extern "C" magma_int_t magma_cheevx(char jobz, char range, char uplo, magma_int_t n, magmaFloatComplex *a, magma_int_t lda, float vl, float vu, magma_int_t il, magma_int_t iu, float abstol, magma_int_t *m, float *w, magmaFloatComplex *z, magma_int_t ldz, magmaFloatComplex *work, magma_int_t lwork, float *rwork, magma_int_t *iwork, magma_int_t *ifail, magma_int_t *info) { /* -- MAGMA (version 1.4.1) -- Univ. of Tennessee, Knoxville Univ. of California, Berkeley Univ. of Colorado, Denver December 2013 Purpose ======= CHEEVX computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues. Arguments ========= JOBZ (input) CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors. RANGE (input) CHARACTER*1 = 'A': all eigenvalues will be found. = 'V': all eigenvalues in the half-open interval (VL,VU] will be found. = 'I': the IL-th through IU-th eigenvalues will be found. UPLO (input) CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N (input) INTEGER The order of the matrix A. N >= 0. A (input/output) COMPLEX array, dimension (LDA, N) On entry, the Hermitian matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A. On exit, the lower triangle (if UPLO='L') or the upper triangle (if UPLO='U') of A, including the diagonal, is destroyed. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). VL (input) REAL VU (input) REAL If RANGE='V', the lower and upper bounds of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = 'A' or 'I'. IL (input) INTEGER IU (input) INTEGER If RANGE='I', the indices (in ascending order) of the smallest and largest eigenvalues to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = 'A' or 'V'. ABSTOL (input) REAL The absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to ABSTOL + EPS * max( |a|,|b| ) , where EPS is the machine precision. If ABSTOL is less than or equal to zero, then EPS*|T| will be used in its place, where |T| is the 1-norm of the tridiagonal matrix obtained by reducing A to tridiagonal form. Eigenvalues will be computed most accurately when ABSTOL is set to twice the underflow threshold 2*SLAMCH('S'), not zero. If this routine returns with INFO>0, indicating that some eigenvectors did not converge, try setting ABSTOL to 2*SLAMCH('S'). See "Computing Small Singular Values of Bidiagonal Matrices with Guaranteed High Relative Accuracy," by Demmel and Kahan, LAPACK Working Note #3. M (output) INTEGER The total number of eigenvalues found. 0 <= M <= N. If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. W (output) REAL array, dimension (N) On normal exit, the first M elements contain the selected eigenvalues in ascending order. Z (output) COMPLEX array, dimension (LDZ, max(1,M)) If JOBZ = 'V', then if INFO = 0, the first M columns of Z contain the orthonormal eigenvectors of the matrix A corresponding to the selected eigenvalues, with the i-th column of Z holding the eigenvector associated with W(i). If an eigenvector fails to converge, then that column of Z contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in IFAIL. If JOBZ = 'N', then Z is not referenced. Note: the user must ensure that at least max(1,M) columns are supplied in the array Z; if RANGE = 'V', the exact value of M is not known in advance and an upper bound must be used. LDZ (input) INTEGER The leading dimension of the array Z. LDZ >= 1, and if JOBZ = 'V', LDZ >= max(1,N). WORK (workspace/output) COMPLEX array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The length of the array WORK. LWORK >= max(1,2*N-1). For optimal efficiency, LWORK >= (NB+1)*N, where NB is the max of the blocksize for CHETRD and for CUNMTR as returned by ILAENV. