUCCESS; } /* magma_clabrd */