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. RWORK (workspace) REAL array, dimension (7*N) IWORK (workspace) INTEGER array, dimension (5*N) IFAIL (output) INTEGER array, dimension (N) If JOBZ = 'V', then if INFO = 0, the first M elements of IFAIL are zero. If INFO > 0, then IFAIL contains the indices of the eigenvectors that failed to converge. If JOBZ = 'N', then IFAIL is not referenced. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, then i eigenvectors failed to converge. Their indices are stored in array IFAIL. ===================================================================== */ char uplo_[2] = {uplo, 0}; char jobz_[2] = {jobz, 0}; char range_[2] = {range, 0}; magma_int_t izero = 0; magma_int_t ione = 1; char order[1]; magma_int_t indd, inde; magma_int_t imax; magma_int_t lopt, itmp1, indee; magma_int_t lower, wantz; magma_int_t i, j, jj, i__1; magma_int_t alleig, valeig, indeig; magma_int_t iscale, indibl; magma_int_t indiwk, indisp, indtau; magma_int_t indrwk, indwrk; magma_int_t llwork, nsplit; magma_int_t lquery; magma_int_t iinfo; float safmin; float bignum; float smlnum; float eps, tmp1; float anrm; float sigma, d__1; float rmin, rmax; /* Function Body */ lower = lapackf77_lsame(uplo_, MagmaLowerStr); wantz = lapackf77_lsame(jobz_, MagmaVecStr); alleig = lapackf77_lsame(range_, "A"); valeig = lapackf77_lsame(range_, "V"); indeig = lapackf77_lsame(range_, "I"); lquery = lwork == -1; *info = 0; if (! (wantz || lapackf77_lsame(jobz_, MagmaNoVecStr))) { *info = -1; } else if (! (alleig || valeig || indeig)) { *info = -2; } else if (! (lower || lapackf77_lsame(uplo_, MagmaUpperStr))) { *info = -3; } else if (n < 0) { *info = -4; } else if (lda < max(1,n)) { *info = -6; } else if (ldz < 1 || (wantz && ldz < n)) { *info = -15; } else { if (valeig) { if (n > 0 && vu <= vl) { *info = -8; } } else if (indeig) { if (il < 1 || il > max(1,n)) { *info = -9; } else if (iu < min(n,il) || iu > n) { *info = -10; } } } magma_int_t nb = magma_get_chetrd_nb(n); lopt = n * (nb + 1); work[0] = MAGMA_C_MAKE( lopt, 0 ); if (lwork < lopt && ! lquery) { *info = -17; } if (*info != 0) { magma_xerbla( __func__, -(*info)); return *info; } else if (lquery) { return *info; } *m = 0; /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */ if (n <= 128) { #ifdef ENABLE_DEBUG printf("--------------------------------------------------------------\n"); printf(" warning matrix too small N=%d NB=%d, calling lapack on CPU \n", (int) n, (int) nb); printf("--------------------------------------------------------------\n"); #endif lapackf77_cheevx(jobz_, range_, uplo_, &n, a, &lda, &vl, &vu, &il, &iu, &abstol, m, w, z, &ldz, work, &lwork, rwork, iwork, ifail, info); return *info; } --w; --work; --rwork; --iwork; --ifail; /* Get machine constants. */ safmin = lapackf77_slamch("Safe minimum"); eps = lapackf77_slamch("Precision"); smlnum = safmin / eps; bignum = 1. / smlnum; rmin = magma_ssqrt(smlnum); rmax = magma_ssqrt(bignum); /* Scale matrix to allowable range, if necessary. */ anrm = lapackf77_clanhe("M", uplo_, &n, a, &lda, &rwork[1]); iscale = 0; if (anrm > 0. && anrm < rmin) { iscale = 1; sigma = rmin / anrm; } else if (anrm > rmax) { iscale = 1; sigma = rmax / anrm; } if (iscale == 1) { d__1 = 1.; lapackf77_clascl(uplo_, &izero, &izero, &d__1, &sigma, &n, &n, a, &lda, info); if (abstol > 0.) { abstol *= sigma; } if (valeig) { vl *= sigma; vu *= sigma; } } /* Call CHETRD to reduce Hermitian matrix to tridiagonal form. */ indd = 1; inde = indd + n; indrwk = inde + n; indtau = 1; indwrk = indtau + n; llwork = lwork - indwrk + 1; magma_chetrd(uplo, n, a, lda, &rwork[indd], &rwork[inde], &work[indtau], &work[indwrk], llwork, &iinfo); lopt = n + (magma_int_t)MAGMA_C_REAL(work[indwrk]); /* If all eigenvalues are desired and ABSTOL is less than or equal to zero, then call SSTERF or CUNGTR and CSTEQR. If this fails for some eigenvalue, then try SSTEBZ. */ if ((alleig || (indeig && il == 1 && iu == n)) && abstol <= 0.) { blasf77_scopy(&n, &rwork[indd], &ione, &w[1], &ione); indee = indrwk + 2*n; if (! wantz) { i__1 = n - 1; blasf77_scopy(&i__1, &rwork[inde], &ione, &rwork[indee], &ione); lapackf77_ssterf(&n, &w[1], &rwork[indee], info); } else { lapackf77_clacpy("A", &n, &n, a, &lda, z, &ldz); lapackf77_cungtr(uplo_, &n, z, &ldz, &work[indtau], &work[indwrk], &llwork, &iinfo); i__1 = n - 1; blasf77_scopy(&i__1, &rwork[inde], &ione, &rwork[indee], &ione); lapackf77_csteqr(jobz_, &n, &w[1], &rwork[indee], z, &ldz, &rwork[indrwk], info); if (*info == 0) { for (i = 1; i <= n; ++i) { ifail[i] = 0; } } } if (*info == 0) { *m = n; } } /* Otherwise, call SSTEBZ and, if eigenvectors are desired, CSTEIN. */ if (*m == 0) { *info = 0; if (wantz) { *(unsigned char *)order = 'B'; } else { *(unsigned char *)order = 'E'; } indibl = 1; indisp = indibl + n; indiwk = indisp + n; lapackf77_sstebz(range_, order, &n, &vl, &vu, &il, &iu, &abstol, &rwork[indd], &rwork[inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &rwork[indrwk], &iwork[indiwk], info); if (wantz) { lapackf77_cstein(&n, &rwork[indd], &rwork[inde], m, &w[1], &iwork[indibl], &iwork[indisp], z, &ldz, &rwork[indrwk], &iwork[indiwk], &ifail[1], info); /* Apply unitary matrix used in reduction to tridiagonal form to eigenvectors returned by CSTEIN. */ magma_cunmtr(MagmaLeft, uplo, MagmaNoTrans, n, *m, a, lda, &work[indtau], z, ldz, &work[indwrk], llwork, &iinfo); } } /* If matrix was scaled, then rescale eigenvalues appropriately. */ if (iscale == 1) { if (*info == 0) { imax = *m; } else { imax = *info - 1; } d__1 = 1. / sigma; blasf77_sscal(&imax, &d__1, &w[1], &ione); } /* If eigenvalues are not in order, then sort them, along with eigenvectors. */ if (wantz) { for (j = 1; j <= *m-1; ++j) { i = 0; tmp1 = w[j]; for (jj = j + 1; jj <= *m; ++jj) { if (w[jj] < tmp1) { i = jj; tmp1 = w[jj]; } } if (i != 0) { itmp1 = iwork[indibl + i - 1]; w[i] = w[j]; iwork[indibl + i - 1] = iwork[indibl + j - 1]; w[j] = tmp1; iwork[indibl + j - 1] = itmp1; blasf77_cswap(&n, z + (i-1)*ldz, &ione, z + (j-1)*ldz, &ione); if (*info != 0) { itmp1 = ifail[i]; ifail[i] = ifail[j]; ifail[j] = itmp1; } } } } /* Set WORK(1) to optimal complex workspace size. */ work[1] = MAGMA_C_MAKE( lopt, 0 ); return *info; } /* magma_cheevx */
/** Purpose ------- CHEEVX computes selected eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of values or a range of indices for the desired eigenvalues. Arguments --------- @param[in] jobz magma_vec_t - = MagmaNoVec: Compute eigenvalues only; - = MagmaVec: Compute eigenvalues and eigenvectors. @param[in] range magma_range_t - = MagmaRangeAll: all eigenvalues will be found. - = MagmaRangeV: all eigenvalues in the half-open interval (VL,VU] will be found. - = MagmaRangeI: the IL-th through IU-th eigenvalues will be found. @param[in] uplo magma_uplo_t - = MagmaUpper: Upper triangle of A is stored; - = MagmaLower: Lower triangle of A is stored. @param[in] n INTEGER The order of the matrix A. N >= 0. @param[in,out] dA COMPLEX array, dimension (LDDA, N) On entry, the Hermitian matrix A. If UPLO = MagmaUpper, the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A. If UPLO = MagmaLower, the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A. On exit, the lower triangle (if UPLO=MagmaLower) or the upper triangle (if UPLO=MagmaUpper) of A, including the diagonal, is destroyed. @param[in] ldda INTEGER The leading dimension of the array DA. LDDA >= max(1,N). @param[in] vl REAL @param[in] vu REAL If RANGE=MagmaRangeV, the lower and upper bounds of the interval to be searched for eigenvalues. VL < VU. Not referenced if RANGE = MagmaRangeAll or MagmaRangeI. @param[in] il INTEGER @param[in] iu INTEGER If RANGE=MagmaRangeI, the indices (in ascending order) of the smallest and largest eigenvalues to be returned. 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. Not referenced if RANGE = MagmaRangeAll or MagmaRangeV. @param[in] abstol REAL The absolute error tolerance for the eigenvalues. An approximate eigenvalue is accepted as converged when it is determined to lie in an interval [a,b] of width less than or equal to ABSTOL + EPS * max( |a|,|b| ), \n where EPS is the machine precision. If ABSTOL is less than or equal to zero, then EPS*|T| will be used in its place, where |T| is the 1-norm of the tridiagonal matrix obtained by reducing A to tridiagonal form. \n Eigenvalues will be computed most accurately when ABSTOL is set to twice the underflow threshold 2*SLAMCH('S'), not zero. If this routine returns with INFO > 0, indicating that some eigenvectors did not converge, try setting ABSTOL to 2*SLAMCH('S'). \n See "Computing Small Singular Values of Bidiagonal Matrices with Guaranteed High Relative Accuracy," by Demmel and Kahan, LAPACK Working Note #3. @param[out] m INTEGER The total number of eigenvalues found. 0 <= M <= N. If RANGE = MagmaRangeAll, M = N, and if RANGE = MagmaRangeI, M = IU-IL+1. @param[out] w REAL array, dimension (N) On normal exit, the first M elements contain the selected eigenvalues in ascending order. @param[out] dZ COMPLEX array, dimension (LDDZ, max(1,M)) If JOBZ = MagmaVec, then if INFO = 0, the first M columns of Z contain the orthonormal eigenvectors of the matrix A corresponding to the selected eigenvalues, with the i-th column of Z holding the eigenvector associated with W(i). If an eigenvector fails to converge, then that column of Z contains the latest approximation to the eigenvector, and the index of the eigenvector is returned in IFAIL. If JOBZ = MagmaNoVec, then Z is not referenced. Note: the user must ensure that at least max(1,M) columns are supplied in the array Z; if RANGE = MagmaRangeV, the exact value of M is not known in advance and an upper bound must be used. ********* (workspace) If FAST_HEMV is defined DZ should be (LDDZ, max(1,N)) in both cases. @param[in] lddz INTEGER The leading dimension of the array DZ. LDDZ >= 1, and if JOBZ = MagmaVec, LDDZ >= max(1,N). @param wA (workspace) COMPLEX array, dimension (LDWA, N) @param[in] ldwa INTEGER The leading dimension of the array wA. LDWA >= max(1,N). @param wZ (workspace) COMPLEX array, dimension (LDWZ, max(1,M)) @param[in] ldwz INTEGER The leading dimension of the array wZ. LDWZ >= 1, and if JOBZ = MagmaVec, LDWZ >= max(1,N). @param[out] work (workspace) COMPLEX array, dimension (LWORK) On exit, if INFO = 0, WORK[0] returns the optimal LWORK. @param[in] lwork INTEGER The length of the array WORK. LWORK >= (NB+1)*N, where NB is the max of the blocksize for CHETRD. \n If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. @param rwork (workspace) REAL array, dimension (7*N) @param iwork (workspace) INTEGER array, dimension (5*N) @param[out] ifail INTEGER array, dimension (N) If JOBZ = MagmaVec, then if INFO = 0, the first M elements of IFAIL are zero. If INFO > 0, then IFAIL contains the indices of the eigenvectors that failed to converge. If JOBZ = MagmaNoVec, then IFAIL is not referenced. @param[out] info INTEGER - = 0: successful exit - < 0: if INFO = -i, the i-th argument had an illegal value - > 0: if INFO = i, then i eigenvectors failed to converge. Their indices are stored in array IFAIL. @ingroup magma_cheev_driver ********************************************************************/ extern "C" magma_int_t magma_cheevx_gpu( magma_vec_t jobz, magma_range_t range, magma_uplo_t uplo, magma_int_t n, magmaFloatComplex_ptr dA, magma_int_t ldda, float vl, float vu, magma_int_t il, magma_int_t iu, float abstol, magma_int_t *m, float *w, magmaFloatComplex_ptr dZ, magma_int_t lddz, magmaFloatComplex *wA, magma_int_t ldwa, magmaFloatComplex *wZ, magma_int_t ldwz, magmaFloatComplex *work, magma_int_t lwork, float *rwork, magma_int_t *iwork, magma_int_t *ifail, magma_int_t *info) { const char* uplo_ = lapack_uplo_const( uplo ); const char* jobz_ = lapack_vec_const( jobz ); const char* range_ = lapack_range_const( range ); magma_int_t ione = 1; const char* order_; magma_int_t indd, inde; magma_int_t imax; magma_int_t lopt, itmp1, indee; magma_int_t lower, wantz; magma_int_t i, j, jj, i__1; magma_int_t alleig, valeig, indeig; magma_int_t iscale, indibl; magma_int_t indiwk, indisp, indtau; magma_int_t indrwk, indwrk; magma_int_t llwork, nsplit; magma_int_t lquery; magma_int_t iinfo; float safmin; float bignum; float smlnum; float eps, tmp1; float anrm; float sigma, d__1; float rmin, rmax; magmaFloat_ptr dwork; /* Function Body */ lower = (uplo == MagmaLower); wantz = (jobz == MagmaVec); alleig = (range == MagmaRangeAll); valeig = (range == MagmaRangeV); indeig = (range == MagmaRangeI); lquery = (lwork == -1); *info = 0; if (! (wantz || (jobz == MagmaNoVec))) { *info = -1; } else if (! (alleig || valeig || indeig)) { *info = -2; } else if (! (lower || (uplo == MagmaUpper))) { *info = -3; } else if (n < 0) { *info = -4; } else if (ldda < max(1,n)) { *info = -6; } else if (lddz < 1 || (wantz && lddz < n)) { *info = -15; } else if (ldwa < max(1,n)) { *info = -17; } else if (ldwz < 1 || (wantz && ldwz < n)) { *info = -19; } else { if (valeig) { if (n > 0 && vu <= vl) { *info = -8; } } else if (indeig) { if (il < 1 || il > max(1,n)) { *info = -9; } else if (iu < min(n,il) || iu > n) { *info = -10; } } } magma_int_t nb = magma_get_chetrd_nb(n); lopt = n * (nb + 1); work[0] = MAGMA_C_MAKE( lopt, 0 ); if (lwork < lopt && ! lquery) { *info = -21; } if (*info != 0) { magma_xerbla( __func__, -(*info)); return *info; } else if (lquery) { return *info; } *m = 0; /* Check if matrix is very small then just call LAPACK on CPU, no need for GPU */ if (n <= 128) { #ifdef ENABLE_DEBUG printf("--------------------------------------------------------------\n"); printf(" warning matrix too small N=%d NB=%d, calling lapack on CPU \n", (int) n, (int) nb); printf("--------------------------------------------------------------\n"); #endif magmaFloatComplex *a; magma_cmalloc_cpu( &a, n*n ); magma_cgetmatrix(n, n, dA, ldda, a, n); lapackf77_cheevx(jobz_, range_, uplo_, &n, a, &n, &vl, &vu, &il, &iu, &abstol, m, w, wZ, &ldwz, work, &lwork, rwork, iwork, ifail, info); magma_csetmatrix( n, n, a, n, dA, ldda); magma_csetmatrix( n, *m, wZ, ldwz, dZ, lddz); magma_free_cpu(a); return *info; } if (MAGMA_SUCCESS != magma_smalloc( &dwork, n )) { fprintf (stderr, "!!!! device memory allocation error (magma_cheevx_gpu)\n"); *info = MAGMA_ERR_DEVICE_ALLOC; return *info; } --w; --work; --rwork; --iwork; --ifail; /* Get machine constants. */ safmin = lapackf77_slamch("Safe minimum"); eps = lapackf77_slamch("Precision"); smlnum = safmin / eps; bignum = 1. / smlnum; rmin = magma_ssqrt(smlnum); rmax = magma_ssqrt(bignum); /* Scale matrix to allowable range, if necessary. */ anrm = magmablas_clanhe(MagmaMaxNorm, uplo, n, dA, ldda, dwork); iscale = 0; sigma = 1; if (anrm > 0. && anrm < rmin) { iscale = 1; sigma = rmin / anrm; } else if (anrm > rmax) { iscale = 1; sigma = rmax / anrm; } if (iscale == 1) { d__1 = 1.; magmablas_clascl(uplo, 0, 0, 1., sigma, n, n, dA, ldda, info); if (abstol > 0.) { abstol *= sigma; } if (valeig) { vl *= sigma; vu *= sigma; } } /* Call CHETRD to reduce Hermitian matrix to tridiagonal form. */ indd = 1; inde = indd + n; indrwk = inde + n; indtau = 1; indwrk = indtau + n; llwork = lwork - indwrk + 1; #ifdef FAST_HEMV magma_chetrd2_gpu(uplo, n, dA, ldda, &rwork[indd], &rwork[inde], &work[indtau], wA, ldwa, &work[indwrk], llwork, dZ, lddz*n, &iinfo); #else magma_chetrd_gpu (uplo, n, dA, ldda, &rwork[indd], &rwork[inde], &work[indtau], wA, ldwa, &work[indwrk], llwork, &iinfo); #endif lopt = n + (magma_int_t)MAGMA_C_REAL(work[indwrk]); /* If all eigenvalues are desired and ABSTOL is less than or equal to zero, then call SSTERF or CUNGTR and CSTEQR. If this fails for some eigenvalue, then try SSTEBZ. */ if ((alleig || (indeig && il == 1 && iu == n)) && abstol <= 0.) { blasf77_scopy(&n, &rwork[indd], &ione, &w[1], &ione); indee = indrwk + 2*n; if (! wantz) { i__1 = n - 1; blasf77_scopy(&i__1, &rwork[inde], &ione, &rwork[indee], &ione); lapackf77_ssterf(&n, &w[1], &rwork[indee], info); } else { lapackf77_clacpy("A", &n, &n, wA, &ldwa, wZ, &ldwz); lapackf77_cungtr(uplo_, &n, wZ, &ldwz, &work[indtau], &work[indwrk], &llwork, &iinfo); i__1 = n - 1; blasf77_scopy(&i__1, &rwork[inde], &ione, &rwork[indee], &ione); lapackf77_csteqr(jobz_, &n, &w[1], &rwork[indee], wZ, &ldwz, &rwork[indrwk], info); if (*info == 0) { for (i = 1; i <= n; ++i) { ifail[i] = 0; } magma_csetmatrix( n, n, wZ, ldwz, dZ, lddz ); } } if (*info == 0) { *m = n; } } /* Otherwise, call SSTEBZ and, if eigenvectors are desired, CSTEIN. */ if (*m == 0) { *info = 0; if (wantz) { order_ = "B"; } else { order_ = "E"; } indibl = 1; indisp = indibl + n; indiwk = indisp + n; lapackf77_sstebz(range_, order_, &n, &vl, &vu, &il, &iu, &abstol, &rwork[indd], &rwork[inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &rwork[indrwk], &iwork[indiwk], info); if (wantz) { lapackf77_cstein(&n, &rwork[indd], &rwork[inde], m, &w[1], &iwork[indibl], &iwork[indisp], wZ, &ldwz, &rwork[indrwk], &iwork[indiwk], &ifail[1], info); magma_csetmatrix( n, *m, wZ, ldwz, dZ, lddz ); /* Apply unitary matrix used in reduction to tridiagonal form to eigenvectors returned by CSTEIN. */ magma_cunmtr_gpu(MagmaLeft, uplo, MagmaNoTrans, n, *m, dA, ldda, &work[indtau], dZ, lddz, wA, ldwa, &iinfo); } } /* If matrix was scaled, then rescale eigenvalues appropriately. */ if (iscale == 1) { if (*info == 0) { imax = *m; } else { imax = *info - 1; } d__1 = 1. / sigma; blasf77_sscal(&imax, &d__1, &w[1], &ione); } /* If eigenvalues are not in order, then sort them, along with eigenvectors. */ if (wantz) { for (j = 1; j <= *m-1; ++j) { i = 0; tmp1 = w[j]; for (jj = j + 1; jj <= *m; ++jj) { if (w[jj] < tmp1) { i = jj; tmp1 = w[jj]; } } if (i != 0) { itmp1 = iwork[indibl + i - 1]; w[i] = w[j]; iwork[indibl + i - 1] = iwork[indibl + j - 1]; w[j] = tmp1; iwork[indibl + j - 1] = itmp1; magma_cswap(n, dZ + (i-1)*lddz, ione, dZ + (j-1)*lddz, ione); if (*info != 0) { itmp1 = ifail[i]; ifail[i] = ifail[j]; ifail[j] = itmp1; } } } } /* Set WORK[0] to optimal complex workspace size. */ work[1] = MAGMA_C_MAKE( lopt, 0 ); return *info; } /* magma_cheevx_gpu */